3 research outputs found

    Towards Ranking Geometric Automated Theorem Provers

    Full text link
    The field of geometric automated theorem provers has a long and rich history, from the early AI approaches of the 1960s, synthetic provers, to today algebraic and synthetic provers. The geometry automated deduction area differs from other areas by the strong connection between the axiomatic theories and its standard models. In many cases the geometric constructions are used to establish the theorems' statements, geometric constructions are, in some provers, used to conduct the proof, used as counter-examples to close some branches of the automatic proof. Synthetic geometry proofs are done using geometric properties, proofs that can have a visual counterpart in the supporting geometric construction. With the growing use of geometry automatic deduction tools as applications in other areas, e.g. in education, the need to evaluate them, using different criteria, is felt. Establishing a ranking among geometric automated theorem provers will be useful for the improvement of the current methods/implementations. Improvements could concern wider scope, better efficiency, proof readability and proof reliability. To achieve the goal of being able to compare geometric automated theorem provers a common test bench is needed: a common language to describe the geometric problems; a comprehensive repository of geometric problems and a set of quality measures.Comment: In Proceedings ThEdu'18, arXiv:1903.1240

    Querying Geometric Figures Using a Controlled Language, Ontological Graphs and Dependency Lattices

    Full text link
    Dynamic geometry systems (DGS) have become basic tools in many areas of geometry as, for example, in education. Geometry Automated Theorem Provers (GATP) are an active area of research and are considered as being basic tools in future enhanced educational software as well as in a next generation of mechanized mathematics assistants. Recently emerged Web repositories of geometric knowledge, like TGTP and Intergeo, are an attempt to make the already vast data set of geometric knowledge widely available. Considering the large amount of geometric information already available, we face the need of a query mechanism for descriptions of geometric constructions. In this paper we discuss two approaches for describing geometric figures (declarative and procedural), and present algorithms for querying geometric figures in declaratively and procedurally described corpora, by using a DGS or a dedicated controlled natural language for queries.Comment: 14 pages, 5 figures, accepted at CICM 201
    corecore