5,345 research outputs found

    Ride quality systems for commuter aircraft

    Get PDF
    The state-of-the-art in Active Ride Augmentation, specifically in terms of its feasibility for commuter aircraft applications. A literature survey was done, and the principal results are presented here through discussion of different Ride Quality Augmentation System (RQAS) designs and advances in related technologies. Recommended follow-on research areas are discussed, and a preliminary RQAS configuration for detailed design and development is proposed

    Cluster detection and risk estimation for spatio-temporal health data

    Full text link
    In epidemiological disease mapping one aims to estimate the spatio-temporal pattern in disease risk and identify high-risk clusters, allowing health interventions to be appropriately targeted. Bayesian spatio-temporal models are used to estimate smoothed risk surfaces, but this is contrary to the aim of identifying groups of areal units that exhibit elevated risks compared with their neighbours. Therefore, in this paper we propose a new Bayesian hierarchical modelling approach for simultaneously estimating disease risk and identifying high-risk clusters in space and time. Inference for this model is based on Markov chain Monte Carlo simulation, using the freely available R package CARBayesST that has been developed in conjunction with this paper. Our methodology is motivated by two case studies, the first of which assesses if there is a relationship between Public health Districts and colon cancer clusters in Georgia, while the second looks at the impact of the smoking ban in public places in England on cardiovascular disease clusters

    A Bayesian regression tree approach to identify the effect of nanoparticles' properties on toxicity profiles

    Full text link
    We introduce a Bayesian multiple regression tree model to characterize relationships between physico-chemical properties of nanoparticles and their in-vitro toxicity over multiple doses and times of exposure. Unlike conventional models that rely on data summaries, our model solves the low sample size issue and avoids arbitrary loss of information by combining all measurements from a general exposure experiment across doses, times of exposure, and replicates. The proposed technique integrates Bayesian trees for modeling threshold effects and interactions, and penalized B-splines for dose- and time-response surface smoothing. The resulting posterior distribution is sampled by Markov Chain Monte Carlo. This method allows for inference on a number of quantities of potential interest to substantive nanotoxicology, such as the importance of physico-chemical properties and their marginal effect on toxicity. We illustrate the application of our method to the analysis of a library of 24 nano metal oxides.Comment: Published at http://dx.doi.org/10.1214/14-AOAS797 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian cluster detection via adjacency modelling

    Get PDF
    Disease mapping aims to estimate the spatial pattern in disease risk across an area, identifying units which have elevated disease risk. Existing methods use Bayesian hierarchical models with spatially smooth conditional autoregressive priors to estimate risk, but these methods are unable to identify the geographical extent of spatially contiguous high-risk clusters of areal units. Our proposed solution to this problem is a two-stage approach, which produces a set of potential cluster structures for the data and then chooses the optimal structure via a Bayesian hierarchical model. The first stage uses a spatially adjusted hierarchical agglomerative clustering algorithm. The second stage fits a Poisson log-linear model to the data to estimate the optimal cluster structure and the spatial pattern in disease risk. The methodology was applied to a study of chronic obstructive pulmonary disease (COPD) in local authorities in England, where a number of high risk clusters were identified

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field
    corecore