
Optimising Energy Efficiency and
Spectral Efficiency in Multi-Tier

Heterogeneous Networks: Performance
and Tradeoffs

by

Haris Bin Pervaiz

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Science and Technology

School of Computing and Communications

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76959544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Declaration of Authorship
I, Haris Bin Pervaiz, declare that this thesis titled, “Optimising Energy Efficiency

and Spectral Efficiency in Multi-Tier Heterogeneous Networks: Performance and

Tradeoffs” and the work presented in it are my own. I confirm that:

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

� Detailed breakdown of the publications is presented in the first chapter of this thesis.

Signed:

Date:

i



“If we did all the things we are capable of, we would literally astound ourselves.”

Thomas A. Edison



Abstract
The exponential growth in the number of cellular users along with their increasing de-

mand of higher transmission rate and lower power consumption is a dilemma for the

design of future generation networks. The spectral efficiency (SE) can be improved by

better utilisation of the network resources at the cost of reduction in the energy efficiency

(EE) due to the enormous increase in the network power expenditure arising from the

densification of the network. One of the possible solutions is to deploy Heterogeneous

Networks (HetNets) consisting of several tiers of small cell BSs overlaid within the cov-

erage area of the macrocells. The HetNets can provide better coverage and data rate to

the cell edge users in comparison to the macrocells only deployment. One of the key

requirements for the next generation networks is to maintain acceptable levels of both EE

and SE. In order to tackle these challenges, this thesis focuses on the analysis of the EE,

SE and their tradeoff for different scenarios of HetNets.

First, a joint network and user adaptive selection mechanism in two-tier HetNets is

proposed to improve the SE using game theory to dynamically re-configure the network

while satisfying the user’s quality-of-service (QoS) requirements. In this work, the pro-

posed scheme tries to offload the traffic from the heavily loaded small cells to the macro-

cell. The user can only be admitted to a network which satisfies the call admission control

procedures for both the uplink and downlink transmission scheme.

Second, an energy efficient resource allocation scheme is designed for a two-tier Het-

Nets. The proposed scheme uses a low-complexity user association and power allocation

algorithm to improve the uplink system EE performance in comparison to the traditional

cellular systems. In addition, an opportunistic joint user association and power alloca-

tion algorithm is proposed in an uplink transmission scheme of device to device (D2D)

enabled HetNets. In this scheme, each user tries to maximise its own Area Spectral Ef-

ficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. Fur-

ther, a near-optimal joint user association and power allocation approach is proposed to



investigate the tradeoff between the two conflicting objectives such as achievable through-

put and minimising the power consumption in two-tier HetNets for the downlink trans-

mission scheme.

Finally, a multi-objective optimization problem is formulated that jointly maximizes

the EE and SE in two-tier HetNets. In this context, a joint user association and power

allocation algorithm is proposed to analyse the tradeoff between the achievable EE and

SE in two-tier HetNets. The formulated problem is solved using convex optimisation

methods to obtain the Pareto-optimal solution for the various network parameters.
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Chapter 1

Introduction

In the first section of this chapter, the importance of the energy efficiency challenge in

the design of next generation wireless communication systems are discussed. The second

section describes the direction and focus of this thesis. The research contributions of this

thesis are outlined in the third section. The fourth section describes the outline of this

thesis. The final section highlights the author’s publication in various conferences and

journals during the tenure of his PhD studies.

1.1 Thesis Context

According to one of the recent reports from Cisco [1], the monthly global mobile

data traffic is expected to reach 24.3 exabytes by end of 2019, wherein 75% of the to-

tal monthly mobile traffic will be video. Almost 80% of the total video based monthly

data traffic will originate from indoors. The traditional cellular deployment consisting of

macrocell cannot cope with this ever increasing data traffic demands. Dense deployment

of macrocells in order to enhance the coverage area and increased number of mobile

1



Chapter 1. Introduction 2

subscribers are not feasible due to their high deployment costs [2]. Due to this fact, a

paradigm shift is required for the next generation communication networks.

One of the emerging paradigms proposed for the next generation communication net-

works is the fifth Generation (5G) network to provide 1000 times more capacity along

with the data rates in range of 1 Giga bits per second (Gbps), end-to-end delay of 1 milli

second (ms) and 100 times less energy consumption in comparison to the current cellular

networks [2]. The promising seven enabling technologies for 5G networks are identified

as [3] 1) heterogeneous networks (HetNets), 2) device-to-device (D2D) communication,

3) massive multiple-input multiple-output (MIMO), 4) millimeter wave (mmWave) com-

munications technologies, 5) full duplex communication, 6) energy-aware communica-

tion and energy harvesting, 7) cloud-based radio access network (C-RAN) and virtualisa-

tion of network resources.

One of the promising solutions is HetNets promising solutions include providing a bet-

ter coverage at the cell edge and higher data rates as enabling technology for the future

generation networks. The HetNets include low-power overlaid BSs (or small cells), e.g.,

microcell, picocells, and femtocells, within the macrocell geographical area, deployed

by either the user or the network operator who share the same spectrum with the macro-

cells [4]. The purpose of HetNet is to allow the user equipments (UEs) to access the small

cells that overlap geographical coverage areas even though the UEs are within the macro-

cell [5]. The deployment of small cells has a great potential to improve the spatial reuse

of radio resources and also to enhance the transmit power efficiency [6], and in turn, the

network EE.
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Device-to-Device (D2D) communication is a promising technique which can be inte-

grated by cellular network providers to fulfil the spectral and energy efficiency require-

ments for the future 5G wireless networks [7]. D2D communication can significantly im-

prove the resource utilisation due to the hop gain, the proximity gain and the reuse gain.

Each promising solution alone is unlikely to meet the QoS and throughput requirements

for 5G [2]. One of the promising solution is a hierarchical HetNets in which the above

mentioned technologies such as HetNets and D2D can coexist in parallel to improve the

network performance.

EE is, in fact, one of the key performance indicators for the next generation wireless

communication systems. The motivation behind the EE arises due to the current energy

cost payable by operators for running their access networks as a significant factor of their

operational expenditures (OPEX). Hence, green networking paradigm, which focuses on

the means to reduce the energy consumption in the wireless access networks, has received

alot of attention [8]. One of the fundamental system design requirements for the future

generation networks, such as the Fifth generation (5G) networks is to jointly optimise

contradicting objectives, e.g., to provide reliable coverage with higher SE and lower en-

ergy consumption and cost per information transfer requirements [9].

1.2 Objective and Scope of this Thesis

The main objective of this thesis is to analyse the EE , SE and their tradeoff in a two-

tier HetNet consisting of a macrocell and pico BSs. The focus of this thesis has been on

the design parameters and deployment strategies of HetNets that will allow us to achieve
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the required QoS for the next generation networks while maintaining an acceptable EE.

In this context, the trade-off between the conflicting objectives of improving the SE and

reducing the power consumption in different HetNet deployment scenarios have been

addressed. The main objectives of this thesis are outlined as follow:

Chapter 2:

1. To develop an accurate and tractable user centric network selection scheme in a

two-tier HetNet.

2. To investigate the impact of proposed user churning selection mechanism subject

to the network re-configuration and pricing mechanisms on the achievable SE of a

two-tier HetNet.

3. To propose a low complexity dynamic contextual user centric network selection

scheme with faster convergence to the near optimum achievable SE.

Chapter 3:

4. To propose a energy efficient deployment model to improve the achievable EE of

two-tier HetNets. The objective of this deployment is to improve the performance

of cell edge users by deploying pico BSs at the edge of macrocell coverage area.

5. To investigate the effect of the number of D2D pairs on the performance of both

EE and SE, in a traditional macrocell-only network and a HetNet consisting of

macrocell and pico BSs.

6. To investigate the effect of pico BSs deployed both randomly and at the cell edge

within the macrocell coverage area on the achievable EE.
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7. To investigate the achievable EE of the access and backhaul links by incorporating

the deployment of pico BSs in areas with poor signal strength from the serving

macrocell.

Chapter 4:

8. To study the interrelationship between the achievable EE and SE of two-tier Het-

Nets

9. To investigate the performance gains in terms of the achievable EE and SE in the

HetNets consisting of a macrocell and pico BSs in comparison to a traditional

macrocell only network.

10. To investigate the effect of the densification of pico BSs on the achievable EE and

SE of the two-tier HetNets.

11. To obtain the optimum number of pico BSs that maximises achievable EE and SE

for the two-tier HetNets

1.3 Thesis Contributions

The open challenges regarding user association and power allocation mechanisms in

multi-tier HetNets are highlighted, which sheds lights on the research direction. The

contributions of the thesis are summarised as follows:

In chapter 2, a joint network and user adaptive selection mechanism is proposed in

two-tier HetNets to maximise the SE using game theory to dynamically re-configure the

network while satisfying the user’s QoS requirements. The network selection problem
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is formulated using evolutionary game theory where the multi criteria decision making

(MCDM) mechanisms are utilised to define the utility function. The formulated game is

solved using replicator dynamics and an evolutionary equilibrium is considered as an op-

timal solution where no user is willing to deviate from its chosen strategy. In addition, an

evolutionary game with the reduced complexity is also developed which achieves similar

system performance with better computational efficiency in comparison to the previously

proposed approach.

In chapter 3, an energy efficient resource allocation scheme is designed for two-tier

HetNets. In this proposed scheme, a low-complexity user association and power alloca-

tion algorithm is proposed to improve the uplink system EE performance in comparison

to the traditional cellular systems. In addition, an opportunistic joint user association and

power allocation algorithm is proposed in an uplink transmission scheme of device to de-

vice (D2D) enabled HetNets in which each user tries to maximise its own Area Spectral

Efficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. In

order to address the fairness issues among the users, a near-optimal joint user associa-

tion and power allocation approach is proposed for the downlink transmission scheme.

In this proposed approach, a multi objective optimisation problem is formulated to inves-

tigate the tradeoff between the two conflicting objectives such as achievable throughput

and minimising the power consumption in two-tier HetNets for different weighting coef-

ficients and fairness levels.

In chapter 4, a multi-objective optimization problem using weighted sum method is

formulated to jointly maximize the achievable EE and SE in two-tier HetNets. In this
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context, a joint user association and power allocation algorithm is proposed to achieve

the tradeoff between the achievable EE and SE. The formulated problem is solved us-

ing convex optimisation methods to obtain the Pareto-optimal solution for the different

network parameters.

1.4 Thesis Outline

This thesis is organized into 5 chapters.

Chapter 1 provides an introduction to the thesis and presents the motivation for the

proposed research.

Chapter 2 describes the evolutionary game theoretic approach to model the network

selection from both user’s and network’s perspective.

Chapter 3 proposes different energy efficient resource allocation schemes are proposed

for multi-tier HetNets.

Chapter 4 investigates the EE-SE tradeoff as a multi-objective optimisation problem in

two-tier HetNets.

Chapter 5 concludes the thesis and also provides possibilities for future work.

1.5 Author’s Publication

Many of the results presented in the thesis are based on the following papers in various

journals and conferences.

Journal Papers

1. Haris Pervaiz, Leila Musavian, Qiang Ni and Zhiguo Ding, “Energy and Spectrum
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Efficient Transmission Techniques Under QoS Constraints Toward Green Hetero-

geneous Networks,” in IEEE Access Special Section on Ultra-Dense Cellular Net-

works, vol.3, pp.1655-1671, Sept. 2015

2. Haris Pervaiz, Qiang Ni and Charilaos C Zarakovitis, “ User adaptive QoS aware

selection method for cooperative heterogeneous wireless systems: A dynamic con-

textual approach”, in Elsevier Journal on Future Generation Computer Systems,

Vol. 39, Pages:75-87, Oct. 2014. [Impact Factor: 2.64]

Conference Papers

1. Hamnah Munir, Syed Ali Hassan, Haris Pervaiz and Qiang Ni, “A Game Theo-

retical Network-Assisted User-Centric Design for Resource Allocation in HetNets

”, accepted in 83rd IEEE Vehicular Technology Conference (VTC2016-Spring)-

First IEEE International Workshop on User-Centric Networking for 5G and Be-

yond, Nanjing, China, 15-18th May 2016.

2. Haris Pervaiz, Zhengyu Song, Leila Musavian, Qiang Ni and Xiaohu Ge, “Through-

put and Backhaul Energy Efficiency Analysis in two-tier HetNets: A Multi-Objective

Approach”, 20th IEEE International Workshop on Computer Aided Modelling and

Design of Communication Links and Networks (CAMAD 2015), Guildford, UK,

07th-09th Sept. 2015.

3. Haris Pervaiz, Leila Musavian and Qiang Ni, “Area Energy and Area Spectrum

Efficiency Trade-off in 5G Heterogeneous Networks”, IEEE ICC 2015- Workshop

on 5G and Beyond, London, UK, 08th-12th June 2015.
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4. Haris Pervaiz, Leila Musavian and Qiang Ni, “Energy and Spectrum Efficiency

Trade-off for Green Small Cell Networks”, IEEE International Conference on Com-

munications (ICC 2015), London, UK, 08th-12th June 2015.

5. Haris Pervaiz, Leila Musavian and Qiang Ni, “Joint User Association and Energy-

Efficient Resource Allocation with Minimum-Rate Constraints in Two-Tier Het-

Nets”, 24th IEEE International Symposium on Personal Indoor and Mobile Radio

Communications (PIMRC), London, UK, 08th-11th September 2013.

6. Haris Pervaiz and Qiang Ni, “User Preferences-Adaptive Dynamic Network Selec-

tion Approach in Cooperative Wireless Networks: A Game Theoretic Approach”,

11th IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), Liverpool, UK, 25th-27th June 2012.



Chapter 2

User Centric Game Theoretic based

Network Selection in Cooperative 5G

Heterogeneous Networks1

This chapter proposes an adaptive realistic mechanism for joint network and user selec-

tion in cooperative wireless networks. We present a novel utility optimization method to

incorporate the quality-of-service (QoS) dynamics of the available networks along with

heterogeneous attributes of each user. The joint network and user selection method is

modelled by an evolutionary game theoretical approach by combining both self-control

of users’ preferences and self-adjustment of networks’ parameters. The replicator dy-

namic is then solved to seek an optimal stable solution. The simulation results demon-

strate that the inverse cumulative ranking scheme significantly improves the overall QoS

1The work presented in this chapter has been published in Elsevier Journal on Future Generation Com-
puter Systems, Vol. 39, Pages:75-87, Oct. 2014 [Impact Factor: 2.64] and a shorter version has been
published in 11th IEEE International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom) held at Liverpool, UK in June 2012.

10
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performance and system parameters as compared to current available solutions in litera-

tures, e.g., [10–12]. The simulation results also show that by incorporating the Region of

Interest (RoI) scheme, the complexity of the evolutionary game, with or without network

re-configuration, can be reduced by 23% and 58%, respectively.

2.1 Related Work

A key role of resource management in wireless networks is to provide the highest pos-

sible measures of QoS exploitation according to the users’ requirements while maintain-

ing the high utilization of network resources. A major challenge arising nowadays is that

multiple networks coexist and are to be integrated with different properties, e.g., coverage

area, mobility support, QoS and price [13]. In such cases, the overall system is hetero-

geneous by its nature. Such heterogeneity requires that the integration of various access

technologies is to be coordinated by effective network selection algorithms. However,

existing network selection solutions present pros and cons regarding their performances

on various issues, e.g., optimality, complexity and convergence. Some network selection

algorithms for integrated Wireless Local Area Networks (WLAN) and cellular network

environments are presented in [14–16] . Specifically [15] proposes a methodology that

combines the Analytic Hierarchy Process (AHP) and the Grey Relational Analysis (GRA)

to compare networks on an end-to-end QoS level. Additionally, [16] provides an example

about how these methods can be applied and combined.

Another interesting topic in this research direction is to utilize evolutionary game the-

ory in cognitive radios. The idea is to allocate users between different available primary
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networks and to optimally select spare spectrum for secondary users. The corresponding

network selection issue is modelled in [10] using a payoff function combining both linear

pricing mechanism and allocated bandwidth to each user. Authors use replicator dynam-

ics to identify whether it is profitable for a user to change network and use random selec-

tion approaches to churn the users among different systems. On the other hand, [11] con-

siders a system with multiple access points, where each mobile user chooses the most ef-

ficient access point according to its requirements. In this case, a continuous-time Markov

chain model is developed to represent the arrival/departure processes as well as the ratio-

nal/irrational churning behaviours of users. By introducing an evolutionary equilibrium

solution, [11] investigates cooperative and non-cooperative pricing schemes that aim at

maximising the individual and total revenue of users and service providers, respectively.

Furthermore, authors in [12] consider incomplete information exchange between users to

model the network selection problem as a Bayesian game. The optimal solution is then

given by a Bayesian Nash equilibrium mapped with the equilibrium distribution of the ag-

gregate dynamics. The study in [17] introduces the Y-Comm interworking architecture;

a layered approach that supports both reactive and proactive handovers. Y-Comm frame-

work uses a Stream Bundle Management layer [18] to handle downward QoS residing in

the QoS plane of a mobile node. The layer collects context information from the network,

client and application domains to make intelligent choices in network selection and QoS

management.

The task of establishing trust and reputation becomes more challenging when the nodes
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are mobile. An in-depth information about trust and reputation as well as their applica-

tion in Wireless Sensor Networks (WSN) is presented in [19] which also describes the

components required to build Trust and Reputation Monitoring (TRM) systems. Other

related approaches on joint energy-efficient and QoS issues for heterogeneous networks

can be found in [20–23]

In most of the existing dynamic network selection schemes [10–12], when utilising

evolutionary game theory, all users lying within a geographic area are treated the same,

regardless of their locations and the offered QoS levels. This do not comply with the

realistic wireless environment. In contrast to the existing approaches, we propose a novel

joint network and user selection approach modelling realistic cooperative wireless envi-

ronments to search for evolutionary-equilibrium-driven optimal solutions. In this work,

the initial partition is computed using the AHP-based utility function in comparison to

the randomly chosen values which is considered in most of the current literature.

2.2 Chapter Organisation

The rest of this chapter is organized as follows. Section 2.3 describes the system model.

Section 2.4 describes the user preference model. Section 2.5 presents the formulation

of joint network and user selection based evolutionary game. Section 2.6 explains our

proposed iterative methods to find an optimal solution to the network selection problem

modelled as an evolutionary game. Section 2.7 presents the simulation results. Section 2.8

concludes the chapter.
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2.3 System Model

We consider a heterogeneous wireless access environment consisting of a macrocell

overlaid with a small cell (e.g., pico BS) as shown in Fig. 2.1. The coverage area of the

macro-cell is the service area (1) and (2), and that of small cell is the service area (1). The

interaction area, that is, the service area (1), is the region where Network A is completely

covered by Network B, and is the main focus of this work. In this setting, Network A is a

small cell network that lies within the geographic region of a macro-cell, i.e., Network B.

This work assumes that the channel is ideal (no fading is assumed) and that the only loss

is due to the propagation.

                                ‘2’

WiFi (Network A) WiMAX (Network B)

Population (Set of users within 
service area ‘2’ ) with access to 

WiMAX network

Population (Set of users within 
service area ‘1' ) with access to 

both WiFi &WiMAX network

‘1’

FIGURE 2.1: System Model of Cooperating Heterogeneous Wireless Networks

The handovers as classified as upward or downward. Upward handovers are considered

for users that move from a small coverage and high bandwidth network to a large coverage

and low bandwidth network. Correspondingly, downward handovers apply to users that

move from a large coverage and low bandwidth network to a small coverage and high
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bandwidth network. In other words, the users of Network B coming into Network A’s

range perform alternative downward handovers, while users of Network A coming into

Network B’s range perform upward handovers.

In this Section, we introduce a set of network selection terms defining the concept of

coverage area as the region where signals from an Access Point (AP), or a Base station

(BS), can be detected. The signals are assumed unreliable when users move on the bound-

ary points of the coverage area. Another assumption is that signals cannot be detected

beyond the coverage area.

In order to reduce the number of handovers, we define two thresholds; the handover

threshold represented by a circle with the corresponding radius Rho and the Remaining

Time in Network (RTiN) threshold represented by TRTiN, which is dependent on the ve-

locity of the user. If TRTiN is larger or equal than the RTiN threshold for pedestrian users,

i.e., 20 secs, then the handover is completed before the handover threshold boundary is

reached. This indicates that the mobile users who move with high speed need to initiate

the handover process early. Later, we will incorporate a straightforward mathematical

handover reduction technique along with the game theoretical network selection mecha-

nisms to derive an intelligent and adaptive decision making process.

2.3.1 Mathematical Notations

Each network j has an associated capacity Cap j which shows the maximum number of

users that network j can serve. From the network selection and handover perspective, it

is an optimal strategy to serve the users with no mobility by the pico BS. It can provide

better QoS due to the smaller coverage area; on the other hand, mobile will be better
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off to be served by a macrocell so that we can avoid frequent handovers. Following this

concept, we define θi j as the preference variable to indicate the degree of preference that

a network j would prefer to serve user i. For example, the static users are preferred by

pico BS than macrocell and this relationship is represented byθ static
i j such that xsta

j > ysta
j

so xsta
j + ysta

j = 1 as follows:

θ
static
i j =


xsta

j , if j is a picoBS.

ysta
j , if j is a macrocell.

(2.1a)

On the other hand, pedestrian users are preferred by macrocells more than pico BSs

and are represented by θ
pedestrian
i j such that xped

j > yped
j so xped

j + yped
j = 1 as follows:

θ
pedestrian
i j =


xped

j , if j is a picoBS.

yped
j , if j is a macrocell.

(2.1b)

Let us also define coi j ∈ {0, 1} that shows the status of connection between user i and

network j, i.e.,

coi j =


1, if user i is connected to network j,

0, otherwise.
(2.1c)

The status of connectivity is also defined in terms of the coverage area with σ i j ∈ {0, 1}

according to

σ i j =


1, if user i ∈ coverage of network j,

0, otherwise.
(2.1d)

Another important considered parameter for the optimal decision is the quality of the

wireless link λ i j represented in terms of the offered bit rate by network j bi j, i.e.,

λ i j =


σi j×bi j > 0, if bi j ≥ breq

k ,

0, otherwise,
(2.1e)

where breq
k denotes the minimum required bit rate dependent on the application type k of
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any user. In addition, the coverage area of network j is denoted with γ j and the distance

between user i and the BS or AP of the network j is defined by di j. Finally, the mobility

support is denoted by mi j which can be formulated as

mi j =


1− di j

γ j
, if di j < γ j.

0, otherwise.
(2.1f)

2.3.2 Problem Formulation

This Subsection describes the proposed network selection problem formulated as a

Multi-Criteria Decision Making (MCDM) problem [24]. AHP is a structured and efficient

mathematical technique to analyze and solve complex decision problems with multiple

criteria. It decomposes a decision problem into three types of elements; the goal, the

n attributes and the v alternatives. It then chooses the best alternative by measuring the

weight of each alternative against the attributes and ultimately the goal. The element

“goal” is introduced to select an optimal network. The n attributes i.e., n=4, are price

(denoted by n1), reliability (denoted by n2), offered bit rate (denoted by n3) and mobility

support (denoted by n4). The v alternatives are the macrocell or pico BS available to the

users i.e., v=2. The optimal selection hierarchy for our proposed scheme is demonstrated

in Fig. 2.2.

Fig. 2.3 illustrates the three main stages of our proposed scheme: the formulation of

network selection (steps 1-3), the user model (steps 4-5), and the network model (steps

6-7), where d = 1, 2. . . , 7 stands for the step number. In this work, AHP is used to cal-

culate the relative weights for each attribute. It is worthwhile to mention that deleting the

alternatives might change the ranking of the remaining alternatives and lead to undesired
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FIGURE 2.2: Network Selection Hierarchy

outcomes. This is commonly referred to rank reversal problem[ref]. In this work, the rank

preservation is not enforced on the alternatives.

2.4 User Preference Model

Each user expresses its preferences for the following attributes: reliability, offered bit

rate, price and mobility support. Users that request voice applications are classified into

four types of payment plans: pay as you go, pay monthly, business and default. In default

payment plan, the user gives equal importance to all the attributes. In this Section, the

user preference model consisting of three steps are detailed in the following Subsections

2.5.1-2.5.3.

2.4.1 Defining User’s Preferences

To meet the specific needs of different types of user profiles, the preference model

includes a set of pre-defined payment plans p as shown in Table 2.I. Each attribute is
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Decision problem

Weight determination 
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methods

Goal

Attributes
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User decision 
matrix

Weight of 
attributes
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selection 1

3

2

4
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5
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decision matrix

Priority score of 
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Compare

6

7

User 
model

Network 
model

Weight determination 
using MCDM 

methods

FIGURE 2.3: Main Stages of our Proposed Network Selection Model

ordered according to its relative importance for the goals of each user payment plan as

demonstrated in Table 2.II.

TABLE 2.I: User Payment Plan Goals

User Profile Defining Objective
Pay as You Go Low price, acceptable

QoS
Pay Monthly Good QoS, Fixed price
Business Excellent QoS, price

within budget

Based on the order of attributes for voice application with a particular payment plan, the

most preferred choice is assigned by a lowest score of scale ‘1’, while the least preferred

choice is assigned by a highest score of scale ‘9’. The scores are equally spaced integers
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TABLE 2.II: Order of Network Attributes for Each Plan

User profile Order of Network Attributes
Pay-as-You-
Go

Price; Reliability; Bit rate; Mobility sup-
port

Pay-Monthly Reliability; Bit rate; Mobility support;
Price

Business Bit rate; Price; Reliability; Mobility sup-
port

with the space gap defined as [25]

G =
Sh−Sl

Nc
,

where Nc is the number of attributes and Sh, Sl denote the highest and the lowest possible

scores i.e., 9 and 1, respectively. In other words, G represents the numeric space gap

between two subsequent scores and it is rounded to the next integer, e.g., when Nc= 3,

Sh= 9 and Sl= 1 give G=9−1
3 = 2.666≈ 3.

Throughout this chapter, the scores of attributes of each user payment plan for voice ap-

plication are shown in Table 2.III in order to provide examples for our model’s dynamics.

TABLE 2.III: Attribute Scores per Payment Plan for Voice Application

Score Pay as you go Pay Monthly Business
1 Price Reliability Bit rate
3 Reliability Bit rate Price
5 Bit rate Mobility support Reliability
7 Mobility support Price Mobility support
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2.4.2 Deriving Pair-Wise Comparison Matrix

In the second step, we build a matrix Cn×n for pair-wise comparisons to calculate the

weights of the considered n attributes and v alternatives. Let C be n×n square matrix, its

eigenvalue equation is given as:

Cy = εy, (2.2)

where y is a non-zero vector called eigenvector and ε is an Eigenvalue of C. The vector y

contains the weight of each attribute. The above relation can also be written as

(C− εI)y = 0, (2.3)

where I is the n×n identity matrix. In order for a non-zero vector y to satisfy the above

relation, C− εI must not be invertible. The determinant of C− εI must be equal to 0.

For this reason, the lower triangular elements of Cn×n comparison matrix will be the

reciprocal of the upper triangular elements.

Pair-wise comparisons describe the relative importance among the n attributes. As the

attribute cannot be compared with itself, all the diagonal elements of the comparison

matrix should be equal to 1. The relative importance of each attribute can be decided by

comparing each attribute with all others using the aforementioned 1 to 9 score scales. For

example, If sip(n1) and sip(n2) represent the scores of attributes n1 and n2 of user i for

the payment plan p, respectively, then each user can perform pair-wise comparisons by
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computing the relative score cip(n1,n2) as follows:

cip(n1,n2) =

(
1−

sip(n1)

sip(n2)

)
×10 , sip(n1)< sip(n2), (2.4)

1
cip(n1,n2)

=

(
1−

sip(n2)

sip(n1)

)
×10 , sip (n1)>sip (n2) , (2.5)

cip (n1,n2)= 1 , sip (n1)=sip(n2). (2.6)

Based on the scores of four considered attributes for each payment plan p as mentioned

in Table 2.III, the relative score between two attributes can be computed by using equa-

tions (2.4), (2.5) and (2.6). In total, four different payment plans are considered which

in result require four comparison matrices, i.e.,Cv,payg, Cv,payM, Cv,Business andCv,Default.

As the constructing method is the same for each matrix, for brevity the computation of

the comparison matrix Cv,payg for the pay-as-you-go plan (denoted by payg) with voice

applications is only shown. All the diagonal elements of the matrix Cv,payg equal to 1,

with its upper triangular elements to be calculated as

cipayg (n1,n2)=

(
1−1

3

)
×10 =

20
3
≈ 7, cipayg(n1,n3)=

(
1−1

5

)
×10 = 8,

cipayg (n1,n4)=

(
1−1

7

)
×10 =

60
7
≈ 9, cipayg(n2,n3)=

(
1−3

5

)
×10 = 4,

cipayg(n2,n4)=

(
1−3

7

)
×10 =

40
7
≈ 6, cipayg(n3,n4)=

(
1−5

7

)
×10≈ 3,
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Its lower triangular elements are reciprocal of its upper triangular elements, i.e.,

cipayg (n2,n1)=
1

cipayg (n1,n2)
=

1
7
, cipayg (n3,n1)=

1
cipayg (n1,n3)

=
1
8
,

cipayg (n4,n1)=
1

cipayg (n1,n4)
=

1
9
, cipayg (n3,n2)=

1
cipayg(n2,n3)

=
1
4
,

cipayg (n4,n2)=
1

cipayg(n2,n4)
=

1
6
, cipayg (n4,n3)=

1
cipayg(n3,n4)

=
1
3
,

Consequently, Cv,payg is defined as

Cv,payg=



1 cipayg (n1,n2) cipayg(n1,n3) cipayg (n1,n4)

cipayg (n2,n1) 1 cipayg(n2,n3) cipayg(n2,n4)

cipayg (n3,n1) cipayg (n3,n2) 1 cipayg(n3,n4)

cipayg (n4,n1) cipayg (n4,n2) cipayg (n4,n3) 1


=



1 7 8 9

1
7 1 4 6

1
8

1
4 1 3

1
9

1
6

1
3 1


. (2.7)

A matrix C is said to be consistent if every element of the matrix satisfies the constraints,

ci j × c ji = 1 and cik× ck j = ci j. As the users preferences are based on random judge-

ments, the comparison matrices are often inconsistent. The judgement errors in the users
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preferences can be determined by a Consistency Ratio (CR) according to:

CR =
CI
RI

=
(εmax−n)
(n−1)×RI

, (2.8)

where εmax is the largest Eigen value of comparison matrix C, n is the size of compari-

son matrix C and RI values are shown in Table 2.IV. The errors in judgements of users

preferences are considered tolerable when CR≤ 0.1 otherwise, the pairwise comparisons

need to be adjusted.

TABLE 2.IV: Consistency Index (CI)

n 1.2 3 4 5 6 7 8 9 · · ·
Random Consistency Index(RI) 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 · · ·

2.4.3 Computing Corresponding Weights for Each Attribute

As mentioned in Section 2.4.2, the variable n represents the number of attributes, i.e.,

n=4, while nk ∈ {n1,n2,n3,n4} represent the index of each attribute, i.e. price, reliability,

bit rate and mobility support, respectively. We will continue our modeling by computing

the weight wip (nk) of the nk attributes for each user i that belong to payment plan p

through applying the geometric mean method [26], [27]. More precisely, we will calculate

the kth element of eigenvector wip denoted by wip(nk) of attribute nk using the relative

scores as

wip(nk) =
n
√

cip (nk,n1)× cip (nk,n2)× cip (nk,n3)× cip (nk,n4) , nk ∈ {n1,n2,n3,n4}

(2.9)
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Upon normalization of the wip(nk) for each of the nk attributes, we determine the corre-

sponding weight wip(nk) as:

wip(nk) =
wip(nk)

∑
n4
nk=n1

wip(nk)
nk ∈ {n1,n2,n3,n4} (2.10)

2.5 Proposed Evolutionary Game Theoretic Network Se-

lection Framework

In this Section, we describe the formulation of evolutionary game to model the dynamic

behaviour of the joint network and user selection problem. The replicator dynamics are

utilised to capture the dynamics of strategy adaptation subject to the user’s diverse pref-

erences. The evolutionary equilibrium is considered to be the solution of the evolutionary

game. A distributed user centric network assisted selection mechanism is proposed on

the replicator dynamics. The optimal and stable solution is achieved by obtaining the

evolutionary equilibrium of the replicator dynamics.

2.5.1 Formulation of Evolutionary Game

Some fundamental notations of evolutionary game theory are detailed as follow:

• As shown in Fig. 2.1, any user lying within the service area (1) and (2) is a player

of the game.

• The strategy available to each player, i.e., a potential user, within the service area

(1) is to choose a suitable network. Accordingly, the strategy set can be denoted

by S =
{

macrocell,pico BS
}

which corresponds to the selection of macrocell and
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pico BS, respectively.

• The set of players which have same strategy set S constitutes the population in an

evolutionary equilibrium. As shown in Fig. 2.1, all the users lying within service

area (1) constitute one population whereas all the users lying within the service area

(2) constitute another population.

• The number of users (or players) choosing the strategy s ∈ S in population (or

service area) l is denoted by N(l)
s . The partition (or population share) of strategy s

in population l can be then computed as z(l)s =
N(l)

s

N(l)
where z(l)s ∈

[
0,1
]
.

• The partition for all two available strategies within the population l constitute the

population state denoted by a vector z(l) =
[
z(l)macrocell z(l)picoBS

]T such that z(l)macrocell +

z(l)picoBS = 1.

• The payoff measures the satisfaction level of a user selecting a strategy s given the

population state z(l). The payoff utility function is defined considering the strategies

of all users within the same population as well as the offered QoS to the users by the

network in terms of the network modulation scheme, load and available spectrum.

More details can be found in Section 2.5.3.

The assumptions considered in our evolutionary game are as follow:

• Users have no influence on the decision of other users and choose their strategy

independently.

• The rational behaviour of a user is to choose the wireless network with the highest

payoff.
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• Upward handovers is only considered i.e. churning of users from pico BS to macro-

cell.

• As seen from Fig. 2.1, users can be grouped into two populations. Users within

the same population have similar behavior. Without loss of generality, from now

onwards, we will focus on the population of users lying within the service area (1)

and the same analysis can be applied to the population of users lying within the

service area (2).

• The proposed evolutionary game is distributed in nature and the average payoff can

be calculated by the network itself and broadcast back periodically to all potential

users as shown below:

π
hom(N(1)) =

(
z(1)picoBS×πhom

picoBS

(
N(1)

)
+ z(1)macrocell×πhom

macrocell

(
N(1)

))
• The evolutionary equilibrium is a solution or Evolutionary Stable Strategy (ESS)2 to

an evolutionary game and is defined as the stable fixed point of replicator dynamics

(defined in (2.17)) such that the population state will not change. Hence, the rate of

strategy adaptation will be zero, formulated as ż(1)j = 0 ∀ j ∈ v.

• Once the Evolutionary equilibrium is achieved, no user will be willing to change its

strategy since its payoff is equal to the average payoff of the population πhom
j

(
N(1)

)
=

π
hom(N(1)) ∀ j ∈ v.

2It is also Nash Equilibrium due to it being best response to itself and it provides a strong refinement of
NE
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2.5.2 Adaptive vs Non-Adaptive User Preferences Model

To consider accurate system conditions, users’ preferences can be classified as either

non-adaptive or adaptive. For example, in the non-adaptive case, all users with a pay-as-

you-go payment plan who requesting voice application will have identical preferences.

On the other hand, in the adaptive approach, all users with a pay-as-you-go payment plan

requesting voice application, can have different preferences. In reality, even though dif-

ferent users may request the same application type, they often have different preferences.

Considering such pragmatic conditions, we will carry out the user survey to determine the

preferences of users that request voice application with a particular payment plan for the n

attributes. In our user adaptive approach, the relative scores for the n attributes are given

by user feedbacks utilising the conducted user survey and constituting the comparison

matrices Cv,payg, Cv,payM, Cv,Business and Cv,De f ault . The examples of user profiles for both

non-adaptive and adaptive approaches for the pay-as-you-go payment plan are shown in

Table 2.V.

TABLE 2.V: Example of User Profiles in Non-Adaptive and Adaptive Approaches for
Pay As You Go Payment Plan

cip
Models

c12 c13 c14 c31 c32 c42

Non-Adaptive 7 8 9 1/8 1/4 1/6
Adaptive 1 1 5 1 9 1/7

1/9 1/7 1/5 7 5 1/5
...

...
...

...
...

...
5 5 5 1 1/5 5
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2.5.3 Formulation of Payoff Function

An AHP-based utility function is utilised to obtain the payoff in order to quantify user’s

QoS constraints. In the following Subsection, we present the details on how to compute

the payoffs . To approach our modeling with a realistic view, we consider two different

notions of payoff to be computed by each user i; the heterogeneous and homogeneous

payoffs.

2.5.3.1 Heterogeneous Payoff

Considering price, reliability, bit rate and mobility support parameters, the heteroge-

neous payoff π
(1)
i j of the user i in the network j within the service area (1) is computed

using an AHP-based utility function as

π
(1)
i j =

n4

∑
nk=n1

(wip(nk)×ai j(nk)), (2.11)

where ai j(nk) represents the relative quality level offered to the user i by the network j

for n attributes. The attribute can be classified as positive, i.e., the larger the better, or

negative, i.e., smaller the better. The calculation of ai j(nk) are dependent on the type of

attribute such that

Positive attribute: ai j (nk) =
a∗i j (nk)

max j ∈ v a∗i j (nk)

Negative attribute: ai j(nk) =
min j ∈ v a∗i j(nk)

a∗i j(nk)

where a∗i j(nk) represents the quality level for attribute nk offered to user i by network j.

More details about the computation of quality level for each considered attribute can be

found in Section 2.5.3.3.
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Once π
(1)
i j is calculated for each candidate network, each user chooses the network that

offers the maximum heterogeneous payoff. Going through all of the users N(1) within ser-

vice area (1), we define the partition z(1)=z(1)picoBS∪ z(1)macrocell, where z(1)picoBS and z(1)macrocell

represent the set of users that prefer pico BS or macrocell connections, respectively.

2.5.3.2 Homogeneous Payoff

Furthermore, homogeneous payoff is used to satisfy the assumptions of population in

an evolutionary game, where all users within a population are treated the same [10]. The

homogeneous payoff πhom
j (N(1)) for any of the users in network j within service area (1)

is defined as [10]

π
hom
j

(
N(1)

)
=mean R(1)

j , (2.12)

where R(1)
j represents the set of heterogeneous payoffs of all the N(1)users within the

service area (1) choosing network j, i.e., R(1)
j =

{
π
(1)
1j ,π

(1)
2j , . . ..,π

(1)
Nj

}
. The logic behind

(2.12) is that since the πhom
j

(
N(1)

)
payoffs are the same for all users N(1) within the

service area (1), the payoffs homogeneity can be considered as the mean of the set with

the heterogeneous payoffs R(1)
j .

2.5.3.3 Offered Quality level for each Attribute subject to User Specific QoS Con-

straints

Each user defines its minimum QoS thresholds a∗i j (n2) , a∗i j(n3) and a∗i j(n4) based on

reliability n2, offered bit rate n3 and mobility support n4, respectively, i.e.,

a∗i j(n2,static) =


θ static

i j i f j ∈ pico BS

1−θ static
i j otherwise

(2.13a)



Chapter 2. User Centric Game Theoretic based Network Selection Mechanism in
Cooperative 5G Heterogeneous Wireless Systems 31

a∗i j(n2, pedestrian) =


θ

ped
i j i f j ∈macrocell

1−θ
ped
i j otherwise

(2.13b)

a∗i j(n3) =


bi j i f λi j > 0

0 otherwise
(2.13c)

a∗i j(n4) =


mi j T ped

RTiN ≥ 20sec or T static
RTiN ≥ 0

0 otherwise
(2.13d)

Equations (2.13a)- (2.13d) denote that the optimal network selection is dependent on

users’ preferences and networks’ quality levels and it should also satisfy users’ minimum

QoS constraints for the considered attributes n2, n3 and n4. This approach provides

flexibility to users to evolve from one network to another satisfying the service specific

QoS constraints and achieving higher payoffs.

2.5.4 Proposed User Churning Selection Mechanism

The churning of users between networks is dependent on users’ relative ranks at their

previous networks. The ranks are decided considering users’ heterogeneous payoffs by

an Inverse Cumulative Ranking (IAR) mechanism. IAR inverts the heterogeneous payoff

of each user and normalises it over the cumulative heterogeneous payoffs of all users

within the same network. Then users are sorted in ascending order with the probability of

selection proportional to their relative rank. In addition, a random number lies within a

specific region to decide which user will shift from one network (e.g. j) to another (e.g. ĵ).

Pseudo code can be found in the following Algorithm 2.1.



Chapter 2. User Centric Game Theoretic based Network Selection Mechanism in
Cooperative 5G Heterogeneous Wireless Systems 32

Algorithm 2.1 Inverse Cumulative Ranking based User Churning Selection Algorithm
Initialization of variables:
π
(1)
i j = indicates the heterogeneous payoff of user i in network j within service area(1)

π
(1)
i ĵ

= indicates the heterogeneous payoff of user i in network ĵ within service area(1)

πhom
j

(
N(1)

)
= indicates the homogeneous payoff of users for network j within service area(1)

π
hom(N(1))= indicates the average homogeneous payoff of all users within service area(1)

M = indicates the available networks
For j ∈M

Each user i computes its inverse rank Ti =
1

π
(1)
i j +1

Each user i computes its inverse cumulative rank ri =
Ti

∑
N
i=1 Ti

If πhom
j

(
N(1)

)
< π

hom(N(1)) then
If rand() ∈ ri then

If π
(1)
i j > π

(1)
i ĵ

then
User i choose network j

Else
User i choose network ĵ

End If
End If

End If
End For

2.5.5 Network Adjustment and Re-configuration

The policy aims to increase the system performance by defining the benefit (or utility

value) of the network j ∈ v for serving a particular user i. The overall benefit of a network

is dependent on the location of the user, the ideal modulation scheme for the user, the

transmitting power and the current traffic load of the network. The network adjustment

factor β
ad j
j for network j is represented as

β
ad j
j =

(
1−

Capavail
j

Cap j

)
×

di j

γ j
(2.14)
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Variables Capavail
j and Cap j represent the available and total capacity of network j,

respectively. The physical meaning of the network adjustment factor β
ad j
j is that users

closer to the base station or access point are more beneficial for the network3. Accounting

β
ad j
j we can compute the modified payoff π̃

(1)
i j for each user i in network j within the

service area (1) satisfying the conditions mentioned in (2.13a) to (2.13d) as

π̃
(1)
i j =

(
n4

∑
nk=n1

(wip(nk)×ai j(nk))

)
−β

ad j
j . (2.15)

From (2.15) it is straightforward that the payoffs (or utility values) of the users within

the service area (1) are dependent on the network configuration. This means that network

re-configuration can enhance the quality level offered by the re-configured network for n

attributes.

In our system, users evolve by changing their context to prefer the macrocell instead of

the pico BS; this can be achieved by re-configuring the macrocell by tilting or shaping the

antenna to increase its transmission power. The macrocell coverage is then re-assessed

until either all the users attain a satisfactory QoS or there are no payoff improvements

upon potential strategy alternatives.

2.6 Proposed Iterative Solutions

In this Section, an optimal solution to the user adaptive network selection is provided.

3Network providers can change the value of β
ad j
j by configuring the antennas of the base stations [28].

However, we omit such an option from our modeling as it is out of our research subject.
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2.6.1 Dynamic Contextual Network Selection Approach

In dynamic contextual approach, the optimal network selection is performed based on

user’s preferences and service specific QoS threshold constraints. In particular, the benefit

of network j to serve user i depends on the context of user in terms of how far the user is

away from the base station or directly analogous to the transmitted power. Such benefit

is considered in the modified payoff calculation π̃
(1)
i j in (2.15). However, to measure the

exact performance of the dynamic contextual approach as a solution to the user adaptive

selection, we consider two different approaches; the Full Evolution and the Region of

Interest (RoI).

In the Full Evolution approach, we model the optimal network selection problem as an

evolutionary game which considers all users within service area (1). On the other hand,

in our proposed RoI approach, we define a RoI threshold represented by a circle with

its corresponding radius RRoI for pico BS as shown in Fig. 2.4 to focus on users that lie

closer to the cellular coverage boundary. More specifically, the optimal network selection

problem is now modeled as a RoI-based Evolutionary game, which only considers the

users within the service area (1) lying outside the RoI threshold circle and inside the

Handover threshold circle resulting in a considered region ∆D defined as:

∆D = Rho−RRoI (2.16)

In each iteration, the RoI threshold circle RRoI is iteratively reduced by step size ∆d

which in result increases ∆D. After each iteration cycle, the updated RoI threshold can

be then calculated by R
′
RoI = RRoI −∆d to define the updated considered region ∆D

′
as
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Handover
Threshold

Exit 
Threshold

Region of Interest 
Threshold

AP

Updated Region of 
Interest Threshold

R_ho
R_RoI

∆D 

∆d

FIGURE 2.4: Region of Interest Concept

∆D
′
= Rho−R

′
RoI . The stopping criterion of the proposed iterative RoI approach is set to

iteratively change the the RoI threshold circle until an optimal point after which no user

is willing to change its strategy.

2.6.2 Solution to the Proposed Evolutionary Game

At each iteration, the macrocell reconfigures itself by changing its transmission power

to provide enhanced modulation schemes, i.e. improved offered bit rate, to users within

the service area (1). Also, each user observes the payoffs of other users to adopt a more

profitable strategy resulting in a higher payoff. To decide whether it is profitable for a user

to change its strategy to move from its current network to another, we utilise the concept

of replicator dynamics to define the evolutionary equilibrium ż(1)j as follow [29]:

ż(1)j =σz(1)j

(
π

hom
j

(
N(1)

)
−∑

j
(z(1)j ×π

hom
j

(
N(1)

)
)

)
, ∀ j. (2.17)
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Variable σ > 0 in (2.17) denotes the gain for the rate of strategy adaptation and con-

trols the speed of user in observing and adapting to the network selection. The evolu-

tionary equilibrium ż(1)j is the optimal solution of the game and can be then obtained

as a fixed point of a replicator dynamic of each network j through solving (2.17) over

z(1)j , i.e., ż(1)j = 0 ∀ j. The physical meaning of such equilibrium is that no user wants

to change strategy or network because all users’ payoffs are equal to the average pay-

off within the service area. Fig. 2.5 shows the flowchart of our proposed user adaptive

dynamic contextual selection mechanism.

2.6.2.1 A Clarification Example

Let us consider the replicator dynamics for two users in service area (1), i.e., N(1)=2.

Also, let us assume that two strategies are available to each user; either select pico BS

or macrocell, i.e. v=2. Based on our aforementioned symbolization, there would be z(1)1

number of users that choose pico BS and z(1)2 number of users that choose macrocell

connections. For traceability issues, we additionally admit that the payoff function is

given by Uj

(
N(1)

)
=cj1z(1)1 +cj2z(1)2 . Then we denote the payoffs through the comparison

matrix C=

 c11 c12

c21 c22

=
 0 a

b 0

. The replicator equation for this case is calculated

by (2.17) as follows:

ż(1)1 = σz(1)1

[(
c11z(1)1 + c12 z(1)2

)
−
{

z(1)1

(
c11z(1)1 + c12 z(1)2

)
+ z(1)2

(
c21z(1)1 + c22 z(1)2

)}]
(2.18)

After putting the values from the comparison matrix C, (2.18) can be rewritten as:

ż(1)1 = σz(1)1

[(
a× z(1)2

)
−
{

z(1)1

(
a ×z(1)2

)
+ z(1)2

(
b× z(1)1

)}]
(2.19)
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FIGURE 2.5: Flowchart of User Adaptive Dynamic Contextual Selection Algorithm

For σ= 1, we can rewrite (2.19) as follow:

ż(1)1 = z(1)1

[(
a× z(1)2

)
−
{

z(1)1

(
a× z(1)2

)
+ z(1)1

(
b× z(1)2

)}]
ż(1)1 = z(1)1

[(
a× z(1)2

)
− z(1)1

(
a× z(1)2

)
− z(1)1

(
b× z(1)2

)]
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ż(1)1 = z(1)1 z(1)2

[
a− (a+b)z(1)1

]
(2.20)

Since z(1)2 = 1− z(1)1 , (2.20) becomes

ż(1)1 = z(1)1

(
1− z(1)1

)[
a− (a+b)z(1)1

]
(2.21)

Solving ż(1)1 over z(1)j we get that

z(1)1

(
1− z(1)1

)[
a− (a+b)z(1)1

]
= 0, (2.22)

The fixed Evolutionary Stable Points are derived as

z(1)1 = 0,1 or a
(a+b) , a, b > 0.

z(1)2 = 1,0 or b
(a+b) , a, b > 0.

Stability of fixed Evolutionary Stable Points

To evaluate the stability at the fixed point, the eigenvalues of the Jacobian matrix

corresponding to the replicator dynamics are evaluated. The fixed point is assumed

stable if all eigenvalues have a negative real part [19].

2.6.3 Analysis

This Subsection focuses on the proposed distributed evolutionary game theoretic based

algorithm to model the user centric network assisted selection mechanism. As explained

in Section 2.1, most of the existing work in the literature on evolutionary game theory

has mainly focussed on random user churning procedure as outlined in Algorithm 2.2.

Initially, the users randomly select a network. In Algorithm 2.2, each user checks if its

current payoff is less than the average payoff to randomly select a network such that the

payoff is more than its existing payoff. This process continues until the maximum number
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of iterations are reached.

In comparison to the existing approaches, our proposed Algorithm 2.3 compute the

initial partition subject to user’s preferences using Analytic Hierarchy Process (AHP)

as mentioned earlier in Section 2.4 and 2.5. In our proposed algorithm, we utilise the

user’s realistic payoff to decide about the switching from a current network to another

network. Our proposed user churning procedure try to increase the probability of worst

users within a network to churn to another network resulting in a better benefit or payoff

for both the users and networks. More details about our proposed algorithm is outlined in

Algorithm 2.3.

Algorithm 2.2 Evolutionary Game Theoretic based Network Selection Algorithm
Step 1: Each user randomly chooses a network j ∈

{
macro, picoBS

}
and set iter = 1.

loop
Step 2: Each user i measures its average achieved data rate and compute its payoff.
Step 3: This payoff information is then sent back by each user to the network.
Step 4: The average population payoff is calculated by the network.
Step 5: Network broadcast back the average population payoff to all potential users
Step 6: At each iteration, each user checks4

If (πhom
i,j

(
N(1)

)
< π

hom(N(1))) then

User i randomly choose network k such that πhom
i,k > πhom

i, j , where k 6= j
End If

Step 7: Set iter = iter+1
if iter ≥Max, End loop ; otherwise goto Step 2.
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Algorithm 2.3 Proposed Evolutionary Game Theoretic based Network Selection Algo-
rithm

Step 1: Each user give their preferences for the considered attributes.
Step 2: The comparison matrix C5for each user is derived as explained in Section 2.4.2.
Step 3: The comparison matrix C for each user must satisfy the Consistency Ratio (CR)
as given by (2.8).
Step 4: The weight matrix W 6for each user is computed by using (2.9) and (2.10).
Set Iter = 1
Step 5: Each user compute its heterogeneous payoff πi j using (2.15).
Step 6: Each user chooses a network j ∈

{
macro, picoBS

}
with highest heterogeneous

payoff.
Step 7: Each network j compute homogeneous payoff πhom

j using (2.12) based on
the heterogeneous payoff information broadcast by the users choosing network j.
Step 8: The average homogeneous payoff is computed as π

hom = ∑ j z j×πhom
j

Step 9: At each iteration Iter, call User Churning Procedure outlined in Algorithm 2.1
Step 10: Set Iter = Iter+1

Step 11: Repeat Steps 5 to 10 until convergence is achieved or Iter ≥Max.

4In Step 6, the random user selection algorithm is used to churn users from their current network to
another network which is mainly used in most of the work in the literature on Evolutionary Game Theory
such as [refs]

5The size of comparison matrix C is n×n. An example of comparison matrix C is given in (2.7) where
the diagonal elements represents the user preference for an attribute with itself and hence it is equal to 1.
The upper triangular elements represent the user preference for an attribute with another attribute so its
values are on a scale between 1 to 9 whereas the lower triangular elements are an inverse of their respective
upper triangular elements

6The size of weight matrix W is n× 1. Each element wi ∈W must have a value between 0 and 1 such
that ∑i wi = 1.

2.7 Results and Discussions

In this Section, the simulation configuration and results are presented. The performance

comparisons between numerical and analytical methods as well as the performance of the

aforementioned iterative methods are further analysed in this Section. In the following,

the extended evaluations on numerous features of our proposed network selection scheme

is described.
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2.7.1 Simulation Setup

We consider a heterogeneous wireless network with two service areas as shown in

Fig. 2.1, where all users request voice services. The number of users in the area (1)

is set to N(1) = 100, while in the area (2), it is N(2) = 100. The pico BS uses 512

bit-size Fast Fourier Transform (FFT) Orthogonal Frequency Division Multiple Access

(OFDMA) and supports the IEEE 802.16 standard with total bandwidth 7MHz. On the

other hand, the WiMAX macro cell uses 512 bit-size Fast Fourier Transform (FFT) Or-

thogonal Frequency Division Multiple Access (OFDMA) and supports the IEEE 802.16

standard with total bandwidth 5MHz. It should be noted that WiMAX is used as a candi-

date air interface technology but this proposed framework can be easily extended to latest

air interface technologies as well. Furthermore, the pico BS expands in a 300 meters ra-

dius coverage area covering the service area (1) and lying within the coverage area of the

macrocell. The macrocell coverage has 1000 and 2000 meters minimum and maximum

radius, respectively covering both areas (1) and (2). We also assume that the pricing coef-

ficient pi is set to 0.005 while considering an AHP-based utility function setting σ = 1 for

the replicator dynamics. The partition is defined as the proportion of the users selecting

pico BS in the service area (1).

2.7.2 Comparison between Non-Adaptive and Adaptive User Prefer-

ences Model

Fig. 2.6 and Fig. 2.7 illustrate the proportion of adaptive users with four different pay-

ment plans that choose macrocell or pico BS, respectively. The corresponding proportion
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of non-adaptive user preference is shown in Fig. 2.8 and Fig. 2.9, respectively. Observing

the iteration numbers 1, 9, 12, 15 and 19 where users churn from pico BS to macrocell. It

is observed that the adaptive scheme significantly outperforms the non-adaptive scheme.

In the adaptive scheme, the users belonging to the same payment plan can have diverse

preferences whereas all users belonging to the same payment plan can have identical

preferences in the non-adaptive scheme. It is more practical to use adaptive scheme, and

hence for brevity, the rest of the simulations are carried out for the adaptive scheme.
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FIGURE 2.6: Proportion of Users with Adaptive Preference Model Served by macrocell

2.7.3 Impact of Pricing and Network Adjustment Mechanisms

From the network selection perspective, it is important to understand the impact of the

pricing mechanism on the decision of selecting an optimal network. In this work, we
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FIGURE 2.7: Proportion of Users with Adaptive Preference Model Served by pico BS

study the impact of constant and linear pricing mechanisms on the network selection.

In constant pricing mechanism, the network charges a constant price from their users

irrespective of their load whereas in the linear pricing mechanism the network charges

a load dependent price from its users. We observe that as the number of users choosing

macrocell or pico BS increases, their respective price per user also increases. In this work,

the pricing co-efficient pi is set to 0.005, i.e.,pi = 0.005. The pricing mechanism can also

be used as a load-balancing parameter.

2.7.3.1 Performance of Initial Partition using Different Allocation Strategies

In Fig. 2.10 we investigate the performance of the random and AHP-based allocation

strategies by observing the initial proportion of users that choose each network. In other
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FIGURE 2.8: Proportion of Users with Non-Adaptive Preference Model Served by
macrocell

words, Fig. 2.10 shows the effectiveness of the network adjustment in terms of reducing

the churning of users from one network to another. Networks can make their choice on

whether to consider the network adjustment or not in their utility. For this simulation, we

consider three pricing scenarios: a) each network offers the same price; b) the pico BS

price is lower; and c) the macrocell price is lower. In addition, two different thresholds are

set for random allocations: a) rand < 0.75 when all users who have randomly generated

number less than 0.75 to choose the pico BS; and b) rand < 0.9 when all users who

having a randomly generated number less than 0.9 to choose pico BS. The focus is on

the computation of an AHP-based allocation with and without network adjustment and

re-configuration. In the case of network adjustment and re-configuration, both pico BS



Chapter 2. User Centric Game Theoretic based Network Selection Mechanism in
Cooperative 5G Heterogeneous Wireless Systems 45

1 9 12 15 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

P
ro

po
rt

io
n 

of
 u

se
rs

 s
er

ve
d 

by
 p

ic
o 

B
S

 

 
	Pay as You Go
Pay Monthly
Business
Default

FIGURE 2.9: Proportion of Users with Non-Adaptive Preference Model Served by pico
BS

and macrocell offer the same price. The proportion of the pico BS users with a constant

price at the initial points is computed as z(1)macrocell (0) = 0.52 and z(1)picoBS (0) = 0.48.

When network adjustment and re-configuration is not considered, the initial points for

the constant price case are computed as z(1)macrocell (0) = 0.24 and z(1)picoBS (0) = 0.76. In

both scenarios, the computation of the corresponding initial points are used to calculate

the linear price for the next iteration, and hence, the proportion of users choosing the

macrocell or the pico BS is re-computed.

From the numerical results, the impact of constant or linear pricing mechanisms, the

behaviour of network adjustment, and different allocation mechanisms are observed on
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FIGURE 2.10: Initial Proportion of Users Choosing pico BS under Constant Price for
Different Allocation Mechanisms; a)choose pico Bs if random no is greater than 0.75, b)
choose pico Bs if random no is greater than 0.9, c) AHP based allocation with network
adjustment with both networks offering same price, d)AHP based allocation without net-
work adjustment with both networks offering same price, e)AHP based allocation with
network adjustment with pico BS offering lowest price, f) AHP based allocation without
network adjustment with pico BS offering lowest price, g)AHP based allocation with net-
work adjustment with macrocell offering lowest price, h) AHP based allocation without

network adjustment with macrocell offering lowest price

the user’s network selection. From Fig. 2.10, it is quite evident that the AHP-based alloca-

tion with network adjustment and re-configuration using linear price mechanism provides

more sensible allocations in comparison to the other allocation mechanisms. It also re-

markably reduces the churning of users from one network to another one.

2.7.3.2 System Blocking Rates

In Fig. 2.11, the impact of different allocation mechanisms with or without network

adjustment is investigated on the system blocking rates. The results demonstrate the ef-

fectiveness of AHP-based allocation with network adjustment in terms of reducing the
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system blocking rates as compared to the case where there is no network adjustment.

The results demonstrate the effectiveness of our proposed selection scheme incorporating

AHP-based allocation with network adjustment for three different pricing cases of con-

stant price outperforms in reducing the system blocking rates compared to the random

allocation and AHP-based allocation without network adjustment.
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FIGURE 2.11: Initial System Blocking Rates under Constant Price for Different Allo-
cation Mechanisms; a)choose pico Bs if random no is greater than 0.75, b) choose pico
Bs if random no is greater than 0.9, c) AHP based allocation with network adjustment
with both networks offering same price, d)AHP based allocation without network ad-
justment with both networks offering same price, e)AHP based allocation with network
adjustment with pico BS offering lowest price, f) AHP based allocation without network
adjustment with pico BS offering lowest price, g)AHP based allocation with network ad-
justment with macrocell offering lowest price, h) AHP based allocation without network

adjustment with macrocell offering lowest price
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FIGURE 2.12: Allocated Payoff to Each User in AHP based Allocation using Linear
Price with Network Adjustment

2.7.3.3 Convergence to Evolutionary Equilibrium

Fig. 2.12 and 2.13 present the utility values in each iteration to show the impact of

churning users among networks for linear and constant pricing, respectively. For this sim-

ulation, most users in area (1) initially select the pico BS. We then reconfigure the macro-

cell by slowly increasing its transmission power at each iteration and observe churning of

the users in area (1) from the pico BS to the macrocell. Also, as the number of users in

area (1) choosing pico BS decreases, the traffic load in the macrocell increases. As a re-

sult, the allocated utility value becomes smaller for those users who choose the macrocell

in area (2). Therefore in Fig. 2.12, as the number of users choosing macrocell in area (1)

increases, their allocated utility value increases in each iteration for the linear price case.

In the 17th iteration of Fig. 2.12, it is observed that all users, whether they choose pico
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BS or macrocell, have identical utility value. In other words, Fig. 2.13 shows that the

evolutionary equilibrium (where all users have chosen an optimal network and would not

deviate among networks) can be achieved earlier in comparison to the linear price case.
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FIGURE 2.13: Allocated Payoff to Each User in AHP based Allocation Using Constant
Price with Network Adjustment

2.7.3.4 Dynamics of Strategy Adaptation:

Fig. 2.14 illustrates the trajectories of strategy adaptation for AHP based allocation with

and without network adjustment, for constant and linear pricing. Results demonstrate that

the proposed scheme for incorporating linear price and network adjustment gives the most

accurate partition which reduces the number of handovers and achieves the lowest load in

the pico BS in the first iteration. This result also demonstrate the effectiveness of network

adjustment for constant price case in achieving the accurate partitiion compared to the no

network adjustment case.
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FIGURE 2.14: Trajectories of Strategy Adaptation towards Evolutionary Equilibrium

2.7.4 Performance Comparison of Full Evolution and RoI based Dy-

namic Contextual Approaches

Fig. 2.15 show the number of users moved from pico BS to macrocell and the number

of users who need to be considered for user adaptive selection mechanism by iteratively

changing the Region of Interest. Specifically, Fig. 2.15 shows that if the macrocell is not

re-configured, the RoI based Dynamic Contextual Approach selects the optimal region

∆D = 0.25. Without degrading the performance this selection reduces the number of

users or players in an evolutionary game within the service area (1) required to adopt

user adaptive network selection mechanism by 58% as compared to the Full Evolution

Dynamic Contextual Approach. Fig. 2.15 also shows the case when macrocell is re-

configured; the RoI-based Dynamic Contextual Approach selects the optimal region ∆D=
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FIGURE 2.15: Performance of ROI based Dynamic Contextual Approach as Compared
to the Full Evolution Dynamic Contextual Approach(i.e. ROI=1.0)

0.55 which reduces the number of users or players in an evolutionary game within the

service area (1) required to adopt user adaptive network selection mechanism by 23%

as compared to the Full Evolution Dynamic Contextual Approach without degrading the

performance.

2.8 Summary

The joint network selection algorithm from both user and network perspectives are

proposed in cooperative heterogeneous wireless systems. Initially, the user preferences

are modelled in terms of QoS, interface preference, price and mobility support. Rely-

ing on these four preferences, an adaptive user preference model is firstly formulated,

where users can change their strategy aiming to achieve better services. In particular,
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the network is re-configured by iteratively controlling its transmission power and adjust

its policy by introducing a utility for the service provided to the users within the cover-

age area. Finally, a game-theoretic approach for adaptive network selection is proposed,

where an evolutionary equilibrium guarantees an optimal solution. In addition, a novel

RoI-based Dynamic Contextual strategy is also proposed which significantly reduces the

number of users to be considered in an evolutionary game without degrading the ser-

vice. The simulation results showed that the proposed scheme outperforms the existing

solutions in terms of user allocation, traffic load, blocking rates, convergence and QoS

performance.



Chapter 3

Energy Efficient Resource Allocation in

Heterogeneous Networks1

In Chapters 1 and 2, we have highlighted that the EE is considered as a key performance

metric in the design of the future generation networks which requires advance techniques

and algorithms to address these issues. It should be noted that the HetNets can improve

the overall system coverage and throughput by deploying small cells at the edge of the

macrocell coverage. This improvement is achieved by bringing the small cells closer

to the users resulting in a smaller path loss and better service for the cell edge users.

However, a dense deployment of these smaller cells without considering EE can result

in a higher power consumption causing service degradation. The focus of Chapter 2

was to maximise the system throughput of the two-tier HetNets using the evolutionary

1The work presented in this chapter have been published in three IEEE conferences; 1) 24th IEEE In-
ternational Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), held at London,
UK in September 2013; 2) 20th IEEE International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD), held at Guildford, UK in September 2015; and 3) IEEE
International Conference on Communications (ICC), held at London, UK in June 2015.

53
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game theory. In comparison to the work outlined in Chapter 2, we extend our existing

system model to incorporate the energy-efficient radio resource allocation in device-to-

device (D2D) enabled multi-tier HetNets subject to the minimum QoS requirement and

maximum transmission power constraint. Recently, the convex optimisation methods

have gained a lot of attention to address the energy-efficient radio resource allocation

issues in D2D enabled multi-tier HetNets.

This chapter focuses on energy efficient resource allocation schemes in multi-tier Het-

Nets. This chapter proposes joint user association and energy-efficient resource alloca-

tion in the uplink of multi-user two-tier Orthogonal Frequency Division Multiplexing

(OFDM) Heterogeneous Networks (HetNets) subject to user’s maximum transmission

power and minimum-rate constraints as outlined in Section 3.4. The proposed scheme

aims at achieving high rates at low powers satisfying the user’s quality-of-service (QoS)

constraints (in terms of minimum-rate requirements) by offloading the users with low

signal to noise ratio (SNR) from macrocell to the pico base station (BS). A SNR based

rate proportional resource allocation approach is proposed to transform the minimum-rate

constraint into a minimum required transmission power constraint on each subcarrier. The

single-user single-carrier and multi-user multi-carrier energy efficiency (EE) maximiza-

tion problems are then solved under maximum and minimum power constraints using

Karush-Kuhn-Tucker (KKT) conditions. The impact of users’ maximum transmission

power and minimum-rate requirements on EE and throughput are investigated through

illustrative results. The rate-proportional approach is evaluated against the equal rate al-

location approach for different user associations and various numbers of users, maximum
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transmission power, and circuit powers. Significant gains in EE can be achieved for the

HetNets if the path loss based user association is combined with the proposed SNR rate

proportional mechanism.

A multi-tier architecture consisting of a macrocell overlaid with small cells, e.g., pico

base station (BS), with provision of relays and device-to-device (D2D) communication is

needed to satisfy the quality-of-service (QoS) requirements in a joint spectrum and en-

ergy efficient manner for the future Fifth generation (5G) networks. D2D communication

enables the users located in close proximity to each other to communicate directly with-

out going through the macro-cell, and hence, can be utilised to offload the traffic from the

cellular infrastructure. Section 3.5 investigates the trade-off between Area Energy Effi-

ciency (AEE) and Area Spectral Efficiency (ASE) in D2D-enabled uplink heterogeneous

networks. The tradeoff is modelled as an optimization problem, in which each user wants

to maximize its own ASE subject to its required AEE levels. Taking into consideration

of the AEE requirement and maximum transmission power constraint, a distributed re-

source allocation approach is proposed to jointly optimize the mode selection, subcarrier

and optimal power allocation by exploiting the properties of fractional programming. The

relationship between the achievable AEE and ASE trade-off is investigated with different

network parameters.

In Section 3.6, a multi-objective optimization problem (MOP) is proposed to jointly

investigate the tradeoff between throughput and backhaul energy efficiency (BEE) using

-fair utility function for two different backhauling technologies in downlink transmission
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scheme of a two-tier HetNets. We then transform the proposed MOP into a single objec-

tive optimization problem (SOP) employing the weighted sum method to obtain the com-

plete Pareto Frontier solution set with minimum QoS requirements and rate fairness level

. The transformed SOP is solved in an iterative manner using Lagrangian Dual Decom-

position (LDD) with a subgradient method providing a near-optimal solution. Simulation

results demonstrate the effectiveness of our proposed approach in reducing the total area

power consumption irrespective of the backhauling technology by dynamically adjusting

weighting coefficient and rate fairness level . Our numerical results also demonstrate

the fundamental tradeoff between throughput and BEE for different parameters such as

weighting coefficient and rate fairness level .

3.1 Related Work

Recently, several works have considered throughput maximization to measure the per-

formance in the OFDM systems for downlink [30], uplink [31] [32] [33] and joint uplink-

downlink [34] transmission schemes. On the other hand, when EE is the considered

performance metric, [35] proposes an EE-maximization link adaptation and resource al-

location technique for an OFDMA system considering fixed circuit and transmit power

by improving the mobile EE for the flat-fading OFDMA channels. Their approach is

generalized to maximizing the uplink EE in frequency selective channels in [36]. A low

complexity time-sharing bandwidth allocation approach to maximize the EE of a down-

link flat-fading channel is proposed in [37]. Further, energy-efficient channel and power

allocation problem in the uplink of an OFDM system is considered subject to maximum
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transmit power constraint, based on the assumption that each user can transmit at one

channel in [8], wherein two different energy scheduling algorithms were proposed. In

[38], the authors investigate the tradeoff between spectral and energy efficiencies as a

function of the circuit power, power amplifier (PA) efficiency and channel power gain

in time-varying Rayleigh fading point-to-point channels. These works, however, do not

consider the impact of users’ minimum-rate requirements and the use of HetNets on EE

in OFDM systems.

The major contribution of this work is to propose a joint subcarrier and power allocation

technique for maximizing EE within HetNets, based on the user association when user’s

minimum-rate requirements are to be satisfied. Specifically, we consider the pico-BS-first

user association to offload the users from macrocell to pico BS to enhance EE. Further, we

propose a rate-proportional mechanism to divide the user’s minimum-rate requirements

in between its associated subcarriers based on the subcarriers SNRs. Specifically, when

SNR of a subcarrier is higher, higher minimum-rate will be allocated to that subcarrier,

and vice versa. This proposed approach is compared to the equal rate allocation ap-

proach, wherein the user’s minimum-rate requirement is equally allocated among all the

subcarriers [29] [33]. The minimum-rate constraint for single-user and multi-user cases

is transformed into minimum power constraints on each subcarrier. The power allocation

using Karush-Kuhn-Tucker (KKT) conditions are then used to compute the instantaneous

subcarriers transmit powers while not violating the users’ maximum transmit power con-

straints. Simulation results indicate that the proposed rate proportional approach enhances
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the EE in the order of 10.2% as compared to the equal rate approach. Our study also re-

veals that EE increases with the maximum transmission power (Pmax) while on the other

hand, the EE decreases with increase in minimum-rate required by the users. The EE

increases with the number of users and decreases with the distance from their connecting

BS.

3.2 Chapter Organisation

The rest of this chapter is organized as follows. Section 3.3 describes the system model.

Section 3.4 describes the low-complexity suboptimal user association and power alloca-

tion in two-tier HetNets. Section 3.5 describes the formulation of an optimisation prob-

lem to maximise the Area Spectral efficiency (ASE) subject to the Area Energy Efficiency

(AEE) requirement in multi-tier HetNets. Section 3.6 presents the multi-objective opti-

misation problem to optimise the conflicting objectives such as maximise the throughput

and minimise the transmission power in two-tier HetNets from the fairness perspective.

Section 3.7 concludes the chapter.

3.3 System Model

We consider a three-tier (or Hierarchical) HetNets as shown in Fig. 3.1 where tier-1

is modelled as macrocell, tier-2 is modelled as pico BSs and tier-3 is Device-to-Device

(D2D) communication. In total, there are M BSs where BS1 is a macrocell (Mc) and BSm

is a pico BS (PB) (m ∈ {2,3, · · · ,M}). The pico BS is connected to the macrocell via a

high capacity wired backhaul. There are N users (n ∈ {1,2, · · · ,N}) randomly generated
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and uniformly distributed within the coverage area of three-tier HetNets with K subcarri-

ers (k ∈ {1,2, · · · ,K}). The system bandwidth B is divided equally within K subcarriers,

i.e., Bk =
B
K . Let NC = {1,2, · · · ,C} denote the set of cellular users associated with either

macrocell or M− 1 pico BS and ND = {C+ 1,C+ 2, · · · ,N} denote the set of potential

D2D users. The set of active users in the network could be expressed as N = NC∪ND.

The potential D2D users have the opportunity to select their operation mode (i.e., cellular

mode or dedicated mode) as they are covered by either the macrocell or M− 1 pico BS.

It is also assumed that the user is associated to same BS for both downlink and uplink

transmission scheme. It is worthwhile to mention that this model is also applicable to

multi-tier HetNets consisting of multiple macrocells and different type of small cells.

FIGURE 3.1: Three-Tier HetNets scenario

At this stage, the effect of the interference from adjacent cells is not taken into consid-

eration. The co-channel interference between pico BS and macrocell is catered assuming

that each of them communicates the usage of subcarrier with each other using Almost
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Blank Frame (ABF). We consider an orthogonal subcarrier selection scheme, introduced

in [39], that assigns each subcarrier exclusively to either pico BS (PB), macrocell or D2D

pair at any time. Let σ
(PB)
k,n and σ

(M)
k,n denote the subcarrier allocation indices for pico BS

and macrocell, respectively. If the subcarrier k ∈ KPB, for k = {1, · · · ,K}, is allocated to

user n, for n = {1 · · ·N}, then σ
(PB)
k,n = 1, and otherwise σ

(PB)
k,n = 0. It is assumed that a

subcarrier can only be assigned to one user in a scheduling interval. To maintain the QoS

requirements, each user has a minimum-rate constraint. We assume that the minimum-

rate requirement of all users are identical and is referred by Rmin.

3.3.1 Uplink System Model

The signal-to-noise-ratio (SNR) of the n-th user in D2D or cellular modes (served by

either macrocell or pico BS) on subcarrier k are given as follow

γ
(d)
k,n =

|h(d)k,n |
2

ρ2
n,dPL(d)

n
(3.1a)

γ
(c)
k,n =

|h(c)k,n|
2

ρ2
n,cPL(c)

n
(3.1b)

h(d)k,n represent the channel amplitude gain on subcarrier k from the n-th D2D pair to its

receiver whereas h(c)k,n represent the channel amplitude gain on subcarrier k between the

n-th cellular user and the macrocell (or pico BS). The distance-based path loss for n-th

user in D2D or cellular mode are denoted by PL(d)
n and PL(c)

n , respectively. The noise

power at the macrocell (or pico BS) and the D2D receiver, respectively, are given by

ρ2
n,d = ρ2

n,c = BkN0, where N0 is the noise spectral density.
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The instantaneous rate achieved by user n on subcarrier k choosing either dedicated

mode ’d’ or cellular mode ’c’ are given respectively by

r(d)k,n = Bk log2

(
1+ γ

(d)
k,n × p(d)k,n

)
,∀k ∈ Kd,∀n ∈ND (3.2a)

r(c)k,n = Bk log2

(
1+ γ

(c)
k,n × p(c)k,n

)
,∀k ∈ Kc,∀n ∈NC (3.2b)

Here, p(d)k,n and p(c)k,n indicate the power allocated to the user n on subcarrier k for D2D and

cellular modes, respectively.

In simple terms, the potential D2D transmitter chooses a dedicated mode if τdr(d)k,n ≥

r(c)k,n, where r(d)k,n is the achievable rate in dedicated mode, r(c)k,n is the achievable rate in the

cellular mode and τd is a biasing factor. In cellular mode, the D2D pair will need two

subcarriers (one in uplink and one in downlink) and due to this reason τd = 2 for the

dedicated mode. To guarantee the QoS of D2D pair, both uplink and downlink SNRs

should be larger than a given threshold γmin. We assume that the macrocell or pico BS

can tune its transmission power to ensure that γ
(c,down)
k,n is no less than γ

(c)
k,n [40]. In order to

simplify the optimisation problem, it is assumed that the subcarrier used by one D2D pair

cannot be reused by any other D2D pair. Then, the achievable rate of user n on subcarrier

k is

rk,n = mn.r
(d)
k,n +(1−mn).r

(c)
k,n, (3.3)

where mn ∈ {0,1} is a binary variable used to distinguish between the different modes

where the cellular mode is represented by mn = 0 whereas the dedicated mode is repre-

sented by mn = 1. The system sum rate in an uplink transmission scheme can be expressed
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as

R =
K

∑
k=1

N

∑
n=1

rk,n (3.4)

Similarly, the transmit power of user n on subcarrier k is given by

pk,n = mn.p
(d)
k,n +(1−mn).p

(c)
k,n (3.5)

In practice, the transmission power available at n-th user, Pn, is limited to a maximum

threshold, i.e., Pmax
n which can be formulated as:

Pn =
K

∑
k=1

pk,n ≤ Pmax
n ,∀n (3.6)

Hence, the overall power consumption and the transmission power in an uplink of D2D

enabled communication can be modelled as:

P = ε0PT +(1+mn)PC, (3.7a)

PT =
N

∑
n=1

K

∑
k=1

pk,n (3.7b)

where ε0 is an inverse of power amplifier efficiency.
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Energy Efficiency (ηEE) is defined as the amount of data transferred per unit energy

consumed by the system (usually measured in (b/J) and is defined as:

ηEE =
R

ε0PT +(1+mn)PC
, (3.8)

where R denote the total achievable data rate compromising of the achieved data rates

in the macrocell, small cell and D2D communication. ηEE is strictly quasi-concave with

respect to transmission power PT. Hence, there exists one and only one optimal solution

that maximises ηEE. ηEE monotonically increases with PT, when PT ∈ [0,P∗ηEE
] while it

monotonically decreases with PT, when PT ∈ [P∗ηEE
,∞).

3.3.2 Downlink System Model

The received downlink SNR of user n on subcarrier k associated with network m is

given by

γ
(m)
k,n =

h(m)
k,n

N0BkPL(m)
n

, (3.9)

where h(m)
k,n is the channel gain between network m and user n on subcarrier k, N0 is the

thermal noise at user n, PL(m)
n is the pathloss between user n and network m and Bk is the

subcarrier bandwidth spacing assumed to be fixed in each network m.

The instantaneous rate of user n associated with network m on subcarrier k is given as

follow:

r(m)
k,n = Bk log2

(
1+ γ

(m)
k,n × p(m)

k,n

)
, (3.10)
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The total data rate of user n is

Rn =
K

∑
k=1

M

∑
m=1

σ
(m)
k,n r(m)

k,n , (3.11)

where σ
(m)
k,n is the subcarrier allocation indicator such that σ

(m)
k,n ∈ {0,1}.

3.4 Optimising User Association and Power Allocation in

Heterogeneous Networks

From (3.8), we can observe that improving the EE can result in reduction of the user

achieved rate, and hence degrading the user’s QoS. In this Section, we consider the UE

minimum-rate requirement along with its maximum transmit power constraint in order to

investigate the tradeoff between the achieved EE and QoS requirements.

3.4.1 Received Power based User Association

In order to avoid frequent vertical handoffs in HetNets, user association rules are de-

fined for wireless transmission [41]. In traditional homogeneous cellular networks, the

user association is based on the received signal strength [42]. One of the key issues is

that all BSs within the same tier should have identical biasing factor. Unique association

of users with the macrocell or pico BS is assumed. Specifically, each user can only be

associated with one BS. Define the user association index for pico BS by aPB,n which is

equal to 1 if the user n is associated to the pico BS and 0, otherwise. Similarly, we can

define the user association index for macrocell by aMc,n = (1−aPB,n).

Different user association schemes for the uplink of HetNet with N = 25 are shown
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(a) Pico BS First
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(c) Nearest BS association
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(d) Biased Received Power association with biasing factor of 10
dB

FIGURE 3.2: Different User Association Metrics

in Fig. 3.2. Fig. 3.2 depicts that pico-BS-first associates more users with pico BS as

compared to the other user association techniques. In this work, we propose uplink path

loss based association in which the user associates to the BS with the lowest path loss.

The motivation behind using the pico-BS first [42] (or path loss) association is to associate

the users with the closest BS which can help in maximizing the overall EE of the system.
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3.4.2 Proposed Low Complexity Solution

Here, we consider the case of a Multi User-Multi Carrier (MU-MC) scenario with N

UEs and K subcarriers in two-tier HetNets2 subject to the maximum transmission power

and minimum rate requirement constraints. In an uplink scenario, multiple users trans-

mit data towards a BS so each communication link between user and BS introduces an

individual PC. Hence, the EE maximization problem can be formulated as:

η
max
EE = max

∑
N
n=1 Rn + rk,n

K×PC +∑
N
n=1 Pn + pk,n

(3.12)

s.t.
K

∑
k=1

(σk,n× pk,n)≤ Pmax,∀n ∈ {1, · · · ,N}

Rn ≥ Rmin
n , ∀n ∈ {1, · · · ,N}

N

∑
n=1

σk,n = 1,∀k ∈ {1, · · · ,K}

pk,n ≥ 0, σk,n ∈ {0,1} , ∀n,k

Here, σ is an N×K matrix with each element σk,n indicating the allocation of subcarrier k

to user n. Similarly, P is an N×K matrix with each element pk,n representing the allocated

power to subcarrier k associated with user n. In similar manner, R is an N×K matrix with

rk,n representing the allocated rate to subcarrier k associated with user n. Initially ∀n, Rn

and Pn are set to zero.

The proposed suboptimal algorithm with low complexity consists of two stages: sub-

carrier allocation and power allocation. In order to maximize the EE, each subcarrier

2A two tier HetNet compromise of macrocell and pico BSs with no D2D pairs such that NC = N and
ND = 0
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should be allocated to the user that can maximize the achieved rate with the minimal

transmit power while satisfying the minimum-rate and maximum transmit power con-

straints. Once the subcarrier allocation is done, each user can calculate the optimal trans-

mit power on its each allocated subcarrier. The solution to (3.12) can be found by taking

its derivative with respect to pk,n and putting it equal to zero as follow:

(
A+ log2

(
1+ γk,n pk,n

∗) )(1+ γk,n pk,n
∗)

γk,n
−B−KPC = 0, (3.13)

where A = ∑
N
n=1 Rn and B = ∑

N
n=1 Pn. Hence, the optimal power of subcarrier k allocated

to user n is given as min
(

Pmax,max
(

p∗k,n, pk,n(R
(k)
min)

))
.

In order to find pk,n(R
(k)
min), the minimum-rate requirement constraint is converted into

per subcarrier minimum transmission power constraint. The two different approaches are

investigated namely, equal and SNR-based rate proportional allocations. In equal rate

allocation approach, the minimum rate requirement Rmin is divided equally among the

subcarriers k ∈ {1,2, · · · , |Kn|} allocated to each user as follow:

R(k)
min =

Rmin

|Kn|

The sum of the achievable rate on each subcarrier allocated to user n should be at least

equal to its minimum-rate requirement according to

R(1)
min +R(2)

min + · · ·+R(|Kn|)
min ≥ Rmin, (3.14)
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In SNR-based rate proportional mechanism, the minimum-rate constraint is distributed

among the subcarriers k∈{1, · · · , |Kn|} allocated to user n, proportional to their respective

γ ′s as

R(1)
min : R(2)

min : · · · : R(|Kn|)
min = γ1 : γ2 : · · · : γ|Kn|, (3.15)

which can be transformed into

R(1)
min
γ1

=
R(2)

min
γ2

= · · ·=
R(|Kn|−1)

min
γ|Kn|−1

=
R(|Kn|)

min
γ|Kn|

. (3.16)

Now, by substituting (3.16) into (3.14), we get

R(|Kn|)
min =

Rmin(
γ1

γ|Kn|
+ γ2

γ|Kn|
+ · · ·+ γ|Kn|

γ|Kn|

) , (3.17a)

R(i)
min =

γi

γi+1
×R(i+1)

min , i = 1,2, · · · , |Kn|−1. (3.17b)

Similarly, the minimum transmission power required on each subcarrier denoted by pk,n

(
R(k)

min

)
,

∀k ∈ {1, · · · , |Kn|} to satisfy the user’s minimum rate requirement can be computed as:

pk,n

(
R(k)

min

)
=

2
R(k)min

Bk −1
γk

, ∀k = 1,2, · · · , |Kn|, (3.18)

More details about the proposed algorithm can be found in Algorithms 3.1 and 3.2.

3.4.3 Simulation Results

We consider a two-tier HetNets environment with a single macrocell with 500 m radius

overlaid with a pico BS with a radius of 125 m. For EE measurements, the bandwidth of
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Algorithm 3.1 User Association and Energy-Efficient Resource Allocation in two-tier
HetNets: A Suboptimal Approach
Initialization of variables:
NTotal : Total number of schedulable users in the system
S = {1,2, · · · ,K}
∀n = 1 to N,Cn = /0,Pn = 0,Rn = 0

Step 1: User Association

Compute γ
(PB)
k,n =

∣∣∣h(PB)
k,n

∣∣∣2
PL(PB)

n N0B
and γ

(Mc)
k,n =

∣∣∣h(Mc)
k,n

∣∣∣2
PL(Mc)

n N0B

γk,n = aPB,nγ
(PB)
k,n +aMc,nγ

(Mc)
k,n ,∀k ∈ S

Step 2: Subcarrier Allocation
For each subcarrier k ∈ S, select the user n with maximum value of γk,n

Cn =Cn∪{k}
S = S−{k}
countn = size(Cn) ,∀n

Step 3: Power Allocation
If countn = 1,

Compute Pn(Rmin) =
2

Rmin
Bk −1

γ

Compute energy-efficient power as log2(1+γ p∗)(1+γ p∗)
γ

−PC = 0
Compute optimal power as min(Pmax,max(p∗,Pn (Rmin)))
if Pmax < Pn(Rmin)
No Feasible Solution exists, call Algorithm 3.2

else (∀k ∈Cn,)

Transform Rmin into R(k)
min,n over the number of allocated subcarriers k ∈ Cn to

user n using (3.17a) and (3.17b)
Compute optimal power pk,n

∗ satisfying the power constraint for multi-user
multi-subcarrier case using (3.13)
Check the maximum transmit power violation for each user otherwise call
Algorithm 3.2.

end If

each subcarrier is 180 kHz. The minimum-rate requirement for each user is considered as

0.42 b/s/Hz. The maximum transmission power of macrocell and pico BS are 20 W and

200 mW respectively whereas the value of circuit power is PC = 100 mW. We assume that

the total number of users N = 25 are uniformly distributed within the simulated scenario.

The path-loss model for macrocell and pico BS are given as PL(dB) = 34+40log10(dn)
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Algorithm 3.2 Reallocate the Subcarriers
Step 1: U is the set of users not satisfying the minimum rate
requirement
While U 6= 0

(a) Select a user n ∈U
(b) Randomly select a subcarrier k ∈ {1, · · · ,K} such that k/∈ Cn
(c) Let x be an owner of subcarrier k and to check by removing k whether x can still

satisfy the Rmin constraint
If p̂k

x(Rmin)≤ Pmax
Cn =Cn∪{k}
Cx =Cx−{k}

else
goto (b)

else If (no more subcarrier k)
break While;
goto (a)

end If
Compute the new minimum required power and compare it with Pmax
Remove n from U and goto (a)

Step 2:
Finally the EE of the system is given as follow:

η
∗
total =

∑
N
n=1 Rn

Ntotal×PC +∑
N
n=1 Pn

and PL(dB) = 37+ 30log10(dn) [41], where dn is the is the distance of a user n from

the BS in km and therefore, PLM
n = 10(PLM

n (dB)/10) and PLP
n = 10(PLP

n (dB)/10). The noise

spectral density is assumed to be N0 =−141 dBm/Hz.

We investigate the effects of the proposed SNR-based rate proportional allocation as

opposed to the equal rate allocation on EE in MU-MC case with N = 25 and K = 5 in

Fig. 3.3. Fig. 3.3 shows that the EE increases with the number of users and the SNR-rate

proportional approach enhances the EE in the order of 10.2% (when N=25 and K=5) as

compared to the equal rate allocation approach. This increase in EE is due to the fact

that SNR-based rate proportional approach allocates higher rates (with lower power) to
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subcarriers with higher SNRs.
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FIGURE 3.3: Achievable EE (measured in b/J/Hz) with K = 5 and N = 25 for proposed
SNR rate proportional and equal rate allocation approaches.
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FIGURE 3.4: Performance of EE (measured in b/J/Hz) for pico BS first and Macrocell
first user association scheme for varying number of users N with K = 5 and PC = 100

mW.
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We further investigate the impact of Macrocell-first and pico-BS-first user associations

on EE while considering SNR-based rate proportional approach.Fig. 3.4 reveals that the

EE of pico-BS-first user association is in order of 2.6% when compared to the EE of

Macrocell-first for the case where NM >> NP. As the EE increases with the number of

users, the pico-BS-first association will achieve higher EE at the cell boundary users.

Since the large coverage area of Macrocell-first user association causes higher path loss

for users far away from BS, higher transmit powers, which results in lower EE, is required

to maintain the QoS of such users. In short, the pico-BS-first association could be a

useful technique to offload the cell edge users from macrocell to pico BS, and as a result,

increases the EE of the system.
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FIGURE 3.5: Performance of throughput b/s/Hz for pico BS first and Macrocell first user
association schemes with K = 5, PC = 100 mW and N = 25.

We also study the throughput for SNR-based rate proportional and equal rate allocation

approaches for different user associations with N = 25,K = 5 and PC = 100 mW as shown

in Fig. 3.5. Fig. 3.5 depicts that pico-BS-first marginally performs better in terms of
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throughput by utilizing the lower path-loss property as compared to the Macrocell-first.

Similarly, an increase in PC causes reduction in the overall EE of the system.

3.5 Optimising User Association and Power Allocation in

Device-to-Device enabled Heterogeneous Networks

3.5.1 Related Work
A multi-tier architecture for 5G networks consisting of macrocell overlaid with small

cells (e.g. pico BS) with provision of relays and device-to-device (D2D) networks is

needed to satisfy the quality-of-service (QoS) requirements in a spectrum and energy-

efficient manner. A D2D pair consists of a D2D transmitter and a D2D receiver lying in

close proximity of each other. The concept of D2D communications in cellular networks

is to allow the D2D pair in close proximity of each other to directly communicate instead

of using a cellular infrastructure.

On the other hand, one of the solutions to jointly improve the system throughput and

to reduce the energy consumption is using heterogeneous networks (HetNets) consisting

of low-power small cells (e.g., microcells, picocells, and femtocells) overlaid within the

macrocell geographical area, deployed by network operator who share the same spectrum

with the macrocells [41]. Each promising solution alone is unlikely to meet the QoS and

throughput requirements for 5G [2]. One of the promising solution is a three-tier hierar-

chical HetNets in which the two above mentioned technologies can coexist in parallel to

improve the network performance. In tier 1, the macrocell is used to ensure outdoor cov-

erage whereas in tier 2, small cells are used to serve the users with low mobility in indoor

and outdoor coverage. In tier 3, the users in both macrocell and small cell coverage areas

can engage to communicate directly using D2D communication.

The radio resource management (RRM) mechanism in D2D communication consist of

mode selection, resource allocation and power control [43]. The spectrum sharing among

D2D and cellular users can be classified as either overlay or underlay. In overlay spec-

trum sharing scheme, the orthogonal resources are dedicated to both cellular and D2D

users in order to avoid mutual interference, whereas the D2D users are allowed to reuse
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the resources occupied by the cellular users to improve the spectral efficiency in underlay

spectrum sharing scheme [43]. One of the important RRM decisions in the D2D com-

munication is mode selection mechanism in order to determine one of the possible three

communication modes namely as cellular, dedicated (or orthogonal resource sharing) or

reuse (or non-orthogonal resource sharing) mode.

In cellular mode, the two users can communicate with each other through cellular in-

frastructure whereas in dedicated mode the D2D pairs can communicate directly using

the exclusively dedicated resources to avoid the mutual interference between D2D users

and cellular users at the cost of reduced spectrum utilization. In reuse mode, the D2D

pairs directly communicate with each other by reusing the partial or all of the resources

currently occupied by the cellular user. One of the challenges in the reuse mode is to

assign the reusing resources such that the co-channel interference between cellular and

D2D links can be mitigated.

EE is, in fact, one of the key performance indicators for the next generation wireless

communications systems. However, most of EE gains are achieved with sacrifices in

SE. Most of the work in the literature mainly focuses on either maximizing the system

throughput (e.g., [43] [44]) or EE (e.g., [45] [40]) for two-tier cellular networks (i.e.,

macrocell overlaid with D2D communication). In this direction, a pricing scheme for two-

tier 5G networks using game theory and auction theory as mentioned is proposed in [46]

which also outlines the significant gains achieved by both operators and users in two-tier

cellular networks as compared to the macrocell only system. A joint mode selection,

channel assignment and power control to maximise the system throughput for two-tier

cellular networks is proposed in [47]. The problem is decomposed into two subproblems

where the power control subproblem is solved by using standard optimization method,

and the mode selection and subchannel assignment subproblem is solved using branch-

and-bound (BB) method. A low complexity distributed resource allocation mechanism

based on auction theory in multi-tier heterogeneous networks is proposed in [48]. The

objective of the considered resource allocation scenario is to maximise the achievable

throughput of the small cell and D2D users as long as the interference caused to the

macrocell users are within a predefined threshold.
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To the best of our knowledge, there is no work in the literature to jointly optimize

the ASE-AEE tradeoff radio resource allocation in multi-tier HetNets overlaid with D2D

communication (or Hierarchical HetNets) considering multi-user multi-carrier systems in

distributed manner. In this work, we address the ASE-AEE tradeoff resource allocation

technique in an uplink of hierarchical HetNets. By exploiting the fractional programming

concept, the optimization problem can be transformed into its equivalent subtractive form

which is tractable. Numerical results demonstrate the impact of the required AEE level

and the transmit power constraints on the ASE-AEE tradeoff. It is worth to mention that

the scope of this paper is not to investigate the benefits of D2D communication itself,

but rather its opportunistic integration with HetNets to satisfy the requirements for 5G

networks to achieve higher data rates with lower energy consumption.

3.5.2 System Setup
Each D2D pair n ∈ ND consists of a D2D transmitter and a D2D receiver. It is as-

sumed that the neighbour discovery algorithms (e.g., [49] [50]) already exists to establish

the D2D communication and the D2D proximity rmax is the maximum distance between

the D2D pair due to the maximum transmit power Pmax
n of a user and the receiver sen-

sitivity [51]. It should be noted that the potential D2D user does not necessarily select

the dedicated mode. The mode is selected based on a mode selection scheme presented

later in the paper. It is also worthwhile to mention that due to the practicality reasons, it

is assumed that C > D. Each D2D pair can communicate in two modes, i.e., cellular or

dedicated. In cellular mode, the D2D transmitter communicate with a D2D receiver with

the help of the macrocell or pico BS, whereas in dedicated mode, the D2D transmitter

directly communicates with a D2D receiver.

Depending on this assumption, each D2D pair and cellular users will be allocated ded-

icated subcarriers for the case of K > C+D. In the case of C < K < C+D, some D2D

pairs will use dedicated subcarriers whereas others will reuse the subcarriers allocated to

the cellular users resulting in mutual interference. Similarly, in the case of K ≤ C, all

the D2D pairs need to reuse the subcarriers allocated to the cellular users. For example,

Let DN be the number of D2D pairs which cannot reuse the subcarriers allocated to the
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cellular user. If DN ≤ K−C, it means that all the D2D pairs can communicate as the

number of available dedicated subcarriers are K−C. Similarly, if DN > K−C, it means

that atleast DN−K +C D2D pairs cannot communicate which is dependent on the level

of interference caused by the D2D pair to the cellular user.

Furthermore based on the system model described in Section 3.3, AEE (ηAEE) of the

three-tier HetNet can be defined as the sum of the amount of data transferred per unit en-

ergy consumed by the macrocell, the small-cell and D2D communication per unit band-

width per unit coverage area (b/J/Hz/km2) and can be expressed as

ηAEE =
ηEE

θ
=

ηEE

A×B
, (3.19)

where A represents the total coverage area and B is the total occupied bandwidth. SE

(ηSE), on the other hand, is a measure that reflects the efficient utilization of the available

spectrum in terms of throughput and it is commonly expressed in (b/s/Hz). ηSE is strictly

increasing with transmission power PT and is concave in PT. ηSE is defined as:

ηSE =
R
B
, (3.20)

The ASE of the three-tier HetNet is defined as the sum of the achievable rates of the

macrocell, the small-cell and D2D communication per unit bandwidth per unit coverage

area (b/s/Hz/km2) and can be formulated as

ηASE =
R
θ
. (3.21)

3.5.3 Problem Formulation of ASE-AEE Tradeoff
In order to analyse the ASE-AEE tradeoff, we formulate the optimisation problem

to maximise ASE subject to a required AEE level and maximum transmission power

constraints. The maximisation problem can be mathematically expressed as

η{ASE,AEE} = max
σ
(mn)
k,n ,p(mn)

k,n

∑
1
mn=0 ∑

K
k=1 ∑

N
n=1 σ

(mn)
k,n r(mn)

k,n

θ

 (3.22a)
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s.t.
∑

1
mn=0 ∑

K
k=1 σ

(mn)
k,n r(mn)

k,n

θ

(
ε0 ∑

1
mn=0 ∑

K
k=1 p(mn)

k,n +PC

) ≥ η
req
n ,∀n. (3.22b)

1

∑
mn=0

K

∑
k=1

σ
(mn)
k,n p(mn)

k,n ≤ Pmax
n ,∀n. (3.22c)

1

∑
mn=0

N

∑
n=1

σ
(mn)
k,n ≤ 1,∀k. (3.22d)

p(mn)
k,n ≥ 0,σ (mn)

k,n ∈ {0,1} , ∀n,∀k,∀m. (3.22e)

In (3.22a), η{ASE,AEE} represents the ASE-AEE tradeoff objective function and σ
(mn)
k,u is

a binary variable to indicate whether the subcarrier k is assigned to the user u with mode

mn or not, where mn ∈ {0,1}. For the user n ∈NC, which is a cellular user with only

the cellular mode of transmission, and hence σ
(1)
k,n = 0. Further, η

req
n denotes the required

AEE level. Specifically, the ratio of the total required achievable AEE over the total

maximum achievable AEE is referred to as the AEE-loss-rate and can be expressed as

follow:

αAEE =
η req

ηmax =
∑

N
n=1 η

req
n

∑
N
n=1 ηmax

n
, (3.23)

where 0 ≤ αAEE ≤ 1. Similarly, we define the ASE that can be achieved corresponding

to ηmax by ASEηmax . The ASE-gain-rate is the ratio of ASEη req over ASEηmax and can be

formulated as follow:

αASE =
ASEη req

ASEηmax
. (3.24)

It is worth to mention that for any required η
req
n level, there exists two optimal points

for ηASE for the case of Pmax
n ≥ Pηmax . As our optimization problem is to maximize the

ηASE, we will always choose the achievable ASEη req which lies on the right side of the

achievable ηmax
n .
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3.5.3.1 Optimal Power Allocation

The maximisation problem (3.22a) is an integer combinatorial fractional program-

ming problem and is generally NP-hard. For better tractability, we first relax the inte-

ger variables, σ
(mn)
k,n ∈ {0,1} into continuous variables, σ̃

(mn)
k,n ∈ [0,1]. The η{ASE,AEE}-

maximisation problem, hence, can be expressed as

η{ASE,AEE} = max
σ̃
(mn)
k,n ,p(mn)

k,n

∑
1
mn=0 ∑

K
k=1 ∑

N
n=1 σ̃

(mn)
k,n r(mn)

k,u

θ
(3.25a)

s.t.
∑

1
mn=0 ∑

K
k=1 σ̃

(mn)
k,n r(mn)

k,n

θ

(
ε0 ∑

1
mn=0 ∑

K
k=1 p(mn)

k,n +PC

) ≥ η
req
n ,∀n. (3.25b)

1

∑
mn=0

K

∑
k=1

σ
(mn)
k,n p(mn)

k,n ≤ Pmax
n ,∀n. (3.25c)

1

∑
mn=0

N

∑
n=1

σ̃
(mn)
k,n ≤ 1,∀k. (3.25d)

p(mn)
k,n ≥ 0, σ̃ (mn)

k,n ∈ {0,1} , ∀n,∀k,∀m. (3.25e)

The constraint (3.25b) in fractional form can be transformed into its equivalent subtractive

form and can be rewritten as

1

∑
mn=0

K

∑
k=1

σ̃
(mn)
k,n r(mn)

k,n −η
req
n θ

(
ε0

1

∑
mn=0

K

∑
k=1

p(mn)
k,n +PC

)
≥ 0 (3.26)

We utilise the dual decomposition approach to solve the optimisation problem (3.25a). It

is shown that the dual-composition approach has lower computational complexity and the

duality gap for non-convex optimisation approaches to zero for sufficiently large number

of subcarriers [52]. In order to apply dual decomposition method, we first need to find the

Lagrangian function of (3.25a). Using standard optimisation methods proposed in [52],
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the Lagrangian function of (3.25a) can be written as:

L
(

p(mn)
k,n ,λn

)
=

1
θ

1

∑
mn=0

K

∑
k=1

N

∑
n=1

σ̃
(mn)
k,n r(mn)

k,n +
N

∑
n=1

λn

(
1

∑
mn=0

K

∑
k=1

σ̃
(mn)
k,n r(mn)

k,n

−η
req
n θ

(
ε0

1

∑
mn=0

K

∑
k=1

p(mn)
k,n +PC

))
(3.27)

The equivalent dual problem can be decomposed into two subproblems, which is given

by

min
λn≥0

max
p(mn)

k,n ≥0
L
(

p(mn)
k,n ,λn

)
(3.28)

The dual problem can be decomposed into two layers, namely, lower layer and master

layer. In the lower layer, K subproblems are solved in parallel to compute the power and

subcarrier allocation on each subcarrier k ∈ K for the given values of λn. In the master

layer, the Lagrangian multipliers are updated using subgradient method. By applying the

Karush-Kuhn-Tucker (KKT) conditions, we get

∂L
(

p(mn)
k,n ,λn

)
∂ p(mn)

k,n

=


> 0, p(mn)

k,n = Pmax
n

= 0, 0 < p(mn)
k,n < Pmax

n

< 0, p(mn)
k,n = 0

At the optimal power allocation p(mn)
k,n

∗
, we have

∂L
(

p(mn)
k,n ,λn

)
∂ p(mn)

k,n

∣∣∣∣∣
p(mn)

k,n =p(mn)
k,n

∗
= 0,⇒ (3.29a)

(
1+ γ

(mn)
k,n p(mn)

k,n

∗)
=

Bkγ
(mn)
k,n

(
1+ 1

θλn

)
η

req
n ε0θ ln(2)

, (3.29b)
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From (3.29b), the optimal power distribution scheme can be found as

p(mn)
k,n

∗
=


[

Bk

(
1+ 1

θλn

)
η

req
n ε0θ ln(2)

− 1
γ
(mn)
k,n

]+
, if σ̃

(mn)
k,n = 1.

0, otherwise.

(3.30)

where [x]+ = max[0,x]. Therefore, a feasible subcarrier assignment matrix for subcarrier

k ∈ K is given as:

σ̃
(mn)
k,n =

1, if (m∗n,n
∗) = argmaxmn,nr(mn)

k,n ,∀k ∈ K

0, otherwise.
(3.31)

where σ̃
(mn)
k,n = 1 indicates that the subcarrier k is assigned to user n with the mode mn.

When using the optimal power from (3.30), the achieved rate of each user n on subcarrier

k working in the mode mn is computed as r(mn)
k,n = Bk log2

(
1+ γ

(mn)
k,n p(mn)

k,n

)
. In general,

the user n on subcarrier k will choose the dedicated mode mn = 1 if and only if the

r(mn=1)
k,n ≥ r(mn=0)

k,n and otherwise it will choose cellular mode.

Therefore, optimal value for λn (referred to as λ ∗n ) can be found such that the constraint

(3.26) is satisfied with equality, yielding

1

∑
mn=0

K

∑
k=1

Bk log2

(
1+ γ

(mn)
k,n

[
Bk

(
1+ 1

θλn

)
η

req
n ε0θ ln(2)

− 1

γ
(mn)
k,n

]+)

−η
req
n θ

ε0

1

∑
mn=0

K

∑
k=1

[
Bk

(
1+ 1

θλn

)
η

req
n ε0θ ln(2)

− 1

γ
(mn)
k,n

]+
+PC

= 0

For solving the minimisation problem, the Lagrangian multiplier can be updated by using

the subgradient method [52]. The subgradient of λn are given by taking the derivative of

L
(

p(mn)
k,n ,λn

)
with respect to λn, yielding

∂L
(

p(mn)
k,n ,λn

)
∂λn

=
1

∑
mn=0

K

∑
k=1

σ̃
(mn)
k,n r(mn)

k,n −η
req
n θ
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(
ε0

1

∑
mn=0

K

∑
k=1

p(mn)
k,n +PC

)

Then, λn are updated by using the subgradient method as

λn (i+1) =
(

λn (i)−
si
√

i
βn

)
, (3.32)

where i≥ 0 is the iteration index, si is the positive step size which is taken in the direction

of the negative gradient for the dual variable at iteration i and βn is given as follow:

βn =
1

∑
mn=0

K

∑
k=1

σ̃
(mn)
k,n r(mn)

k,n −η
req
n θ

(
ε0

1

∑
mn=0

K

∑
k=1

p(mn)
k,n +PC

)
(3.33)

Based on p(mn)
k,n

∗
(obtained from (3.30)) and Pmax

n , the solution for the maximization

problem (3.25a) can be divided into two regions. When p(mn)
k,n

∗
≥ Pmax

n , the optimal so-

lution of (3.25a) can then be expressed as p(mn)
k,n

∗
= min

(
p(mn)

k,n

∗
,Pmax

n

)
. However, when

p(mn)
k,n

∗
≤ Pmax

n , the optimal solution for (3.25a) is given by (3.30).

Algorithm 3.3 Joint Mode selection, Subcarrier and Power Allocation in D2D enabled
HetNets
Input: [ηreq

n ,ε0,γ
(m)
k,n ]

Step 1: Initialize
i = 0, p(mn)

k,n = 0,λ (i)
n = 0.01, for n = 1, · · · ,N,

k = 1, · · · ,K,m = 1, · · · ,M.
Step 2:
For k = 1 : K

Calculate p(mn)
k,n according to (3.30).

Obtain the mode selection and the subcarrier assignment
according to (3.31).

end For
Step 3:

i = i+1
Update λ

(i+1)
n according to (3.32).

Step 4:
Repeat steps (2)-(3) until λ

(i+1)
n are converged.

Output:
[
p(mn)

k,n , σ̃
(mn)
k,n ,mn

]
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3.5.4 Simulation Results
We consider a three-tier Hierarchical HetNet environment with a single macrocell with

RM = 500 m, as otherwise stated overlaid with uniformly distributed N = 40 pico BSs

(where N is calculated as mentioned in [53]) of Rm = 50 m. The pico BS’s are deployed

at the edge of a macrocell. The bandwidth of each subcarrier is 31.25 kHz. The maximum

transmission power of users considered in the simulation is 200 mW and the value of

circuit power of users is set fixed to PC = 50 mW. We assume that the users are uniformly

distributed within the simulated scenario. The noise spectral density is assumed to be

N0 = −174dBm/Hz. In this work, the power amplifier efficiency is assumed as 38% i.e.

ε0 =
1

0.38 . The maximum transmission power for all users are same, hence, Pmax
n will be

referred to as Pmax. All the simulation results presented are averaged over 10,000 channel

realizations.

Fig. 3.6 demonstrates the achievable AEE versus the macrocell radius RM for vari-

ous values of αAEE. Due to the weaker SNR for the mobile user in the macrocell, the

degradation of AEE is obvious due to the fact that more users transmit with their maxi-

mum transmission power with an increase in RM. The hierarchical HetNet outperforms

in terms of AEE as compared to the traditional HetNets and macrocell only system by

6.55% and 496% respectively, at RM = 300 m. This is due to the fact that the dedicated

mode in hierarchical HetNet allows the cell edge users to communicate directly which

enhances the overall system AEE as compared to the traditional HetNets.

Similalrly, the plot of achievable ASE versus the macrocell radius RM for various values

of αAEE is shown in Fig. 3.7. Generally, as the AEE requirement level is reduced from

ηmax
n to 0.985ηmax

n , each user will transmit with more power resulting in a higher achieved

ASE and a lower achieved AEE. For example, in hierarchical HetNets by reducing the

αAEE from 100% to 98.5% (with only 1.5% loss in AEE) achieve an ASE gain for any

value of RM. Specifically, with RM = 300m, the ASE is improved from 374.3 b/s/Hz/km2

to 395.8 b/s/Hz/km2. It is also worthwhile to mention that ASE is non-decreasing with

the respect of αAEE whereas AEE is non-increasing with the respect of αAEE. When

αAEE = 100% the tradeoff solution maximize the AEE whereas at the smaller values of
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αAEE ≈ 0% the tradeoff solution maximize the ASE.

Fig. 3.8 demonstrates the total transmit power consumption of the macrocell only,
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and B(m)

k = 31.25 kHz.

traditional HetNets and Hierarchical Hetnets against the ratio of loss in AEE to the max-

imum achievable AEE; that is 1−αAEE. With an increase in the value of (1−αAEE),

the ASE gain increases, hence require the users to transmit with more power as long as

Pmax ≥ Pη req . It is quite obvious that the Hierarchical HetNet users transmit with lower

power due to close proximity between the D2D transmitter and receiver as compared to

the pico BS and macrocell users. The Hierarchical HetNet users can reduce their transmit

power with RM = 500 m and (1−αAEE) = 7% upto 48.51% and 1404% as compared

to the traditional HetNet and macrocell, respectively. Fig. 3.8 also depicts that the total

transmit power is equal to the total available transmit power of 20 W irrespective of the

value of (1−αAEE) in maximization ASE with no requirement AEE level as compared to

the maximization ASE with the required AEE level where the total transmit power is de-

pendent on the value of (1−αAEE). At the value of (1−αAEE) = 10%, the total transmit

power in the macrocell only system converges to the total available transmit power of 20

W.

Fig. 3.9 shows the AEE and ASE tradeoff for traditional HetNets and Hierarchical Het-

Nets for the corresponding Pmax = 0.2 W and PC = 0.05 W. As the required AEE level
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is varied from 1160 b/J/HZ/km2 to 1900 b/J/HZ/km2, the corresponding ASE is obtained

by Algorithm I. For the case of Pmax ≤ P∗
ηmax , the maximum achievable ASE is limited

by Pmax, resulting in lower AEE, as compared to the ηmax. As the required AEE level

is increased, the corresponding achievable ASE is reduced. At the required AEE level

of 1400 b/J/Hz/km2, the corresponding ASE in the traditional and hierarchical HetNets

are approximately 118 b/s/Hz/km2 and 124 b/s/Hz/km2, respectively. When the required

AEE level is increased close to the ηmax, a significant loss in ASE occurs,causing the

corresponding ASE of the traditional and hierarchical HetNets to 107 b/s/Hz/km2 and

118 b/s/Hz/km2 respectively. It should be mentioned that the achievable ASE of approx-

imately 118 b/s/Hz/km2, is obtained at the corresponding AEE level of 1900 b/J/Hz/km2

and 1160 b/J/Hz/km2 in the hierarchical and traditional HetNets respectively.

Fig.3.10 shows the plots for αAEE in percentage versus the αASE in percentage for

the traditional and Hierarchical HetNets. It also demonstrates that αASE monotonically

increases with the decrease of αAEE. Fig. 3.10 shows that a minor loss in AEE around its

maximum (when αAEE is close to 100%) results in a significant gain in ASE (i.e., rapid

increase in αASE). When αAEE is reduced beyond 95% , the gain in αASE versus reduction
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of αAEE becomes slower. For example, at αAEE = 80%, significant ASE gains of 108.1%

and 108.7% are achieved in the traditional and hierarchical HetNets. Furthermore, higher

ASE gain is observed in the hierarchical HetNet as compared to the traditional HetNet.

These observations justify the simulations results obtained from Fig. 3.9.

3.6 Optimising User Association and Power Allocation in

Heterogeneous Networks: A Fairness Perspective

3.6.1 Related Work

One of the emerging technologies towards enabling Fifth Generation (5G) is heteroge-

neous networks (HetNets) which include Green Small Cell Networks consisting of low-

power base station (BS), (e.g., microcells, picocells, and femtocells), overlaid within the

macrocell geographical area, deployed by either users or network operators who share

the same spectrum with the macrocells [20] and [41]. The purpose of HetNets is to allow
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user equipments (UEs) to access small cells even though the UEs are within the coverage

of macrocell. The deployment of small cells has a great potential to improve the spatial

reuse of radio resources and also to enhance the energy efficiency (EE) of the network [20]

and [54]. Although, some works [55] and [56] have been done on fairness based energy

efficient radio resource management in traditional OFDMA systems mainly maximising

either EE or spectral efficiency (SE). In [57], authors proposed a MOP approach to jointly

maximise EE and SE along with fairness for downlink transmission scheme of the tradi-

tional OFDMA systems.

Most of the work in the literature mainly focuses on maximising EE or SE with respect

to the transmission power without considering the backhaul energy consumption [58].

The authors in [59] proposed a mechanism to compute backhaul energy efficiency (BEE)

in a heterogeneous network deployment consisting of a macrocell with enabled device to

device (D2D) communication to reduce the overall network power consumption in com-

parison to the small cell deployment. In [60], the authors analysed the energy efficiency

optimisation with subject to SE constraint in the downlink of Green HetNets using Coor-

dinated Multi-Point (CoMP) transmission scheme to reduce the total power consumption

including the backhaul power consumption for two backhauling technologies, i.e., mi-

crowave and fiber. The contribution of the backhaul energy consumption to the total

energy consumption is dependent on the network deployment scenario and technology

and the topology of the backhaul itself [61].

According to the best of our knowledge, there is no previous work on joint through-

put and BEE tradeoff with fairness in downlink transmission scheme of two-tier HetNets
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considering multi-user multi-carrier systems. In this paper, we investigate the two con-

flicting objectives such as jointly maximising throughput and BEE subject to minimum

QoS requirements, maximum input power constraint and rate fairness level ω as a multi-

objective optimisation problem (MOP). The MOP is transformed into a single-objective

optimisation problem (SOP) using weighted sum method obtaining a complete Pareto-

optimal set or Pareto Frontier providing a quantitative insight into the throughput and

BEE tradeoff with different rate fairness level ω .

3.6.2 System Setup and Problem Formulation

We consider a downlink scenario of two-tier HetNets consisting of a macrocell and

M− 1 pico BS’s with the total number of users N and K non-overlapping subcarriers.

We denote the index set of all subcarriers as k = {1, · · · ,K}, the set of all users as n =

{1, · · · ,N} and the set of networks as m= {1, · · · ,M}. Further, we consider an orthogonal

subcarrier selection scheme which assigns each subcarrier exclusively to either pico BS

(PB) or macrocell (Mc) at any time. We assume that Nm indicates the set of all subcarriers

allocated to the network m and |Nm| is the cardinality of the set Nm denoting the total

number of subcarriers allocated to the network m.

To model fairness, we adopt ω-fair utility function

uω (Rn) =


ln(Rn) , if ω = 1,

R1−ω
n
/
(1−ω), if ω 6= 1, ω ≥ 0,

(3.34)

where the value of ω represents different rate fairness levels. For no fairness requirement,

ω = 0, and uω (Rn) = Rn. By increasing ω , the rate fairness among users also increases.
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For the special case of ω → ∞, an absolute rate fairness among users is achieved.

3.6.2.1 Power Consumption Model

Hence, the overall consumed power in downlink of two-tier HetNets can be modelled

as below [59, 60]:

P = ε0

K

∑
k=1

N

∑
n=1

M

∑
m=1

σ
(m)
k,n p(m)

k,n +M×PC +PBH , (3.35)

where PBH is the backhaul power consumption. In two-tier HetNets, the backhaul power

consumption consists of the backhaul power consumed at aggregation switch (or switches)

P(mb)
BH , to forward the traffic from all the macro BS’s to the core network and the backhaul

power consumed at sink switch (or switches) P(sc)
BH , located at the macro BS to receive

the traffic from the M−1 small cells then aggregate it with the macrocell BS traffic and

forward it to the core network. Optical fiber is most commonly used for backhaul links

between all macro BS’s to the aggregation switch. The backhaul power consumption

P(mb)
BH can be expressed as follow [62]:

P(mb)
BH =

[
Imb

maxdl

]
×Psw + Imb×Pdl +Lul×Pul, (3.36)

where Imb is the number of macro BS’s which is equal to 1 according to our system

model, maxdl is the maximum number of downlink interfaces at aggregation switch of

macro BS and Pdl is the power consumption of a downlink interface at the macro BS

aggregation switch. Lul =
(

Tagg
Cmax

)
and Pul are the total number of uplink interfaces and

power consumption of an uplink interface, respectively. Tagg and Cmax are the total traffic
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at the aggregation switches of the macrocell BS and the maximum transmission rate of an

uplink interface, respectively. Psw represents the power consumption of the aggregation

switch at the macrocell BS and (3.36) can be rewritten as:

P(mb)
BH =

[
1

maxdl

](
β .Pmax

sw +(1−β )
Cagg

Cmax
sw

Pmax
sw

)
+Pdl +

(
Tagg

Cmax

)
Pul, (3.37)

where β ∈
[
0,1
]
, Pmax

sw is the maximum power consumption of the switch, Cagg is the total

traffic at the macrocell aggregation switch and Cmax
sw denotes the maximum traffic switch

can handle.

Similarly, either optical fiber or microwave can be used for backhaul links between all

the small cells and the sink switch located at the macro BS. However, in this paper we

assume that optical fiber is used and P(sc)
BH can be defined as [60]:

P(sc)
BH−Fiber =

[
K−1
maxdl

]
Psw +

(
Cs

Cmax

)
Pul, (3.38)

where Cs denotes the total traffic of the small cells. Hence, P(sc)
BH can also be defined for

the case where all the traffic from the small cells goes to the core network via internet

without using aggregation node at macrocell as [59]:

P(sc)
BH =

[
(M−1)Cs

4Gbps

][
Prouter

40
+POLT

]
+(M−1)PONU, (3.39)

where Prouter represents the power consumption of the edge router, POLT denotes the power
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consumption of the OLT and PONU represents power consumption of ONU. The total

power consumption of two-tier HetNets can be written as:

Ptotal = ε0

M

∑
m=1

Pmax
m +M×PC +Pmax

BH , (3.40)

where Pmax
m is the maximum transmission power of network m, Pm

C is the circuit power

of network m and Pmax
BH is the maximum power consumed by the backhaul to forward

the collected traffic (i.e., when all networks are operating at their maximum transmission

power) to the core network. Now, we can define the Backhaul Energy Efficiency (BEE)

as follow:

BEE =

N
∑

n=1
Rn

ε0
K
∑

k=1

N
∑

n=1

M
∑

m=1
σ
(m)
k,n p(m)

k,n +M×PC +PBH

(3.41)

Similalrly, we can also define Energy Efficiency (EE) as a special case of (3.41) when no

backhaul power consumption is assumed, i.e., PBH = 0.

3.6.2.2 Problem Formulation

Our goal is to simultaneously optimise throughput and BEE with fairness and QoS

guarantees while ensuring that the interference power does not exceed their specific thresh-

olds. The joint optimisation problem to maximise the throughput and BEE is equivalent

to maximising the sum rate and minimising the total power consumption. In this Section,

we investigate the Throughput-BEE tradeoff in downlink transmission scheme of two-

tier HetNets as a multi-objective optimization problem (MOP) by normalising the two
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conflicting objective functions to ensure a consistent comparison as below:

(P1) max
p,σ

(
N
∑

n=1
uω (Rn)−umin

ω

)
(umax

ω −umin
ω )

and max
p,σ

−P
Ptotal

,
(3.42)

s.t. C1 :
K
∑

k=1

N
∑

n=1
σ
(m)
k,n p(m)

k,n ≤ Pmax
m ,∀m,

C2 : Rn ≥ Rmin
n , ∀n.

C3 : p(m)
k,n ≥ 0, ∀m, ∀n,∀k,

C4 :
Nm
∑

n=1
σ
(m)
k,n ≤ 1, ∀m,k,

C5 : σ
(m)
k,n ∈ [0,1] , ∀m, ∀n,∀k,

where umax
ω are the maximum achievable utility value of (3.34) for a given value of ω

under the constraints C1-C5. umin
ω is the minimum achievable utility value computed by

setting Rn = δ in (3.34) for a given value of ω where δ > 0 is a predefined sufficiently

small value. Pmax
m is the maximum transmission power of network m and Rmin

n is the

minimum rate requirement for each user n. C1 is the maximum transmission power of

each network m which should not exceed Pmax
m . C2 is the minimum rate requirement for

each user which is applicable only if user n is admitted, i.e., σ
(m)
k,n = 1. C3 ensures that the

power p(m)
k,n should be positive. C4 and C5 indicate that σ

(m)
k,n is a binary variable such that

each subcarrier k can be exclusively assigned to one user within network m. For better

tractability, we relax the constraint C6 by allowing time sharing.
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The MOP defined in (3.42) can be transformed into a single objective optimization

problem (SOP) by applying the weighted sum method [63] as follow:

(P2) max
p,σ

α

N
∑

n=1
uω (Rn)−umin

ω

umax
ω −umin

ω

− (1−α)
P

Ptotal
, (3.43)

s.t. C1−C5,

where α ∈ [0,1] is the Throughput-BEE tradeoff biasing factor.

3.6.3 Proposed Distributed Solution

In this Section, we propose a distributed solution to the problem (P2) for different

values of w which can collectively form the Pareto optimal set. In other words, by tuning

α , we investigate the Throughput-BEE tradeoff for a given value of ω .

Firstly for the case of ω > 0, we define a vector x = [x1,x2, ...,xn]
T and rewrite (P2) as

(P3) max
x,p,σ

α

M
∑

m=1
uω (xn)−umin

ω

umax
ω −umin

ω

− (1−α)
P

Ptotal
, (3.44)

s.t. C1−C5 ,

C6 : xn ≤ Rn, ∀m.

where p = {p(1), p(2), · · · , p(M)} and σ = {σ (1),σ (2), · · · ,σ (M)}. It is worthwhile to men-

tion that p(1), p(2) and p(M) are K×N power allocation indication matrix. The size of

σ (1),σ (2) and σ (M) are also same as p(1), p(2) and p(M). uω (·), is a strictly increasing

function, hence, for an optimal solution, xn must be equal to Rn.

We then utilize Hierarchical Decomposition method [64] to find an optimal solution
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to (P3). To characterize the duality gap between the primal and dual solutions, the time-

sharing condition is first defined in [65] and it is proved that if it holds, the duality gap

is zero even if the original optimization problem is not convex. In practical multicarrier

systems with a large number of subcarriers, channel conditions in adjacent subcarriers

are often similar. In such case, the time-sharing condition is approximately satisfied, and

accordingly the duality gap is nearly zero [65]. We define the partial Lagrangian function

of primal problem in (P3) formed by dualising the constraint C6:

L(p,σ ,x,λ ) = α

N
∑

n=1
uω (xn)−umin

ω

umax
ω −umin

ω

− (1−α) P
Ptotal

+
N
∑

n=1
λn (Rn− xn)

=

α

N
∑

n=1
uω (xn)−umin

ω

umax
ω −umin

ω

−
N
∑

n=1
λnxn

+

(
N
∑

n=1
λnRn− (1−α) P

Ptotal

)
,

(3.45)

where λ = [λ1,λ2, ...,λN ]
T is the dual vector for constraint C6 corresponding to each user.

Then the dual function is

g(λ ) =


max
x,p,σ

L(p,σ ,x,λ ) ,

s.t. C1−C5 .

(3.46)

Obviously, the dual function in (3.46) can be separated into two maximisation subprob-

lems as shown in (3.47) and (3.48) respectively.

g1 (λ ) = max
x

f (x) = α

N
∑

n=1
uω (xn)−umin

ω

umax
ω −umin

ω

−
N

∑
n=1

λnxn, (3.47)

g2 (λ ) =


max
p,σ

N
∑

n=1
λnRn− (1−α) P

Ptotal
,

s.t. C1−C5 .

(3.48)
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3.6.3.1 Solution to subproblem g1 (λ ):

In (3.47), as uω (xn) is a concave function of xn and hence, f (x) is also a concave

function of xn. Therefore, the optimality of (3.47) can be solved by taking the derivative

of f (x) with respect to xn and setting it equal to zero as given by

x∗n =
[

ω

√
α

λn (umax
ω −umin

ω )

]+
,∀n, (3.49)

where (y)+ ∆
= max(0,y) and x∗n is the value of xn which maximises (3.47).

The corresponding dual problem is

min
λ≥0

g1 (λ ) . (3.50)

The dual problem (3.50) can be solved using subgradient method [65]. The dual vector λ

can be updated as follow:

λn(i+1) = [λn(i)− s0 (Rn− xn)]
+ ,∀n, (3.51)

where s0 is the positive step size.

3.6.3.2 Solution to subproblem g2 (λ ):

The subproblem (3.48) can be solved using Lagrangian dual decomposition method [64].

By relaxing the constraints C1-C2, the Lagrangian function becomes

T (p,σ ,µ,η) =
N

∑
n=1

λnRn− (1−α)
P

Ptotal
+

M

∑
m=1

µm

(
Pmax

m −
K

∑
k=1

N

∑
n=1

σ
(m)
k,n p(m)

k,n

)
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+
N

∑
n=1

ηn

(
Rn−Rmin

n

)

T (p,σ ,µ,η) =
K

∑
k=1

[
M

∑
m=1

N

∑
n=1

((
λn +ηn

)
r(m)

k,n −
((1−α)ε0

Ptotal

)
× p(m)

k,n

)
σ
(m)
k,n

]
+

M

∑
m=1

µmPmax
m

−(1−α)(PC +PBH)

Ptotal
−

N

∑
n=1

ηnRmin
n ,

(3.52)

where µ = [µ1,µ2, ...,µM]T and η = [η1,η2, ...,ηN ]
T are the dual vectors corresponding

to the constraints C1 and C2. We further observe that the dual function

h(µ,η) =


max
p,σ

T (p,σ ,µ,η) ,

s.t. C3, C4 and C5

(3.53)

can be decoupled into K subproblems, which can be independently solved for each sub-

carrier k. The subproblem corresponding to subcarrier k at given (µ,η) is

Tk (µ,η) = max
p(:,k),σ(:,k)

[
M

∑
m=1

N

∑
n=1

((
λn +ηn

)
r(m)

k,n −
((1−α)ε0

Ptotal
+µm

)
p(m)

k,n

)
σ
(m)
k,n

]
,

subject to C3−C5 , (3.54)

where p(:,k) and σ(:,k) are the matrix of p(m)
k,n and σ

(m)
k,n at subcarrier k respectively.

Due to the constraints C4 and C5, the subcarrier allocation indicator σ(:,k) is an all-zero

matrix except for one binary non-zero entry. Hence, for a certain subcarrier k, we can
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calculate C(m)
k,n for each user n associated with network m as

C(m)
k,n =


max
p(:,k)

(
(λn +ηn)r

(m)
k,n −X p(m)

k,n

)
,

s.t. p(m)
k,n ≥ 0, ∀m,∀k.

(3.55)

where X =
(
(1−α)ε0

Ptotal
+µm

)
. Therefore, we calculate the optimal value of (3.55) at given

λ ,µ and η to determine the subcarrier assignment indicator for subcarrier k as

σ
(m)
k,n =


1, if (n∗,m∗) = argmax

n,m
C(m)

k,n ,∀k.

0, otherwise.

(3.56)

Then, by using the KKT conditions for a fixed set of Lagrange multipliers, an optimal

power allocation to user n associated with network m on subcarrier k is obtained as

p(m)
k,n =

 (λn +ηn)Bk(
(1−α)ε0

Ptotal
+µm

)
ln2
− 1

γ
(m)
k,n

+. (3.57)

Once all K subproblems in (3.54) are solved, h(µ,η) is derived by using (3.52) and (3.54)

at given (µ,η). The subproblem in (3.48) can be solved via the dual problem as given

below

min
µ≥0,η≥0

h(µ,η) . (3.58)

In order to solve the dual problem (3.58), the subgradient method can be used to update

the dual vectors µ and η in each iteration. The subgradient of h(µ,η) at the i+1th
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iteration are given by

µm(i+1) =

[
µm(i)− s1

(
Pmax

m −
N

∑
n=1

K

∑
k=1

p(m)
k,n

)]+
,∀m, (3.59)

ηn(i+1) =
[
ηn(i)− s2

(
Rn−Rmin

n

)]+
,∀n, (3.60)

where s j, j ∈ {1,2} are the positive step sizes.

Finally for the case of ω = 0, i.e., uω (Rn) = Rn, (P2) can be solved directly using dual

decomposition method (similar to the solution to subproblem g2(λ )). The optimal power

allocation to user n associated with network m on subcarrier k is given by

p(m)
k,n =


(

α

umax
0 −umin

0
+ηn

)
Bk(

(1−α)ε0
Ptotal

+µm

)
ln2

− 1

γ
(m)
k,n


+

, (3.61)

Similarly, for a certain subcarrier k, we can calculate D(m)
k,n for each user n associated

with network m as

D(m)
k,n =


max
p(:,k)

((
α

umax
0 −umin

0
+ηm

)
r(m)

k,n −X p(m)
k,n

)
s.t. p(m)

k,n ≥ 0, ∀m,∀n.

(3.62)

The subcarrier assignment indicator for subcarrier k as

σ
(m)
k,n =


1, if (n∗,m∗) = argmax

n,m
D(m)

k,n ,

0, otherwise.

(3.63)
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3.6.4 Simulation Results

In the simulations, we consider a two-tier HetNets consisting of a macrocell overlaid

with M−1 small cells with N users being randomly distributed with K subcarriers. More

details about the simulation parameters can be found in [59] [60] and are mentioned in

Table 3.I.

TABLE 3.I: Simulation Parameters.

Parameter Value Parameter Value
K 256 M 5
N 8 B [MHz] 3

PC [W] 0.4 ε0 38%
Pmax

macro[W] 40 Pmax
small[W] 0.2

N0[dBM/Hz] -174 Rmacro[m] 500
Rsmall[m] 100 Log-Normal Shadowing N(0,σ)

std dev σ [dB] 8 Rmin
n [Kbps] 500

maxdl 24 Pmax
sw [W] 300

Pdl [W] 1 Pul [W] 2
Cmax [Gbps] 10 β 0.9
Cmax

sw [Gbps] 24 Prouter [kW] 4
PONU [W] 4.69 POLT [W] 100

Fig. 3.11 investigates the impact of weighting coefficient α on the achievable EE and

throughput for various values of ω . At α = 0, the proposed MOP is transformed into min-

imising the total consumption power whereas at α = 1 it is transformed into maximising

throughput. As it can be seen from Fig. 3.11, achievable EE and throughput can be varied

by adjusting the value of ω . For example, at α = 0 and ω = 0, an achievable throughput

and EE are 1.358 b/s/Hz and 2.037 Mb/J, respectively whereas at α = 0 and ω = 1, an

achievable Throughput and EE are 1.311 b/s/Hz and 1.967 Mb/J, respectively. We fur-

ther observe that an achievable EE gradually increases with α to an optimal EE, and then

afterwards starts decreasing with an increase in α . Similarly, an achievable SE always
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FIGURE 3.11: EE and SE versus α for different values of ω .

increases with an increase in α and on the other hand, an achievable SE always decreases

with an increase in ω . One of the main observation is that an optimal EE decreases with

an increase in ω , due to the fact that the higher level of fairness is achieved at the cost

of degradation in achievable EE. It is also worthwhile to mention that an optimal EE at

smaller value of ω results in higher achievable Throughput. Nevertheless, the proposed

MOP approach achieves the entire Pareto Frontier or complete Pareto optimal set of the

proposed problem with different rate fairness levels ω and weighting coefficient α .

Fig. 3.12 shows the impact of the weighting coefficient α on the normalised BEE over

the total coverage area for various values of rate fairness level ω . In Fig. 3.12, the BEE
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FIGURE 3.12: Area BEE versus α for various values of ω .

comparison in two-tier HetNets is shown for the two different cases of backhauling tech-

nologies. In case 1, an optical fiber is used as a technology to backhaul traffic from a

macrocell to the aggregation switch (can be one or more) and all the traffic from M− 1

small cells are backhauled via Internet without going through the aggregation switch at

the macrocell. In case 2, an optical fiber is used as a technology to backhaul traffic from

a macrocell to the aggregation switch (one or more) and all the traffic from K− 1 small

cells is collected at the sink node of the macrocell and backhauled from macrocell to the

core network using an optical fiber link. One of the intuition from the figure is that BEE

first increases with weighting coefficient α until an optimal value of α and afterwards it

starts decreasing with weighting coefficient α . At the lower values of ω , an optimal BEE
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FIGURE 3.13: Total Area Power Consumption versus α for various values of ω .

is achieved at lower values of α whereas an optimal BEE is achieved at higher values of

α for the case of the higher values of ω .

Fig. 3.13 shows the impact of two backhauling technologies on the total area power

consumption of two-tier HetNets versus weighting coefficient α for various values of

rate fairness level ω . The total area power consumption increases with an increase in α

whereas it decreases with an increase in ω . It is quite obvious from the figure that at a

given value of ω , the total area power consumption in case 1 is always less than case 2

at the expense of degradation in area BEE as shown in Fig 3.12. At the values of ω = 0

and α = 1, the total area power consumption in two-tier HetNets without backhaul power

consumption is 0.05 kW/km2 as compared to 0.092 kW/km2 and 0.125 kW/km2 for case
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1 and case 2, respectively. This affirms the observation that the impact of backhaul power

consumption in two-tier HetNets is larger than to the case where no backhaul power

consumption is assumed irrespective of the used backhauling technology. By dynamically

choosing a higher value of ω , the total area power consumption can be reduced for all

values of α irrespective of the used backhauling technology.

3.7 Summary

This chapter provides a detailed description of the proposed maximising EE optimisa-

tion schemes in multi-tier HetNets. Firstly, the EE maximisation problem of an uplink

of a two-tier OFDMA-based HetNets with maximum transmit power and minimum-rate

constraints using adaptive channel and power allocation is addressed in Section 3.4. The

EE-optimization problems for MU-MC scenarios are formulated and solved using KKT

conditions. It is further analysed how the maximum transmit power and minimum-rate

requirement constraint affects the EE. Simulation results indicate that the pico-BS-first

user association combined with SNR-based rate proportional mechanism can enhance the

EE considerably.

Secondly, a joint optimization problem is formulated for mode selection, subcarrier

assignment and power allocation in a three-tier hierarchical HetNet consisting of an un-

derlaid D2D communication in coverage of both macrocell and pico BS’s as mentioned

in Section 3.5. The optimization problem is such that each user tries to maximize its own

ASE subject to a required AEE level and a maximum transmit power constraint. The

proposed objective function takes into account the tradeoff between ASE and AEE, and
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an iterative algorithm is proposed to solve the problem. The simulation results show that

when the required AEE level is set to 93% of ηmax, the proposed scheme can reduce the

tradeoff optimal transmit power upto 48.51% and 1404%, when compared to the tradi-

tional HetNets and macrocell only, respectively.

Finally, the concept of MOP is utilised to jointly optimise the throughput and BEE

tradeoff in two-tier HetNets with QoS and fairness guarantee constraints is outlined in

Section 3.6. The complete Pareto optimal set is obtained by employing the weighted

sum method to transform our proposed MOP into an SOP which can be solved using

Lagrangian Dual Decomposition (LDD) method. The impact of rate fairness level ω and

weighting coefficient α on achievable throughput and EE is investigated with or without

backhaul power consumption. The network operators can have more flexibility to satisfy

the user’s QoS requirements along with reducing their total area power consumption by

dynamically tuning the weighting coefficient α and rate fairness level ω .



Chapter 4

Joint Optimisation of Energy and

Spectral Efficiency Tradeoff in 5G

Heterogeneous Networks Under QoS

Constraints1

In Chapters 2 and 3, we have emphasised the importance of EE and SE in the design

of the future generation networks. The focus of Chapter 2 was to maximise the system

throughput of the two-tier HetNets using the evolutionary game theory whereas in Chapter

3 the energy efficient radio resource management has been outlined for D2D enabled

multi-tier HetNets. In comparison to the previous works, we extend our system model

to incorporate the joint energy and spectral efficient radio resource management in multi-

tier HetNets subject to the minimum QoS requirement, maximum transmission power and

interference threshold constraints. The multi-objective optimisation methods have gained

a lot of interest recently to optimise the multiple objectives using scalar methods. In this

context, we formulate a multi-objective optimisation problem (MOP) to jointly optimise

1The work presented in this chapter have been published in Special Issue on Ultra Dense Cellular Net-
works of IEEE ACCESS Journal and a shorter version was accepted in IEEE International Conference on
Communications (ICC), held at London, UK in June 2015.
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the two conflicting objectives such as EE and SE in multi-tier HetNets to address the joint

energy and spectral efficient radio resource allocation issues.

A joint energy efficiency (EE) and spectrum efficiency (SE) trade-off analysis is pro-

posed as a MOP in the uplink of multi-user multi-carrier two-tier Orthogonal Frequency

Division Multiplexing Access (OFDMA) Heterogeneous Networks subject to users’ max-

imum transmission power and minimum-rate constraints. The proposed MOP is modelled

such that the network providers can dynamically tune the trade-off parameters to switch

between different communication scenarios with diverse design requirements. In order

to find its Pareto optimal solution, the MOP is transformed, by using a weighted sum

method, into a single-objective optimisation problem (SOP), which itself can further be

transformed from a fractional form, by exploiting fractional programming, into a subtrac-

tive form. Since the formulated SOP is hard to solve due to the combinatorial channel

allocation indicators, the SOP is reformulated into a better tractable problem by relaxing

the combinatorial indicators using the idea of time sharing. It is then proved that this

reformulated SOP is strictly quasi-concave with respect to the transmission power and

subcarrier allocation indicator. An iterative two-layer distributed framework is then pro-

posed to achieve an upper bound Pareto optimal solution of the original proposed MOP.

Numerical simulations demonstrate the effectiveness of our proposed two-layer frame-

work achieving an upper bound Pareto-optimal solution, which is very close to an op-

timal solution, with fast convergence, lower and acceptable polynomial complexity and

balanced EE-SE tradeoff.
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4.1 Related Work

The heterogeneous networks (HetNets) include low-power overlaid base stations ’BSs’(or

small cells, e.g., microcells, picocells, and femtocells) within the macrocell geographical

area, deployed by either users or network operators who share the same spectrum with the

macrocells [4, 41, 66]. The purpose of HetNets is to allow the user equipments (UEs) to

access small cells, even though the UEs are within the coverage of macrocell [5]. HetNets

aim at achieving high data rates with low powers while satisfying the users’ quality-of-

service constraints (in terms of minimum-rate requirements) by offloading the users with

low signal-to-interference-plus-noise-ratios (SINR) from macrocells to the pico BSs. The

deployment of small cells has a great potential to improve the spatial reuse of radio re-

sources and also to enhance the transmit power efficiency [6], and in turn, the energy

efficiency (EE) of the network. EE is, in fact, one of the key performance indicators

for the next generation wireless communications systems [67]. The motivation behind

considering EE as the performance metric arises due to the current energy cost payable

by operators for running their access networks as a significant factor of their operational

expenditures (OPEX) [68]. It is however, known that most of EE gains are achieved with

sacrifices in spectrum efficiency (SE) [20].

In this trend, the energy-efficient resource allocation technique is proposed in the up-

link transmission scheme of traditional Orthogonal Frequency Division Multiple Access

(OFDMA) systems [35]. This result is later generalized to maximize the uplink EE in
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frequency selective channels in [36]. Similarly, a low complexity energy-efficient re-

source allocation in an uplink transmission scheme considering frequency-selective chan-

nels for multi-user networks, with and without fairness considerations, is studied in [69].

A energy-efficient resource allocation scheme for OFDMA systems under a fairness guar-

antee factor among users is proposed in [70], wherein, an optimisation problem is formu-

lated as an integer fractional programming problem which is further simplified into an

integer linear programming (ILP) form using an iterative fractional method. Further ad-

vances on green networking, which focus on the means to reduce the energy consumption

in traditional wireless networks, can be accessed in [71] and [72]. Few of the recent works

in the literature studying the characteristics of EE and SE analysis in traditional OFDMA

systems is investigated for single user case in [73, 74], and for multi user case in [75–77].

The impact of the number of deployed femtocells in a macrocell area, the average number

of users, and the number of open channels in a femtocell using the Markov chain model

on the EE and SE of two-tier femtocell networks is investigated in [78].

Most of the existing works in the literature for resource allocation in HetNets have

focused on maximising either EE (in terms of Utopia EE for each individual user in [79,

80], and in terms of the overall system EE in [80–82]) or SE [83]. In this trend, the

EE-maximisation problem in an uplink of HetNets is analytically solved for a single user

case under the minimum target rate and maximum transmission power constraints in [84].

Further, a distributed joint bandwidth and power allocation scheme to optimise EE for a

set of users within the heterogeneous wireless networks is proposed in [85]. A joint BS

association and power control scheme which is intent to satisfy the user’s targeted SINR
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for the uplink of a large-scale HetNet is proposed in [86]. In [87], a distributed non-

cooperative game was proposed to improve the system EE in the downlink transmission

scheme of HetNets. The BSs autonomously choose their optimal transmission strategies

while balancing the load among themselves and satisfying the users’ quality-of-service

(QoS) requirements [87]. A distributed novel cooperative game to establish cooperation

among macrocell and femtocell to quantify the user’s utility in terms of throughput and

delay was formulated in [88]. Afterwards, a coalition formation algorithm was proposed

to solve the formulated cooperative game so that it achieves a stable partition with the

help of a recursive core [88].

None of the previous works in the literature have considered maximising overall sys-

tem EE and SE of HetNets simultaneously, while imposing a threshold on the cross-tier

interference to protect the macrocell user. Considering that simply maximising either EE

or SE does not utilise the resources efficiently, there is an increasing attention in fifth

generation (5G) networks to jointly optimise the two conflicting objectives, i.e., EE and

SE. It should be noted that the user lying within the coverage area of the heterogeneous

environment can efficiently utilise its transmission power for its allocated bandwidth in

order to either improve its achievable EE or SE. One of the key performance indicators in

the 5G networks is to reduce the EE-SE tradeoff region which can be enabled by HetNets.

According to the best of our knowledge, there is no work in the literature focusing

on jointly optimising EE and SE in an uplink of multi-user two-tier HetNets consider-

ing the cross-tier interference limitations and providing users’ QoS in terms of minimum

rate requirements and maximum transmission power constraints. In this chapter, an MOP



Chapter 4. Joint Optimisation of Energy and Spectral Efficiency Tradeoff in 5G
Heterogeneous Networks Under QoS Constraints 110

framework for joint power allocation and subcarrier assignment for EE-SE tradeoff under

maximum transmission power constraints is formulated when satisfying a rate QoS re-

quirement in two-tier HetNets. The proposed multi-objective framework jointly performs

power allocation and subcarrier assignment while optimising the two conflicting objec-

tives, namely, EE and SE. The formulated MOP is transformed into a single-objective

optimisation problem (SOP) using a weighted sum method [ref]. Proving that the formu-

lated SOP is strictly quasi-concave with respect to the transmit power, a unique optimal

solution is derived. By exploiting the fractional programming concepts, the SOP problem

can be transformed into an equivalent subtractive form which is tractable in nature. Then,

an iterative two-layer solution combining Dinkelbach type method and Lagrangian dual

decomposition approach is proposed to solve the formulated SOP.

4.2 Chapter Organisation

The remainder of the chapter is organised as follows. In Section 4.3 describes the sys-

tem model and define the concept of EE and SE. In Section 4.4, the problem of jointly

optimising EE and SE is formulated in an uplink of two-tier HetNets as an MOP. In Sec-

tion 4.5, a two-layer solution is proposed to obtain the optimal allocation strategy to solve

the formulated MOP. Numerical results are presented to demonstrate the effectiveness of

the proposed approach in Section 4.6. Section 4.7 concludes the chapter.

4.3 System Model

In this work, an uplink two-tier HetNets is considered consisting of M networks (i.e.,

one macrocell (m0), overlaid with M−1 pico BSs (m1, · · · ,mM−1)), with a total number
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of users N and a total number of subacrriers K. It is assumed that the M− 1 pico BSs

are deployed around the edge of the reference macrocell m0. Let define the index set of

all subcarriers as K = {1, · · · ,K}, the set of all users as N = {1, · · · ,N} and the set

of all networks as M = {m0,m1, · · · ,mM−1}. The total number of available networks in

two-tier HetNets can be calculated as follows [89]:

M = 1+β

(
(Rm0 +Ri)

2− (Rm0−Ri)
2

R2
i

)
, (4.1)

where Rm0 and Ri represent the radius of macrocell and pico BS, respectively. When

β = 0, it is the case of macrocell only, and therefore, M = 1, whereas in the case of

HetNets, 0 < β ≤ 1 which indicates the number of pico BSs per macrocell.

Each network m∈M has its own bandwidth Bm equally divided among its subcarriers2

Km, where Km = {1, · · · ,Km} represent the set of subcarriers in network m. The pico BS

is connected to the macrocell via a high capacity wired backhaul. It is further assumed that

the channel state information (CSI) corresponding to each subcarrier is perfectly known

to the UE transmitters.

To maintain the QoS requirements, each user has a minimum-rate requirement con-

straint. It is assumed that the required minimum-rate level of all users are identical and

is equal to Rmin. Assume σ
(m0)
k,n and σ

(mi)
k,n denoting the subcarrier allocation indices for

macrocell m0 and pico BS mi, respectively. Particularly, when subcarrier k ∈Kmi is al-

located to user n, then σ
(mi)
k,n = 1, and otherwise, σ

(mi)
k,n = 0. Similarly, if the subcarrier

2It is worth to mention that the partition of subcarriers into the sets Km0 and Kmi , i = 1,2, · · · ,M−
1 is not predefined in the present formulation. The optimisation problem in (4.13a)-(4.13f) include an
optimisation over Km0 and Kmi , i = 1,2, · · · ,M−1 as well.
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k ∈Km0 is allocated to user n, σ
(m0)
k,n = 1, and otherwise, σ

(m0)
k,n = 0. The instantaneous

data rate achieved on each subcarrier k by user n for macrocell m0 and pico BS mi can be

written as follows:

r(m0)
k,n = σ

(m0)
k,n Bk log2

(
1+ γ

(m0)
k,n × p(m0)

k,n

)
(4.2a)

r(mi)
k,n = σ

(mi)
k,n Bk log2

(
1+ γ

(mi)
k,n × p(mi)

k,n

)
,∀i ∈ {1,2, · · · ,M−1} (4.2b)

where Bk is the subcarrier bandwidth spacing assumed to be fixed in different networks.

Here, p(mi)
k,n and p(m0)

k,n indicate the power allocated to the subcarrier k for user n in the

pico BS mi and macrocell m0, respectively. Similarly, the rate of user n using subcarrier k

choosing macrocell or pico BS mi is represented by r(m0)
k,n and r(mi)

k,n , respectively. γ
(m0)
k,n and

γ
(mi)
k,n represent the signal-to-noise-ratio (SNR) of user n on subcarrier k in the macrocell

m0 and pico BS mi, respectively, and are defined as follows:

γ
(m0)
k,n =

|h(m0)
k,n |

2BkN0 + ∑
m∈M
m 6=m0

∑
n∈Nm

σ
(m)
k,n p(m)

k,n gmm0
k,n

PL(m0)
n

, (4.3a)

γ
(mi)
k,n =

|h(mi)
k,n |

2(
BkN0 + ∑

n∈Nm0

σ
(m0)
k,n p(m0)

k,n gm0mi
k,n

)
PL(mi)

n

,∀i ∈ {1,2, · · · ,M−1} (4.3b)

where h(m0)
k,n and h(mi)

k,n represent the channel amplitude gains for user n on subcarrier k

from macrocell m0 and pico BS mi, respectively. Nm and Nm0 represent the set of users

associated with network m and macrocell m0, respectively. The distance-based path loss

in macrocell m0 and pico BS mi are denoted by PL(m0)
n and PL(mi)

n , respectively. Note that
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in (4.3a) and (4.3b), the co-tier interference from other pico BSs or macrocells is assumed

to be a part of thermal noise N0 due to the severe penetration loss and low transmission

power of pico BSs as mentioned in [83] and [90].

The focus of this work is to investigate the trend of EE-SE tradeoff in the two-tier

HetNets consisting of a macrocell m0 overlaid with a number of pico BSs mi, ∀i ∈

{1,2, · · · ,M− 1}, the co-tier interference caused from the neighbouring macrocells or

pico BSs can be easily considered and will appear as a constant term in (4.3a) and (4.3b).

In order to protect the macrocell users QoS, we implement the cross-tier interference

protection by imposing the maximum cross-tier interference threshold suffered by macro

BS. Let Ith
k denote the maximum threshold interference level on subcarrier k for the macro

BS, we have,

∑
m∈M
m 6=m0

∑
n∈Nm

σ̃
(m)
k,n p(m)

k,n∗m
g(m)

k,n∗m
≤ Ith

k ,∀k, (4.4)

where n∗m = argmaxn g(m)
k,n ,∀n ∈ Nm using the concept of the reference user [91]. The

aggregate rate for the nth user in macrocell m0 and pico BS mi are shown as follows:

r(m0)
n = ∑

k∈Km0

r(m0)
k,n ,∀n ∈N (4.5a)

r(mi)
n = ∑

k∈Kmi

r(mi)
k,n ,∀n ∈N ,∀i ∈ {1,2, · · · ,M−1} (4.5b)

The overall rate of HetNets, R is composed of two components; The first component

is the sum rate of the users choosing macrocell and the second one is the sum rate of the
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users choosing pico BS, formulated as

R = ∑
n∈Nm0

r(m0)
n +

M−1

∑
i=1

 ∑
n∈Nmi

r(mi)
n

 , (4.6)

where Nm0 and Nmi denote the set of users associated with macrocell m0 and pico BS mi,

respectively.

In order to avoid frequent vertical handoffs in HetNets, user association rules are de-

fined for wireless transmissions [41]. In traditional homogeneous cellular networks, the

user association is based on the received signal strength. Unique association of users with

the macrocell or pico BS is assumed [41]. Therefore, a feasible subcarrier assignment

index matrix Cm is given by:

Cm ∈Cm =

{(
σ
(m)
k,n

)K,Nm

k=1,n=1

∣∣∣∣∣ ∑
n∈N

σ
(m)
k,n ≤ 1,∀k ∈Km;σ

(m)
k,n ∈ {0,1} , ∀n ∈Nm,∀k ∈Km

}
,

(4.7)

For simplicity, it is assumed that a set of available networks in two-tier HetNets are

known. In practice, the transmission power available at user n is limited to a maximum

threshold, i.e., Pmax
n , which can be formulated as:

Pn ≤ Pmax
n ,∀n ∈ {1,2, · · · ,N} (4.8a)

Pn = ∑
k∈Km

p(m)
k,n ,∀m ∈ {m0,m1,m2, · · · ,mM−1} (4.8b)

In an uplink transmission scenario, multiple users transmit data towards a BS so each
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communication link between user and BS introduces an individual circuit power [9].

Since the circuit power is related to the UE handsets, the circuit power in macrocell

and pico BSs are denoted by P(m0)
C and P(mi)

C , respectively such that P(m0)
C = P(mi)

C = PC.

Hence, the overall power consumption in an uplink of HetNets is modelled as:

P = ε0PT +N×PC, (4.9a)

PT = ∑
m∈M

∑
k∈Km

∑
n∈N

σ
(m)
k,n p(m)

k,n , (4.9b)

where ε0 is the inverse of power amplifier efficiency.

The EE (ηEE) is defined as the amount of data transferred per unit energy consumed

by the system (usually measured in (b/J) and is given by:

ηEE =
R
P
=

∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

ε0

(
∑

m∈M
∑

k∈Km

∑
n∈N

σ
(m)
k,n p(m)

k,n

)
+N×PC

[
bits/Joule

]
, (4.10)

In (4.10), r(m)
k,n is concave with respect to the transmission power PT because PT is a non

decreasing linear function of p(m)
k,n . Since, the ηEE is strictly quasi-concave with respect

to transmission power PT, there exists one and only one optimal solution that maximises

ηEE, denoted by P∗ηEE
. ηEE strictly increases with PT ∈ [0,P∗ηEE

] while it strictly decreases

with PT ∈ [P∗ηEE
,∞). SE (ηSE), on the other hand, is a measure that reflects the efficient

utilization of the available spectrum in terms of throughput and is commonly defined as

the amount of throughput that the BS can transmit over a given bandwidth, expressed in

b/s/Hz. ηSE is a strictly increasing function of transmission power PT, and is concave with
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PT. The SE (ηSE) is defined as:

ηSE =

∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

B
=

∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

∑
k∈K

Bk

[
bits/s/Hz

]
, (4.11)

First of all, in order to give readers an intuitive insight into our problem to jointly opti-

mise EE and SE, Fig. 4.1 shows achievable EE and SE as a function of transmission power

PT with N = 10, K = 10, Bk = 30 kHz, PC = 0.1 W and Pmax = 0.5 W based on (4.10)

and (4.11), respectively. From Fig. 4.1, it is quite obvious that in most of the cases, it is

not usually possible to optimise both EE and SE simultaneously. In details, EE and SE

both increase with transmission power PT until the energy-efficient transmission power

PT = P∗ηEE
. However, when PT > P∗ηEE

and afterwards, EE decreases with an increase in

SE as shown in Fig. 4.1. The corresponding optimal transmit power (highlighted by red

circles in Fig. 4.1) to maximise EE and SE individually without any QoS requirements

are obtained by solving (4.10) and (4.11) using standard convex optimisation methods.

To visualise the effect of QoS requirements on the optimisation of EE and SE, Fig. 4.1

depicts the corresponding optimal transmit power which maximises EE and SE individ-

ually with the QoS requirement set at 15,16,18 and 20 b/s/Hz as indicated by series of

blue circles. It is quite obvious that a particular QoS requirement constraint can effect the

existence of power region which allows all the constraints to be met simultaneously. Sec-

ondly, due to the Shannon Hartley theorem, increasing the transmit bandwidth reduces

the transmit power for a same target rate requirement. For achieving a fixed minimum



Chapter 4. Joint Optimisation of Energy and Spectral Efficiency Tradeoff in 5G
Heterogeneous Networks Under QoS Constraints 117

rate, as the bandwidth increases, EE increases whereas SE decreases. Finally, the max-

imisation of EE produces a different optimal point if the user can access subcarriers with

better channel gains resulting in improving its utility. This motivates us to dynamically

tune the EE and SE trade-off curve dependent on the available resources, in terms of

bandwidth and the transmission power for next generation networks to achieve two-fold

benefits in the form of satisfactory SE and saving as much transmission power as possible.

It is also worthwhile to mention that in most of the power regions, the power allocation

strategies to increase these metrics are conflicting approaches. This motivates the work

in the following Section which is to jointly optimise EE and SE using a multi-objective

optimisation problem.
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FIGURE 4.1: ηEE-ηSE tradeoff curve as a function of transmission power PT.
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4.4 Problem Formulation of EE-SE Tradeoff

Our goal is to optimise EE and SE simultaneously. We start by formulating the joint

EE and SE trade-off with the minimum throughput and maximum transmission power

constraints in an uplink transmission scheme of Two-Tier HetNets as a multi-objective

optimisation approach. The MOP can be formulated as follows:

max
σ
(m)
k,n ,p(m)

k,n

ηEE and max
σ
(m)
k,n ,p(m)

k,n

ηSE (4.12)

To solve this MOP, the concept of Pareto optimality [92] is utilised. The EE-SE tradeoff

is usually illustrated as a two dimensional curve consisting of set of all feasible (ηSE,ηEE)

pairs.

Definition 1: A point p0 ∈PS, where PS = {PT
∣∣Pmin ≤ PT ≤ Pmax

n } is Pareto efficient if

and only if there does not exist any other point p1 ∈PS such that ηEE (p1) ≥ ηEE (p0),

ηSE (p1) ≥ ηSE (p0) and at least one ηEE or ηSE has been strictly improved. In simple

terms, a point is Pareto efficient if there is no other point that can improve both ηEE and

ηSE simultaneously. The set of all Pareto efficient points is called the Pareto Frontier

or the complete Pareto optimal set. The Pareto Frontier illustrates an optimal tradeoff

between ηSE and ηEE such that it provides the maximum value of ηSE (ηEE) for a given

ηEE (ηSE). In particular, the weighted sum method can provide the complete Pareto opti-

mal set of the considered problem by solving the MOP and provide the necessary condi-

tion for Pareto optimality.

In MOP, the process of ordering the objectives can be done either as priori or posteriori
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of executing the optimisation algorithm. We combine the maximisation of EE and SE

by choosing appropriate weights decided a priori. Since the bandwidth is larger than

the transmission power so a simple summation of EE and SE will tend to focus on the

optimisation of EE. In order to maintain the balance between EE and SE, the optimisation

problem is transformed using the normalised factors θEE and θSE such that EE and SE are

in the similar scale. Using the weighted sum method [63], the MOP in (4.12) can be

converted into SOP defined as:

max
σ
(m)
k,n ,p(m)

k,n

ωθEEηEE +(1−ω)θSEηSE (4.13a)

s.t.

∑
m∈M

∑
k∈Km

r(m)
k,n ≥ Rmin

n ,∀n. (4.13b)

∑
m∈M

∑
k∈Km

σ
(m)
k,n p(m)

k,n ≤ Pmax
n ,∀n. (4.13c)

∑
m∈M
m6=m0

∑
n∈Nm

σ̃
(m)
k,n p(m)

k,n gmm0
k,n ≤ Ith

k ,∀k. (4.13d)

∑
n∈Nm

σ
(m)
k,n ≤ 1,∀k,∀m. (4.13e)

p(m)
k,n ≥ 0,σ (m)

k,n ∈ {0,1} , ∀n,∀k,∀m. (4.13f)

Here, (4.13a) represents the EE-SE tradeoff optimisation problem and ω is the tradeoff
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parameter such that 0 ≤ ω ≤ 1 which provides flexibility to achieve the EE-SE trade-

off. The QoS constraint (4.13b) guarantees the minimum user rate requirement. Con-

straint (4.13c) limits the maximum transmission of each user to be less than Pmax
n . The

constraint in (4.13d) sets the maximum tolerable cross-tier interference on each subcarrier

k of the macrocell m0. The constraint (4.13e) and (4.13f) ensure that each subcarrier can

be only assigned to at most one user in each network m at a time. The constraint (4.13f)

also confirms the feasibility of non-negative transmission power on each subcarrier. It

should be noted that when p(m)
k,n

∗
≥ Pmax

n , the proposed solution for (4.13a) contains a

unique global optimal solution, i.e., Pmax
n . Therefore, the case of p(m)

k,n

∗
< Pmax

n is anal-

ysed for the rest of this chapter. Hence, (4.13a) can be written as

η = max
σ
(m)
k,n ,p(m)

k,n

θEEηEE +

(
1−ω

ω

)
θSEηSE

[
bits/s

]
(4.14)

In (4.14),
(

1−ω

ω

)
can be replaced with α which can hold any real value from zero to

∞. After some mathematical manipulations, (4.14) can be simplified to

η =
η

θEE
= max

σ
(m)
k,n ,p(m)

k,n

ηEE +α

(
θSEηSE

θEE

) [
bits/Joule

]
, (4.15a)

s.t.

(4.13b)− (4.13e). (4.15b)

α ≥ 0, p(m)
k,n ≥ 0, σ̃ (m)

k,n ∈ {0,1}, ∀n,∀k,∀m. (4.15c)

where α ∈
[
0,∞

)
is the weighted coefficient. When α = 0, the problem in (4.15a) is
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transformed into an EE maximisation problem whereas it is transformed into an SE max-

imisation problem when α→∞. In other words, the importance of SE gradually increases

as α increases from 0 to ∞.

Remark 1: The optimisation problem in (4.15a) has two important properties stated as

follow:

Property 1: The optimal transmit power to achieve η∗ is non-decreasing with the weighted

coefficient α . When α = 0, the optimal transmit power is P∗ηEE
; whereas when 0 < α < ∞,

the optimal transmit power strictly increases with α until it approaches the maximum

transmit power. In other words, an increase of α gives more importance to ηSE resulting

in lesser importance to ηEE. Due to this, the optimal transmit power shift from P∗ηEE
to-

wards the maximum transmit power.

Property 2: ηSE is non-decreasing with the weighted coefficient α , while ηEE is non-

increasing with the weighted coefficient α . Lets us assume that α1 and α2 are the

weighted coefficients such that α2 > α1. From property 1, the optimal transmit power

P∗η
∣∣∣
α2

> P∗η
∣∣∣
α1

. As ηSE increases monotonically with transmit power whereas ηEE de-

creases monotonically with transmit power beyond P∗ηEE
. Hence, the Property 2 can be

easily verified.

The maximisation problem (4.15a) is an integer combinatorial fractional programming

problem and is generally NP-hard. For better tractability, the integer variables, σ
(m)
k,n ∈

{0,1} is first relaxed into continuous variables, σ̃
(m)
k,n ∈ [0,1]. Then, the modified problem
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for (4.15a) can be written as

η = max
σ̃
(m)
k,n ,p(m)

k,n

ηEE

(
1+α

(
θSE×ηSE

θEE×ηEE

))
, (4.16a)

s.t.

(4.13b)− (4.13e). (4.16b)

α ≥ 0, p(m)
k,n ≥ 0, σ̃ (m)

k,n ∈ [0,1], ∀n,∀k,∀m. (4.16c)

Lemma 1: η is jointly quasi-concave with respect to p(m)
k,n and σ̃

(m)
k,n .

Proof:- Please refer to the Appendix A.

η is quasi-concave with respect to the optimisation variables and a unique optimal solu-

tion can be obtained using convex optimisation techniques such as bisection method and

Lagrangian dual decomposition method [52]. As mentioned in [93] and [94], any sum-

of-ratios (or fractional form) optimisation problem can be transformed into an equivalent

optimisation problem in sum-of-ratios subtractive form. It has been proven in [93, The-

orem 1] that problems (4.16a) and (4.17) are equivalent to each other, i.e., the solution

of (4.17) corresponds to the optimal transmission power. As a result, the focus will be

on the equivalent subtractive objective function in the rest of the chapter. Hence, the

non-linear fractional optimisation problem in (4.16a) can be transformed into the param-

eterized function as
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G(η)=

 ∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

(
1+α

(
θSEP
θEEB

))
︸ ︷︷ ︸

First term

−η

(
N×PC + ε0 ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)
︸ ︷︷ ︸

Second term

 .

(4.17)

Remark 2: The concavity of transformed objective function in (4.17) with respect to the

optimisation variables σ̃
(m)
k,n and p(m)

k,n can be proved in two steps. Firstly, the concav-

ity of first term in (4.17) is proved with respect to the optimisation variables σ̃
(m)
k,n and

p(m)
k,n . For notational simplicity, we define a vector z(m)

k,n =
[
σ̃
(m)
k,n p(m)

k,n

]
and a function

f (m)
k,n

(
z(m)

k,n

)
= r(m)

k,n

(
1+α

(
θSEP
θEEB

))
which takes z(m)

k,n as an input. The Hessian matrix

H
(

f (m)
k,n

(
z(m)

k,n

))
of f (m)

k,n

(
z(m)

k,n

)
is a negative semi-definite matrix and its corresponding

both eigenvalues are also negative. Therefore, f (m)
k,n

(
z(m)

k,n

)
is jointly concave with respect

to the optimisation variables σ̃
(m)
k,n and p(m)

k,n .

Subsequently, ∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

(
1+α

(
θSEP
θEEB

))
is also concave since it is the linear

combination of f (m)
k,n

(
z(m)

k,n

)
which preserves the concavity. Finally,

(
N×PC+ε0 ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)
is an affine function with respect to the optimisation variables σ̃

(m)
k,n and p(m)

k,n . Therefore,

it is proved that G(η) is jointly concave with respect to the optimisation variables σ̃
(m)
k,n

and p(m)
k,n . As a result, strong duality holds and solving the dual problem is equivalent to

solving the primal problem of (4.17). It has been shown that the duality gap approaches to

zero for sufficiently large number of subcarriers and it is quite small for practical number

of subcarriers as mentioned in [95] [96]. In [96], it is shown that only 8 subcarriers are

sufficient in some cases to achieve zero duality gap .

It is worth to mention that G(η) monotonically decreases with an increase in η , i.e.,
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G(η
′
) > G(η) if η

′
> η . The optimal solution η = η∗ of (4.17) can be determined by

finding the root to the G(η), i.e., the transformed fractional form in substractive form

of (4.16a), using various root finding methods [52].

Lemma 2: G (η), max
σ̃
(m)
k,n ,p(m)

k,n

G(η) under the constraints (4.16b)− (4.16c), satisfies

G (η) = 0 iff η = η
∗.

From Lemma 2, G (η) is strictly monotonically decreasing with respect to η . The lemma

also implies that when η →−∞,G (η) > 0 and when η → ∞,G (η) < 0. (4.17) shows

that G(η) > 0, when η ≤ 0, because the first and second terms in (4.17) are definitely

positive. Therefore, G(η) = 0 occurs at η > 0, and hence, (4.17) will be solved for

η > 0. Details of its proof can be found in Appendix B.

4.5 EE and SE tradeoff Resource Allocation scheme

In HetNets, there exists two different channel deployment schemes, co-channel and

orthogonal channel deployment schemes. In the former scheme, the macrocell and a set

of pico BSs are permitted to use the same resource for data transmission at any time,

which will cause co-tier and cross-tier interference. In orthogonal channel deployment

scheme, the spectrum is divided into two orthogonal parts, one part for macrocell use and

the second part for the set of pico BSs such that each resource is exclusively assigned to

either macrocell m0 or a set of pico BSs mi,∀i ∈ {1,2, · · · ,M−1}, at any time causing no

cross-tier interference between macrocell and the set of pico BSs. The co-tier interference

will still occur among those pico BSs sharing the same resources. However in this work,
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the co-channel deployment scheme is considered such that co-tier interference is assumed

to be part of thermal noise N0 as discussed earlier in Section 4.4.

In this Section, an iterative algorithm is proposed for solving (4.17) with an equiv-

alent subtractive objective function such that the obtained solution satisfies the condi-

tions stated in Lemma 2. The solution to the EE-SE tradeoff problem is formulated

as a two-layer solution. An iterative Dinkelbach type method3 (Algorithm 4.1) is pro-

posed as an outer layer solution to find an optimal solution to (4.17) by determining a

root to G(η) = 0. Note that for any value of η , generated by Algorithm 4.1 in each

iteration, G(η) ≥ 0 is always valid; negative utility value will not occur. In particular,

∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

(
1+α

(
θSEP
θEEB

))
represents the system utility due to the data transmis-

sion while η

(
N×PC + ε0 ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)
represents the associated cost due

to the energy consumption. The optimal value of η indicates a scaling factor for balanc-

ing the system utility and cost. At an iteration i− 1, the value of η is initialised and the

G(η) is solved for a given value of η , i.e., ηi−1, and the optimal power p∗i−1 is computed

using the dual decomposition approach, i.e., inner layer solution, explained in the next

Section. The optimal power computed in iteration i−1 can be used to update the value of

η for iteration i. This process is repeated until it converges to an optimal value η∗. The

proof of convergence for the proposed method is guaranteed and its pseudo code is shown

in Algorithm 4.1. In particular, η increases in each iteration i such that ηi+1 > ηi. For a

large number of iterations iter, η converges to an optimal value η∗ such that it satisfies

the optimality condition in Lemma 2, i.e., G(η) = 0. The proof of the convergence can

3It is an application of Newton method to find the root of an objective function.
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be achieved using a similar approach as mentioned in [93, Appendix A][94] and is not

provided here due to the space limitations.

4.5.1 Dual Decomposition Formulation

In this Subsection, we solve the tradeoff optimisation problem by solving its dual

to the primal problem for a given value of η . By using the dual decomposition ap-

proach [93][95], an iterative procedure can be obtained to solve G(η) = 0 in each it-

eration of the proposed Algorithm 4.1. It is shown that the dual decomposition approach

has lower computational complexity as compared to the exhaustive search or the branch-

and-bound schemes [97]. In order to apply dual decomposition method, the Lagrangian

function of (4.17) using standard convex optimisation methods as mentioned in [52] can

be written as follow:

L(p,λ ,µ,ν) = ∑
m∈M

∑
k∈Km

∑
n∈N

r(m)
k,n

(
1+α

τEE

τSE

)
−η

(
ε0 ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n +N×PC

)

+ ∑
n∈N

λn

(
∑

m∈M
∑

k∈Km

r(m)
k,n −Rmin

n

)
+ ∑

n∈N
µn

(
Pmax

n − ∑
m∈M

∑
k∈Km

σ̃
(m)
k,n p(m)

k,n

)

+ ∑
k∈Km

νk

(
Ith
k − ∑

m∈M
∑

n∈Nm

σ̃
(m)
k,n p(m)

k,n gmm0
k,n

)
(4.18)

where τEE =
P

θEE
and τSE =

B
θSE

. λ = (λ1,λ2, · · · ,λN) is the Lagrange multiplier vector

associated with the minimum data rate constraint (4.13b). µ = (µ1,µ2, · · · ,µN) is the

Lagrange multiplier vector associated with the total transmit power constraint (4.13c).
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ν = (ν1,ν2, · · · ,νK) is the Lagrange multiplier vector corresponding to the cross-tier in-

terference constraint (4.13d) and νk = 0 for k ∈ Km0 . The constraints in (4.13e) and

(4.16c) are later considered by dual decomposition method such that each subcarrier can

be exclusively assigned to a single user within a network m and the non-negative optimal

powers are computed. The dual problem corresponding to the primal problem of (4.17)

can be given by [64]:

min
λ ,µ,ν≥0

max
σ ,p

L(p,λ ,µ,ν) (4.19)

The Lagrange dual function corresponding to problem (4.17) is

g(λ ,µ,ν) = max
σ ,p

L(p,λ ,µ,ν) (4.20)

Similarly, g(λ ,µ,ν) is the dual function and can be shown as

g(λ ,µ,ν) = ∑
k∈Km

gk(λ ,µ,ν)−ηε0NPC− ∑
n∈N

λnRmin
n + ∑

n∈N
µnPmax

n + ∑
k∈K

νkIth
k ,

(4.21)

where gk(λ ,µ,ν) is defined by

gk(λ ,µ,ν) = max
σ̃k,pk

(
∑

m∈M
∑

n∈N
r(m)

k,n

(
1+α

τEE

τSE

)
−ηε0 ∑

m∈M
∑

n∈N
σ̃
(m)
k,n p(m)

k,n + ∑
m∈M

∑
n∈N

λnr(m)
k,n

− ∑
m∈M

∑
n∈N

µnσ̃
(m)
k,n p(m)

k,n − ∑
m∈M

∑
n∈Nm

νkσ̃
(m)
k,n p(m)

k,n gmm0
k,n

)
(4.22)
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The corresponding dual problem to the primal problem of (4.17) is hence given by

min
λ ,µ,ν

g(λ ,µ,ν)

s.t. λ ≥ 0,µ ≥ 0,ν ≥ 0 (4.23)

4.5.2 Dual Decomposition Solution

To solve the dual problem in (4.19), we have decomposed it into a hierarchy of two

problems. The slave problem is an inner maximisation in (4.20) consisting of K subprob-

lems solved in parallel to compute the power and subcarrier allocation on each subcarrier

k ∈K for the given values of λ ,µ,ν and η ; whereas an outer minimisation in (4.23) is

the master problem in which the Lagrangian multipliers are updated using a subgradient

method. After a few mathematical manipulations, (4.22) can be written as

gk(λ ,µ,ν) = max
σ̃k,pk

(
∑

m∈M
∑

n∈N
σ̃
(m)
k,n Bk log2

(
1+ γ

(m)
k,n p(m)

k,n

)[(
1+α

τEE

τSE

)
+λn

]

− ∑
m∈M

∑
n∈N

(
µn +ηε0 +νkgmm0

k,n

)
σ̃
(m)
k,n p(m)

k,n

)
(4.24)

Now, by taking the first-order derivatives of (4.24) with respect to σ̃
(m)
k,n , we get

∂gk(λ ,µ,ν)

∂ σ̃
(m)
k,n

= Bk log2

(
1+ γ

(m)
k,n p(m)

k,n

)[(
1+α

τEE

τSE

)
+λn

]
−
(

µn +ηε0 +νkgmm0
k,n

)
p(m)

k,n

(4.25)
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The subcarrier assignment index σ̃
(m)
k,n at given λ , µ , ν and η can be determined as:

σ̃
(m)
k,n =



1, if (k,m∗,n∗) = argmaxm,n Bk log2

(
1+ γ

(m)
k,n p(m)

k,n

)[(
1+α

τEE
τSE

)
+λn

]
−
(

µn +ηε0 +νkgmm0
k,n

)
p(m)

k,n

0, otherwise.

(4.26)

Note that (4.26) also gives us an insight into the user association and the set of subcarriers

assigned to the network m, i.e., Km, which consists of all the subcarriers k ∈K with

σ̃
(m)
k,n = 1. For a fixed set of Lagrange multipliers and a given parameter η , the power for

user n on subcarrier k can be computed by taking the first-order derivative of (4.24) with

respect to p(m)
k,n , yielding

∂gk(λ ,µ,ν)

∂ p(m)
k,n

=
σ̃
(m)
k,n Bk

[(
1+α

τEE
τSE

)
+λn

]
× γ

(m)
k,n

ln(2)
(

1+ γ
(m)
k,n p(m)

k,n

) −
(

µn +ηε0 +νkgmm0
k,n

)
(4.27)

Applying the KKT conditions results in

∂gk(λ ,µ,ν)

∂ p(m)
k,n

∣∣∣∣∣∣
p(m)

k,n =p(m)∗
k,n

= 0 =⇒

Hence,

p(m)
k,n =



(
Bk

(
(1+α

τEE
τSE

)+λn

)
ln2
(

µn +ηε0 +νkgmm0
k,n

) − 1
γ
(m)
k,n

)+

, if σ̃
(m)
k,n = 1.

0, otherwise.

(4.28)
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The optimal solution of (4.17) can then be expressed as

p(m)
k,n

∗
= max

(
min

(
p(m)

k,n ,P
max
n

)
,Pmin

n

)
, (4.29)

where Pmin
n =

(
2
(

σ
(m)
k,n Rmin

n /Bk

)
−1
)
/γ

(m)
k,n . Thus, the optimal power allocation for each

user n on subcarrier k has a semi-closed form expression in terms of dual variables λ , µ

and ν . It is also observed that the optimal power allocation given by (4.28) is a modified

water filling solution, where the channel gain is given by γ
(m)
k,n and the water levels are

determined both by the Lagrangian multipliers λ , µ , ν and weighting coefficient α as

well by the EE-SE tradeoff metric η . The dual variables {λ ,µ,ν} must satisfy the KKT

conditions in order to be optimal and σ̃
(m)
k,n = 1 indicates that the subcarrier k is assigned

to user n associated with network m.

It should be noted that the weighted coefficient α = 0 maximises the EE whereas at

α = αSE the SE is maximised. For a given subcarrier assignment, the SE is maximised

when each user transmits at their maximum transmission power. It is assumed that each

user distribute its maximum transmission power equally among its subcarriers such that

p(m)
k,n =

Pmax
n
|Kn| , where Kn is the set of subcarriers allocated to user n. In order to compute

the weighted coefficient α
(n)
SE which can achieve the maximum SE for user n, (4.28) can

be rewritten as:

Pmax
n
|Kn|

=

(
Bk

(
(1+α

(n)
SE

τEE
τSE

)+λn

)
ln2
(

µn +ηε0 +νkgmm0
k,n

) − 1
γmin

n

)
, (4.30)
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where γmin
n is the minimum channel-to-noise-ratio (SNR) among all the subcarriers allo-

cated to the user n. From (4.30), α
(n)
SE can be easily derived as:

α
(n)
SE =

τSE

τEE

(Pmax
n
|Kn|

+
1

γmin
n

) ln2
(

µn +ηε0 +νkgmm0
k,n

)
Bk

−λn−1

 . (4.31)

Finally, αSE can be computed as

αSE = max{α(1)
SE ,α

(2)
SE , · · · ,α

(N)
SE }. (4.32)

4.5.3 Updating the Dual Variables

In order to minimise the dual function g(λ ,µ,ν), since the dual function is differen-

tiable the subgradient method can be used to update the dual variables λ , µ and ν . The

subgradient of λ , µ and ν are respectively given by taking the derivative of L(p,λ ,µ,ν)

with respect to λ , µ and ν , yielding

4λ = ∑
m∈M

∑
k∈Km

r(m)
k,n −Rmin

n , (4.33a)

4µ = Pmax
n − ∑

m∈M
∑

k∈Km

p(m)
k,n . (4.33b)

4ν = I(k)th − ∑
m∈M
m 6=m0

∑
n∈Nm

σ̃
(m)
k,n p(m)

k,n gmm0
k,n . (4.33c)
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Then, the Lagrange multipliers (λ ,µ) can be updated according to

λn(i+1) =

[
λn(i)−

s1
√

i

(
∑

m∈M
∑

k∈Km

r(m)
k,n −Rmin

n

)]+
,∀n (4.34a)

µn(i+1) =

[
µn(i)−

s2
√

i

(
Pmax

n − ∑
m∈M

∑
k∈Km

p(m)
k,n

)]+
,∀n (4.34b)

νk(i+1) =

νk(i)−
s3
√

i

I(k)th − ∑
m∈M
m 6=m0

∑
n∈Nm

σ̃
(m)
k,n p(m)

k,n gmm0
k,n



+

,∀k (4.34c)

Here, i is the iteration number and sl = 0.1√
i
, l ∈{1,2,3} are the positive step sizes assumed

in this work. The process of computing the optimal power allocation and Lagrangian

multipliers are updated accordingly until the convergence is achieved, indicating that the

dual optimal point is achieved. The subgradient update is guaranteed to converge to

optimal values of λ , µ and ν , as long as sl is chosen to be sufficiently small [52]. A

common practice is to choose square summable step sizes in contrast to absolute step

sizes [95] [64].

4.5.4 Complexity Analysis

The computational complexity of the proposed approach depends on the complexity

of both inner and outer layer solutions. It is observed that the computational complexity

of Algorithm 4.1 to solve all K independent subproblems in (4.21), to solve g(λ ,µ,ν) is

O(KN). In addition, with the accuracy requirement, i.e., |U(η(i))−U(η(i− 1))| <4,

set in Algorithm 4.2, the total computational complexity of our proposed approach is



Chapter 4. Joint Optimisation of Energy and Spectral Efficiency Tradeoff in 5G
Heterogeneous Networks Under QoS Constraints 133

approximately O
(

CηKN log2(
1
4)
)

, where Cη is the number of iterations required for

updating η until Algorithm 4.1 converges. It is demonstrated in the simulation results that

less than 5 iterations are needed for Algorithm 4.1 to converge. The proposed approach

has polynomial complexity regarding the problem scale K and N, which is attractive in the

practical OFDMA implementation. Therefore, it can be concluded that the computational

complexity of the proposed approach is low and acceptable.

Algorithm 4.1 Iterative EE and SE Tradeoff Algorithm in Two-Tier HetNets
Initialize
iter = max number of iterations,4=maximum acceptable tolerance,
Set i=1 and η(1) = ηinitial,
While (|G(η) |<4) ||(i < iter)do

Solve (4.17) for a given value of η (i) using Algorithm 4.2.

Update η (i+1) =

(
∑

m∈M
∑

k∈Km
∑

n∈N
r(m)

k,n

(
1+α

τEE
τSE

))
(

N×PC+ε0 ∑
m∈M

∑
k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)
Update i = i+1

end While
Output: [η ]

4.6 Simulation Results

We consider a two-tier HetNets environment with a single macrocell with 500 m radius

overlaid with M−1 pico BSs with a radius of 50 m. The bandwidth of each subcarrier is

30 kHz. The maximum transmission power for all users are the same, hence, Pmax
n will

be referred to as Pmax. Similarly, the minimum rate requirement Rmin
n can be referred to

as Rmin. The minimum-rate requirement for each user is considered to be 4 b/s/Hz unless

stated otherwise. The maximum transmission power of users considered in the simulation

vary from 200 mW to 500 mW, whereas the value of circuit power of users is set fixed
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Algorithm 4.2 Joint User Association, Subcarrier and Power Allocation in Two-Tier Het-
Nets: Near Optimal Approach

Input: [η ,α,ε0,γ
(m)
k,n ]

Step 1: Initialize
i = 0, p(m)

k,n = 0,λ (i)
n = 0.001,µ(i)

n = 0.01,ν(i)
k = 0.001, for n = 1, · · · ,N,k = 1, · · · ,K

m = 1, · · · ,M.
Step 2:
For n = 1 : N

For k = 1 : K

Calculate p(m)
k,n according to (4.28).

end For
Obtain the user association and subcarrier assignment according to (4.26).

end For
Step 3:

i=i+1
Update λ

(i+1)
n , µ

(i+1)
n and ν

(i+1)
k according to (4.34).

Step 4:
Repeat steps (2)-(3) until λ

(i+1)
n , µ

(i+1)
n and ν

(i+1)
k are converged.

Output:
[
p(m)

k,n , σ̃
(m)
k,n

]
to PC = 100 mW and the threshold interference level is assumed as Ith

n = 1.1943×10−14

W, unless stated otherwise. We assume that the users are uniformly deployed within

the simulated scenario. The path-loss model for macrocell and pico BS mi are given

as PL(m0)
n (dB) = 128.1+ 37.6log10(dn) and PL(mi)

n (dB) = 140.7+ 36.7log10(dn) [41],

where dn is the distance of user n from the serving BS in km, and therefore, PL(m0)
n =

10(PL
(m0)
n (dB)/10) and PL(mi)

n = 10(PL(mi)
n (dB)/10). The noise spectral density is assumed to

be N0 =−174 dBm/Hz. In this work, the power amplifier efficiency is assumed as 38%,

i.e., ε0 = 1
0.38 . Note that if the user is unable to meet the minimum rate requirement

Rmin, or the maximum transmission power constraint Pmax, we set the EE and SE for

that channel realisation to zero. All the simulation results presented in this Section are

averaged over 106 independent network realizations.
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FIGURE 4.2: EE and SE versus α for various θEE with θSE = B, N = 10, K = 10,
Pmax = 0.2 W and PC = 0.1 W.

The initial selections of θEE and θSE are critical to the overall performance of the

EE-SE tradeoff in HetNets. Fig. 4.2 illustrates the impact of different notions of nor-

malization factor θEE on the achievable EE and achievable SE in Figs. ??2a and ??2b,

respectively. First, we fix the value of θSE, the proposed notions of θEE is depicted with

both minimum transmission power Pmin
(

θ
(min)
EE = ε0Pmin +PC

)
, maximum transmission

power Pmax
(

θ
(max)
EE = ε0Pmax +PC

)
, and with the energy-efficient transmission power

P∗ηEE

(
θ
(EE)
EE = ε0P∗ηEE

+PC

)
, as the benchmark case. For the θ

(min)
EE case, Pmin is the min-

imum transmission power required to achieve the minimum rate requirement Rmin which

lies in the set of [0,Pmax]. For the benchmark case, P∗ηEE
is the energy-efficient transmis-

sion power at which the maximum EE is achieved and it lies in the set of [Pmin,Pmax].

The optimal transmit power P∗η monotonically increases with α regardless of θEE. P∗η

achieves the maximum transmission power Pmax at α ≈ 3 and α ≈ 3.2 for the proposed

θ
(min)
EE and benchmark cases, respectively. On the other hand, P∗η achieves the maximum
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transmission power Pmax at α ≈ 9 for the proposed θ
(max)
EE case. For the weighted coeffi-

cient 0 ≤ α ≤ 0.6, the achieved EE for all three cases are marginally close to each other

whereas as the value of α increases beyond 0.6 the achieved EE by the proposed θ
(max)
EE

is far higher as compared to the proposed θ
(min)
EE and benchmark cases. The figure shows

that in θ
(max)
EE case, the achieved EE decreases more gradually with α , when compared

to the θ
(min)
EE and benchmark cases. After several implementations of our proposed nor-

malization factor, we choose the setting of θEE = θ
(max)
EE = ε0Pmax +PC as the optimal

θEE. One of the major observation is that optimal θEE provides the complete range of ηEE

and ηSE values as compared to the two baseline cases and gives more flexibility to set

preferences for either EE or SE.
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FIGURE 4.3: EE and SE versus α for various θSE with θEE = (ε0Pmax +PC), N = 10,
K = 10, Pmax = 0.2 W and PC = 0.1 W.

Fig. 4.3 illustrates the impact of θSE on the achievable EE and achievable SE. First,

we fix the value of θEE = θ
(max)
EE . The proposed notions of θSE are defined as θ

(tot)
SE , θ

(1)
SE ,

θ
(2)
SE and θ

(3)
SE for B, 0.75B, 0.5B and 0.25B respectively. τSE decreases with θSE, which

in turn, reduces α
τEE
τSE

as defined in (4.18). Hence, for smaller values of θSE, the achieved
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optimal tradeoff power level P∗η is approximately close to the P∗ηEE
at α = 0. For the higher

values of θSE, the achieved optimal tradeoff power level P∗η monotonically increases with

α towards the maximum transmission power Pmax. We note that P∗η converges to Pmax at

different values of α depending on the set value of θSE. The figure reveals that for the

weighted coefficient 0 ≤ α ≤ 2, the optimal transmission power and achieved EE for all

four cases are approximately close to each other whereas as α increases beyond 2, the

achieved EE by the proposed θ
(tot)
SE is far lower than the remaining three proposed notions

of θSE. As θSE is a normalization factor for the achieved SE in the optimisation problem so

the optimal θSE is chosen such that it achieves highest SE. After several implementations

of our proposed normalization factor, we choose the setting of θSE = θ
(tot)
SE = ∑

k∈K
Bk as

the optimal θSE. The optimal θSE can achieve a higher SE as compared to the other cases,

however, at the cost of reduction in EE. For clarity purpose, from this point onwards θEE

and θSE are assumed to be θEE = ε0Pmax +PC and θSE = ∑
k∈K

Bk.
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FIGURE 4.4: Convergence of Proposed Algorithms 4.1 & 4.2 with α = 1, θSE = B,
θEE = (ε0Pmax +PC), N = 10, K = 10, Pmax = 0.2 W and PC = 0.1 W.
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Fig. 4.4 depicts the average achieved η and the average transmission power versus

the number of iterations to study the convergence speed of the proposed Algorithms 4.1

and 4.2, respectively. The achieved η is corresponding to the objective function defined

in (4.15a). Fig. 4.4(a) depicts the achieved η of the proposed Algorithm 4.1 versus the

number of iterations with the maximum uplink transmission power of Pmax = 0.2W , with

the normalisation factors θEE = 0.63W, and θSE = 3×104 Hz. The algorithm converges

to an optimal value within 4-5 iterations. Fig. 4.4(b), on the other hand, includes the plots

for the average transmission power of Algorithm 4.2 versus the number of iterations. The

algorithm converges to an optimal value within around 80 iterations. The polynomial

complexity of the proposed Algorithm 4.1 and 4.2 depends on the problem scale of the

number of users N and subcarriers K, which is desirable for practical implementation

and has a fast convergence speed. This result demonstrates the fact that the proposed

Algorithm 4.1 and 4.2 gaurantee convergeance by using the subgradient method in uplink

HetNets.

By fixing θSE to B, the maximum achievable η versus Pmax for different values of α

are plotted in Fig. 4.5 which reveals that η increases with α; whereas η first increases

with Pmax, and after a particular value of Pmax, it starts decreasing. This is due to the fact

that τEE is defined as P
θEE

, where θEE depends on Pmax as defined in (4.18). For smaller

values of Pmax, the achievable η increases with Pmax. Furthermore, for higher values of

Pmax, the achievable η decreases with Pmax. This is an important observation which can

allow the flexibility to save more power by choosing the sensible Pmax which results in

improving the achieved EE and SE.
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Fig. 4.6 shows the EE-SE tradeoff of a macrocell overlaid with 4 pico BSs when Pmax =

0.2 W, for the threshold intereference level Ith
n = 1.1943× 10−14 W, 3.7768× 10−15 W,

7.7357× 10−15 W, 1.1943× 10−16 W, 3.7768× 10−16 W and 7.7357× 10−16 W. The

simulation results show that the maximum achievable EE and SE decreases monotonically

with Ith
n . The figure further reveals that the lower values of Ith

n results in higher achievable

EE and SE in comparison to the lower achieavble EE and SE at the higher values of Ith
n .

We note that the maximum achievable EE is reduced from 126 b/J/Hz to 94 b/J/Hz when

the Ith
n is reduced from 1.1943×10−14 W to 7.7357×10−16 W. Further, the figure shows
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n

that higher threshold interference level Ith
n achieves higher achievable EE and SE. For the

remainder of the simulation results, we assume Ith
n = 1.1943×10−14 W.
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We present a baseline algorithm, namely, a rate-optimal algorithm which maximises the

overall system rate. Figs. 4.7(a) and 4.7(b), which respectively shows the performance in

terms of the sum EE and the sum rate versus Rmin. We assume four users are randomly lo-

cated within the coverage area. The two figures show that the proposed algorithm achieves

a higher sum EE than the rate-optimal algorithm. The rate-optimal algorithm can achieve

a higher sum rate, however, at a cost of reduction in EE. Moreover, both EE and the sum

rate increases with Pmax. It should be also noted that the sum EE decreases with Rmin,

whereas the sum rate increases with it. We note that at Rmin = 600 Kbit/s, the achievable

EE at Pmax = 0.2 W is higher than the achievable EE at Pmax = 0.5 W. This is due to the

fact that the normalisation factor θEE depends on the maximum transmission power Pmax.
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FIGURE 4.8: Relative Optimal transmit power, ηEE and ηSE versus weighted coefficient
α with Nmacro = 0.2∗N, N0 =−174 dbm/Hz and Rmin

n = 4 b/s/Hz.

In order to measure the performance gains of two-tier HetNet configuration of M = 5

as compared to a macrocell only M = 1 with minimum rate requirement of 4 b/s/Hz,
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Fig. 4.8(a) and 4.8(b) show the plots for optimal average transmit power normalised by

Pmax and achievable EE along with achievable SE versus weighted coefficient α for vary-

ing number of users N resulting in user densities of 200 and 220 active UE’s per km2 and

K = 100. For the case of M = 1, all the users are served by macrocell Nmacro = N whereas

for M = 5, the number of users per macrocell are Nmacro = 0.2∗N and number of users per

pico BSs are Nsmall = N/M. It can be seen that the optimal transmit power P∗η irrespective

of M = 1 and M = 5 configurations monotonically increases with α . It is worth to men-

tion that power saving
(
Pmax−P∗η

)
of M = 5 (denoted by green line) in comparison to

M = 1 (denoted by blue line) first monotonically increases with α and afterwards it start

decreasing as α approaches towards αEE. Fig. 4.8(b) shows the corresponding achievable

EE and SE in M = 1 and M = 5 at the optimal tradeoff transmit values (Pη
∗ as previously

shown in Fig. 4.8(a)) versus α for varying user densities and K = 100. Another obser-

vation is that achievable EE and SE also increases with an increase in number of user N.

The figure reveals that for a given N, K and α , the two-tier HetNet configuration always

outperforms in terms of both the power consumption and the achievable EE along with

corresponding achievable SE as compared to the traditional macrocell only configuration:

by averaging over all the values of α , the average achievable EE is 15.025 kb/J/Hz with

average achievable SE of 2.358 kb/s/Hz and power consumption of 78.27 mW in M = 5

for N = 100 and K = 100 compared to the average achievable EE of 9.216 kb/J/Hz with

average achievable SE of 1.7525 kb/s/Hz and power consumption of 1842.236 mW in

M = 1 for N = 100 and K = 100.

Fig. 4.9 shows the impact of the varying number of users per pico BS denoted by
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FIGURE 4.9: ηEE and ηSE of two-tier HetNet configuration for various values of Nsmall
with K = 100, M = 5, N0 =−174 dbm/Hz and Rmin

n = 4 b/s/Hz

Nsmall on the EE-SE tradeoff in two-tier HetNets with 4 pico BSs lying on the cell edge

of a macrocell. The total number of users per pico BS denoted by Nsmall are set to vary

at 20, 22, 24 and 26. It is observed that when Nsmall is increased from 20 to 26, the

EE-SE tradeoff curve expands which improves the achievable EE from 19.56 Kb/J/Hz

to 25.44 Kb/J/Hz at α = 0 whereas the achievable SE improves from 2.102 Kb/s/Hz to

2.734 Kb/s/Hz due to multi-user diversity. For the given Nsmall = 20 and α = 3, the

figure reveals the significant improvements in achievable EE (50% gain) and SE (39%

gain) along with reduction in power consumption (47.5%) in case of two-tier HetNets as

compared to the macrocell only configuration.
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Fig. 4.10 shows the achievable EE and SE versus β , as defined in (4.1), ranging from

0 (macrocell only) to 1 increasing the number of pico BSs deployed on the edge of a

macrocell from 1 to 40 with user densities set at 200,400 and 600 active UE’s per km2

randomly deployed within the area of 500×500 m2 and minimum rate requirement set as

4 b/s/Hz. It is evident from this figure that deploying pico BSs on the edge of a macrocell

can achieve significant gains for all the performance metrics to satisfy the objectives and

requirements of 5G systems. As it can be seen from the figure, the achievable EE and

SE increase both with an increase in network densification and user density. The HetNet

configuration with β = 0.1 which results in 4 pico BSs deployed on the cell edge of a

macrocell with user density of 600 active UE’s per km2 achieves an area energy efficiency

of 64.617 kb/J/Hz/km2 as comapred to 51.745 kb/J/Hz/km2 for macrocell only, i.e., β = 0.

Similarly, an area spectrum efficiency at β = 0.1 increases from 2.702 kb/s/Hz/km2 to

5.325 kb/s/Hz/km2 as user denisty is increased from 200 to 400 active UE’s per km2.

It is important to mention that introducing too many pico BSs can cause increase in the

deployment and maintaineance costs, backhauling costs and system complexity which

are not considered in this analysis. However, it is evident from Fig. 4.10(a) and 4.10(b)

that the tradeoff exists between deployed number of pico BSs and the achieved values

of performance metrics subject to the given user density. For example, it is suitable to

choose an optimal β as 0.2, 0.5 and 0.8 for the given user densities of 200,400 and 600

active UE’s per km2 and afterwards, an increase in β result in a very minor improvement

in performance metrics.
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FIGURE 4.10: ηEE and ηSE versus β for varying user densities, Pmax = 0.2 W, PC = 0.1
W and Ith

n = 1.1943×10−14 W.

4.7 Summary

In this chapter, the problem of simultaneously maximising the overall system EE and

SE in an uplink of a two-tier OFDMA-based HetNet using adaptive channel and power

allocation was addressed by considering the maximum transmission power, cross-tier in-

terference threshold and users’ minimum-QoS constraints. The quasi-concavity of the

proposed approach was proved, and due to this property, the Pareto optimal solution was

derived using LDD approach based on joint user association, subcarrier and power alloca-

tion. An iterative two-layer framework was proposed in which the outer layer was solved

by Dikelbach method as shown in Algorithm 4.1; whereas the inner layer was solved us-

ing LDD approach as shown in Algorithm 4.2. From simulation results, we can refer two

main observations. Firstly, SE is maximised at different values of weighted coefficient α

depending on the maximum transmission power. Secondly, our proposed tradeoff metric

α can help us to save much power by lowering the maximum transmission power. The
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tradeoff parameter η is an increasing function of transmission power for smaller values

of Pmax, whereas it is a decreasing function of transmission power for higher values of

Pmax.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis was dedicated to the energy efficiency and spectral efficiency optimisation

in multi-tier HetNets.

The joint network selection algorithm from both user and network perspectives are pro-

posed in cooperative heterogeneous wireless systems as outlined in Chapter 2. Compared

with the state-of-the-art network selection algorithms such as [10–12], the proposed evo-

lutionary game-theoretic approach utilising the inverse cumulative ranking scheme signif-

icantly improves the overall QoS performance and system parameters. By incorporating

the proposed RoI-based Dynamic Contextual strategy can significantly reduce the com-

plexity of the evolutionary game, with or without network re-configuration by 23% and

58%, respectively.

Chapter 3 provides a detailed description of the proposed maximising EE optimisation

schemes in multi-tier HetNets. Firstly, the EE maximisation problem of an uplink of a

147
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two-tier OFDMA-based HetNets with maximum transmit power and minimum-rate con-

straints using adaptive channel and power allocation is addressed in section 3.4. As one

of the pioneer works on joint user association and power allocation in two-tier HetNets,

the proposed suboptimal algorithm has low complexity and provides the solution not far

from an optimal solution. Secondly, a joint optimization problem is formulated for mode

selection, subcarrier assignment and power allocation in a three-tier hierarchical HetNet

consisting of an underlaid D2D communication in coverage of both macrocell and pico

BS’s as mentioned in section 3.5. The optimization problem is formulated such that each

user tries to maximize its own ASE subject to a required AEE level and a maximum trans-

mit power constraint. The simulation results show that when the required AEE level is

set to 93% of ηmax, the proposed scheme can reduce the tradeoff optimal transmit power

transmit power upto 48.51% and 1404%, when compared to the traditional HetNets and

macrocell only, respectively. Finally, the concept of MOP is utilised to jointly optimise

the throughput and BEE tradeoff in two-tier HetNets with QoS and fairness guarantee

constraints is outlined in section 3.6. The complete Pareto optimal set is obtained by

employing the weighted sum method to transform our proposed MOP into an SOP. The

proposed algorithm provide flexibility to the network operators to dynamically tune the

weighting coefficient α and rate fairness level ω in order to satisfy the user’s QoS re-

quirements along with reducing their total area power consumption.

In Chapter 4, the problem of simultaneously maximising the overall system EE and

SE in an uplink of a two-tier HetNets by considering the maximum transmission power,
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cross-tier interference threshold and users’ minimum-QoS constraints. An iterative two-

layer proposed algorithm in which the outer layer was solved by Dikelbach method;

whereas the inner layer was solved using LDD approach. From simulation results, we

can refer two main observations. Firstly, SE is maximised at different values of weighted

coefficient α depending on the maximum transmission power. Secondly, our proposed

tradeoff metric α can help us to save much power by lowering the maximum transmis-

sion power.

5.2 Future Work

The series of future directions arising from the direct outcome of the analysis carried

out in this thesis have been identified as follow:

5.2.1 Energy and Spectral efficient design for multi-band HetNets

Carrier aggregation (CA) is considered as a key enabler for next generation networks

such as 5G in order to meet the large transmission bandwidth requirement to achieve high

peak data rate (500 Mbps in the uplink and 1 Gbps in the downlink). The energy effi-

ciency for multi-tier HetNets for uplink and downlink transmission schemes have been

investigated in chapter 3. It was assumed that all tiers of HetNets operate at same fre-

quency band with orthogonal channel deployment. A trade-off between energy efficiency

and spectral efficiency for two-tier HetNets with co-channel deployment has been de-

scribed in chapter 4. It is envisaged that there will be an ultra dense deployment of low

power small cells within the traditional macrocells in order to cope with the higher data

rate requirements for 5G. Moreover, it would also be interesting to study the impact of
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availability of different frequency bands under different dense deployment scenarios on

the overall energy efficiency of the multi-tier HetNets. Therefore, the work presented in

this thesis can be further extended to investigate different carrier aggregation approaches

in a multi-band HetNet model.

In this trend, a two layer non-cooperative game theoretic approach can be formulated

to examine the impact of the available bands in multi-tier HetNets to best exploit CA.

In the first layer, the small cells deployed within the coverage area of the traditional

macrocell can intelligently decide among the available frequency bands to operate in order

to increase the spectral efficiency of their associated users. Once the small cells have

chosen their operating frequency band, user-centric selection mechanism can be utilised

to allow the macrocell users to select a strategy to maximize their payoff while keeping

in view the overall network performance.

5.2.2 Analysis of Energy and Spectral Efficiency in HetNets with Tra-

ditional Macrocells and Small Cells exploiting mmWave band

One of the emerging technologies towards enabling fifth generation (5G) is multiple

radio access technologies (multi-RAT) such that the traditional macrocells operate at sub

6 GHz frequency band whereas the small cells operate at mmWave frequency band within

the same geographical area. In the past, mmWave technology was not considered to be

feasible for wireless communication due to the larger penetration loss. In [98]– [99],

authors have analysed mmWave for cellular networks by using highly directional antennas

and beam-forming to provide coverage in the range of about 150-200 m.

In this trend, the deployment of mmWave small cells has great potential to improve the
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spatial reuse of radio resources and also to enhance the energy and spectral efficiency of

the network. This traffic surge and the projected traffic requirements combined with con-

gestion in the available spectrum has made evident the need to shift to unused frequency

bands. The use of the mmWave band, ranging from 10 GHz to 300 GHz, is an attrac-

tive solution to the spectrum congestion problem due to an enormous amount of available

transmission bandwidth upto 2 GHz within the E and W frequency bands. Investigation

of the use of mmWave technology in 5G cellular networks is already underway [100]–

[101]. Although mmWave communication will require large numbers of antennas with

more required power for complex signal processing along with the reduced caused inter-

ference, it still can be efficient by serving more users, with less transmission power per

user resulting in higher spectral efficiency. Keeping this in mind, an efficient solutions

should be investigated to formulate a trade-off between the number of BSs operating in

mmWave frequency band and the respective BS load for different deployment scenarios

such as urban and suburban areas.

Therefore, it can be concluded that combining multi-tier HetNets with mmWave com-

munications is a promising research area which requires attention to fulfil its role in the

design of 5G networks.



Appendix A

Appendix of Chapter 4

A.1 Proof of Lemma I

In this Appendix, we prove that η is quasi-concave in σ̃
(m)
k,n and p(m)

k,n .

η =
R
P

(
1+α

θSE×ηSE

θEE×ηEE

)

=
R
P

(
1+α

θSE×P
θEE×B

)
=

R
P
(1+αP)

=
R
P
+αR = ηEE +αR (A.1)
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where α = α
θSE

θEEB

First, we prove that r(m)
k,n is concave with respect to σ̃

(m)
k,n and p(m)

k,n . By taking the first

order derivative of r(m)
k,n with respect to p(m)

k,n we get

∂ r(m)
k,n

∂ p(m)
k,n

= max
k∈Km,n∈N

Bkγ
(m)
k,n

ln(2)
(

1+ γ
(m)
k,n p(m)

k,n

) (A.2)

From (A.2), it is clear that
Bkγ

(m)
k,n

ln(2)
(

1+γ
(m)
k,n p(m)

k,n

) is strictly monotonically decreasing with p(m)
k,n

and thus
∂ 2r(m)

k,n

∂ p(m)
k,n

2 < 0. Since R is the linear combination or sum of r(m)
k,n , and therefore, R

is also concave in p(m)
k,n . Using the same principle, we can also show that R is concave in

σ̃
(m)
k,n .

Denote the superlevel sets of ηEE in order to prove the quasi-concavity as follow:

τα = {σ̃ (m)
k,n ≥ 0, p(m)

k,n ≥ Pmin
n ,∀k,m,n | ηEE ≥ α}

ηEE is quasi-concave in σ̃
(m)
k,n and p(m)

k,n , if τy is convex for any real number y [52]. When

y< 0, no points exist on the contour ηEE = y. When y≥ 0, τy is equivalent to y

(
N×PC + ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)
−

∑
m∈M

∑
k∈Km

∑
n∈N

σ̃
(k)
m,nBk log2

(
1+

γ
(m)
k,n p(m)

k,n

ρ2
(m)

PL(m)
n

)
which is convex. Hence, ηEE is quasi-concave

in σ̃
(m)
k,n and p(m)

k,n . Since R is strictly concave in σ̃
(m)
k,n and p(m)

k,n . Therefore, η is also quasi-

concave in σ̃
(m)
k,n and p(m)

k,n . Since PT is monotonically increasing linear function of p(m)
k,n ,

then η is also quasi-concave in PT.
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A.2 Proof of Lemma II

Let us assume η∗ = max
σ̃
(m)
k,n ,p(m)

k,n

η is an optimal solution to the objective function (4.17).

Similar to [93], G (η) can be equivalently written as:

G (η) = max
σ̃
(m)
k,n ,p(m)

k,n

(η̃−η)

(
N×PC + ε0 ∑

m∈M
∑

k∈Km

∑
n∈N

σ̃
(m)
k,n p(m)

k,n

)

If η = η∗, then η̃−η = η̃−η∗ ≤ 0 which means G (η∗)≤ 0. However, we can always

find some σ̃
(m)
k,n and p(m)

k,n that can make η̃ = η∗ which result in G (η∗) = 0. Hence,

G (η) > 0 if η < η∗ and G (η) < 0 if η > η∗. Hence, it is proven that G (η) = 0 iff

η = η∗.
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