935 research outputs found

    Resource Allocation in Energy Cooperation Enabled 5G Cellular Networks

    Get PDF
    PhD thesisIn fifth generation (5G) networks, more base stations (BSs) and antennas have been deployed to meet the high data rate and spectrum efficiency requirements. Heterogeneous and ultra dense networks not only pose substantial challenges to the resource allocation design, but also lead to unprecedented surge in energy consumption. Supplying BSs with renewable energy by utilising energy harvesting technology has became a favourable solution for cellular network operators to reduce the grid energy consumption. However, the harvested renewable energy is fluctuating in both time and space domains. The available energy for a particular BS at a particular time might be insufficient to meet the traffic demand which will lead to renewable energy waste or increased outage probability. To solve this problem, the concept of energy cooperation was introduced by Sennur Ulukus in 2012 as a means for transferring and sharing energy between the transmitter and the receiver. Nevertheless, resource allocation in energy cooperation enabled cellular networks is not fully investigated. This thesis investigates resource allocation schemes and resource allocation optimisation in energy cooperation enabled cellular networks that employed advanced 5G techniques, aiming at maximising the energy efficiency of the cellular network while ensuring the network performance. First, a power control algorithm is proposed for energy cooperation enabled millimetre wave (mmWave) HetNets. The aim is to maximise the time average network data rate while keeping the network stable such that the network backlog is bounded and the required battery capacity is finite. Simulation results show that the proposed power control scheme can reduce the required battery capacity and improve the network throughput. Second, resource allocation in energy cooperation enabled heterogeneous networks (Het- Nets) is investigated. User association and power control schemes are proposed to maximise the energy efficiency of the whole network respectively. The simulation results reveal that the implementation of energy cooperation in HetNets can improve the energy efficiency and the improvement is apparent when the energy transfer efficiency is high. Following on that, a novel resource allocation for energy cooperation enabled nonorthogonal multiple access (NOMA) HetNets is presented. Two user association schemes which have different complexities and performances are proposed and compared. Following on that, a joint user association and power control algorithm is proposed to maximise the energy efficiency of the network. It is confirmed from the simulation results that the proposed resource allocation schemes efficiently coordinate the intra-cell and inter-cell interference in NOMA HetNets with energy cooperation while exploiting the multiuser diversity and BS densification. Last but not least, a joint user association and power control scheme that considers the different content requirements of users is proposed for energy cooperation enabled caching HetNets. It shows that the proposed scheme significantly enhances the energy efficiency performance of caching HetNets

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes

    Green Networking in Cellular HetNets: A Unified Radio Resource Management Framework with Base Station ON/OFF Switching

    Full text link
    In this paper, the problem of energy efficiency in cellular heterogeneous networks (HetNets) is investigated using radio resource and power management combined with the base station (BS) ON/OFF switching. The objective is to minimize the total power consumption of the network while satisfying the quality of service (QoS) requirements of each connected user. We consider the case of co-existing macrocell BS, small cell BSs, and private femtocell access points (FAPs). Three different network scenarios are investigated, depending on the status of the FAPs, i.e., HetNets without FAPs, HetNets with closed FAPs, and HetNets with semi-closed FAPs. A unified framework is proposed to simultaneously allocate spectrum resources to users in an energy efficient manner and switch off redundant small cell BSs. The high complexity dual decomposition technique is employed to achieve optimal solutions for the problem. A low complexity iterative algorithm is also proposed and its performances are compared to those of the optimal technique. The particularly interesting case of semi-closed FAPs, in which the FAPs accept to serve external users, achieves the highest energy efficiency due to increased degrees of freedom. In this paper, a cooperation scheme between FAPs and mobile operator is also investigated. The incentives for FAPs, e.g., renewable energy sharing and roaming prices, enabling cooperation are discussed to be considered as a useful guideline for inter-operator agreements.Comment: 15 pages, 9 Figures, IEEE Transactions on Vehicular Technology 201

    Optimising energy efficiency and spectral efficiency in multi-tier heterogeneous networks:performance and tradeoffs

    Get PDF
    The exponential growth in the number of cellular users along with their increasing demand of higher transmission rate and lower power consumption is a dilemma for the design of future generation networks. The spectral efficiency (SE) can be improved by better utilisation of the network resources at the cost of reduction in the energy efficiency (EE) due to the enormous increase in the network power expenditure arising from the densification of the network. One of the possible solutions is to deploy Heterogeneous Networks (HetNets) consisting of several tiers of small cell BSs overlaid within the coverage area of the macrocells. The HetNets can provide better coverage and data rate to the cell edge users in comparison to the macrocells only deployment. One of the key requirements for the next generation networks is to maintain acceptable levels of both EE and SE. In order to tackle these challenges, this thesis focuses on the analysis of the EE, SE and their tradeoff for different scenarios of HetNets. First, a joint network and user adaptive selection mechanism in two-tier HetNets is proposed to improve the SE using game theory to dynamically re-configure the network while satisfying the user's quality-of-service (QoS) requirements. In this work, the proposed scheme tries to offload the traffic from the heavily loaded small cells to the macrocell. The user can only be admitted to a network which satisfies the call admission control procedures for both the uplink and downlink transmission scheme. Second, an energy efficient resource allocation scheme is designed for a two-tier HetNets. The proposed scheme uses a low-complexity user association and power allocation algorithm to improve the uplink system EE performance in comparison to the traditional cellular systems. In addition, an opportunistic joint user association and power allocation algorithm is proposed in an uplink transmission scheme of device to device (D2D) enabled HetNets. In this scheme, each user tries to maximise its own Area Spectral Efficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. Further, a near-optimal joint user association and power allocation approach is proposed to investigate the tradeoff between the two conflicting objectives such as achievable throughput and minimising the power consumption in two-tier HetNets for the downlink transmission scheme. Finally, a multi-objective optimization problem is formulated that jointly maximizes the EE and SE in two-tier HetNets. In this context, a joint user association and power allocation algorithm is proposed to analyse the tradeoff between the achievable EE and SE in two-tier HetNets. The formulated problem is solved using convex optimisation methods to obtain the Pareto-optimal solution for the various network parameters
    • …
    corecore