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Abstract

The exponential growth in the number of cellular users along with their increasing de-
mand of higher transmission rate and lower power consumption is a dilemma for the
design of future generation networks. The spectral efficiency (SE) can be improved by
better utilisation of the network resources at the cost of reduction in the energy efficiency
(EE) due to the enormous increase in the network power expenditure arising from the
densification of the network. One of the possible solutions is to deploy Heterogeneous
Networks (HetNets) consisting of several tiers of small cell BSs overlaid within the cov-
erage area of the macrocells. The HetNets can provide better coverage and data rate to
the cell edge users in comparison to the macrocells only deployment. One of the key
requirements for the next generation networks is to maintain acceptable levels of both EE
and SE. In order to tackle these challenges, this thesis focuses on the analysis of the EE,
SE and their tradeoff for different scenarios of HetNets.

First, a joint network and user adaptive selection mechanism in two-tier HetNets is
proposed to improve the SE using game theory to dynamically re-configure the network
while satisfying the user’s quality-of-service (QoS) requirements. In this work, the pro-
posed scheme tries to offload the traffic from the heavily loaded small cells to the macro-
cell. The user can only be admitted to a network which satisfies the call admission control
procedures for both the uplink and downlink transmission scheme.

Second, an energy efficient resource allocation scheme is designed for a two-tier Het-
Nets. The proposed scheme uses a low-complexity user association and power allocation
algorithm to improve the uplink system EE performance in comparison to the traditional
cellular systems. In addition, an opportunistic joint user association and power alloca-
tion algorithm is proposed in an uplink transmission scheme of device to device (D2D)
enabled HetNets. In this scheme, each user tries to maximise its own Area Spectral Ef-
ficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. Fur-

ther, a near-optimal joint user association and power allocation approach is proposed to



investigate the tradeoff between the two conflicting objectives such as achievable through-
put and minimising the power consumption in two-tier HetNets for the downlink trans-
mission scheme.

Finally, a multi-objective optimization problem is formulated that jointly maximizes
the EE and SE in two-tier HetNets. In this context, a joint user association and power
allocation algorithm is proposed to analyse the tradeoff between the achievable EE and
SE in two-tier HetNets. The formulated problem is solved using convex optimisation

methods to obtain the Pareto-optimal solution for the various network parameters.
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Chapter 1

Introduction

In the first section of this chapter, the importance of the energy efficiency challenge in
the design of next generation wireless communication systems are discussed. The second
section describes the direction and focus of this thesis. The research contributions of this
thesis are outlined in the third section. The fourth section describes the outline of this
thesis. The final section highlights the author’s publication in various conferences and

journals during the tenure of his PhD studies.

1.1 Thesis Context

According to one of the recent reports from Cisco [1], the monthly global mobile
data traffic is expected to reach 24.3 exabytes by end of 2019, wherein 75% of the to-
tal monthly mobile traffic will be video. Almost 80% of the total video based monthly
data traffic will originate from indoors. The traditional cellular deployment consisting of
macrocell cannot cope with this ever increasing data traffic demands. Dense deployment

of macrocells in order to enhance the coverage area and increased number of mobile

1
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subscribers are not feasible due to their high deployment costs [2]. Due to this fact, a
paradigm shift is required for the next generation communication networks.

One of the emerging paradigms proposed for the next generation communication net-
works is the fifth Generation (5G) network to provide 1000 times more capacity along
with the data rates in range of 1 Giga bits per second (Gbps), end-to-end delay of 1 milli
second (ms) and 100 times less energy consumption in comparison to the current cellular
networks [2]. The promising seven enabling technologies for 5G networks are identified
as [3] 1) heterogeneous networks (HetNets), 2) device-to-device (D2D) communication,
3) massive multiple-input multiple-output (MIMO), 4) millimeter wave (mmWave) com-
munications technologies, 5) full duplex communication, 6) energy-aware communica-
tion and energy harvesting, 7) cloud-based radio access network (C-RAN) and virtualisa-
tion of network resources.

One of the promising solutions is HetNets promising solutions include providing a bet-
ter coverage at the cell edge and higher data rates as enabling technology for the future
generation networks. The HetNets include low-power overlaid BSs (or small cells), e.g.,
microcell, picocells, and femtocells, within the macrocell geographical area, deployed
by either the user or the network operator who share the same spectrum with the macro-
cells [4]. The purpose of HetNet is to allow the user equipments (UEs) to access the small
cells that overlap geographical coverage areas even though the UEs are within the macro-
cell [5]. The deployment of small cells has a great potential to improve the spatial reuse
of radio resources and also to enhance the transmit power efficiency [6], and in turn, the

network EE.
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Device-to-Device (D2D) communication is a promising technique which can be inte-
grated by cellular network providers to fulfil the spectral and energy efficiency require-
ments for the future 5SG wireless networks [7]. D2D communication can significantly im-
prove the resource utilisation due to the hop gain, the proximity gain and the reuse gain.
Each promising solution alone is unlikely to meet the QoS and throughput requirements
for 5G [2]. One of the promising solution is a hierarchical HetNets in which the above
mentioned technologies such as HetNets and D2D can coexist in parallel to improve the
network performance.

EE is, in fact, one of the key performance indicators for the next generation wireless
communication systems. The motivation behind the EE arises due to the current energy
cost payable by operators for running their access networks as a significant factor of their
operational expenditures (OPEX). Hence, green networking paradigm, which focuses on
the means to reduce the energy consumption in the wireless access networks, has received
alot of attention [8]. One of the fundamental system design requirements for the future
generation networks, such as the Fifth generation (5G) networks is to jointly optimise
contradicting objectives, e.g., to provide reliable coverage with higher SE and lower en-

ergy consumption and cost per information transfer requirements [9].

1.2 Objective and Scope of this Thesis

The main objective of this thesis is to analyse the EE , SE and their tradeoff in a two-
tier HetNet consisting of a macrocell and pico BSs. The focus of this thesis has been on

the design parameters and deployment strategies of HetNets that will allow us to achieve
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the required QoS for the next generation networks while maintaining an acceptable EE.
In this context, the trade-off between the conflicting objectives of improving the SE and
reducing the power consumption in different HetNet deployment scenarios have been
addressed. The main objectives of this thesis are outlined as follow:

Chapter 2:

1. To develop an accurate and tractable user centric network selection scheme in a

two-tier HetNet.

2. To investigate the impact of proposed user churning selection mechanism subject
to the network re-configuration and pricing mechanisms on the achievable SE of a

two-tier HetNet.

3. To propose a low complexity dynamic contextual user centric network selection
scheme with faster convergence to the near optimum achievable SE.

Chapter 3:

4. To propose a energy efficient deployment model to improve the achievable EE of
two-tier HetNets. The objective of this deployment is to improve the performance

of cell edge users by deploying pico BSs at the edge of macrocell coverage area.

5. To investigate the effect of the number of D2D pairs on the performance of both
EE and SE, in a traditional macrocell-only network and a HetNet consisting of

macrocell and pico BSs.

6. To investigate the effect of pico BSs deployed both randomly and at the cell edge

within the macrocell coverage area on the achievable EE.
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7. To investigate the achievable EE of the access and backhaul links by incorporating
the deployment of pico BSs in areas with poor signal strength from the serving
macrocell.

Chapter 4:

8. To study the interrelationship between the achievable EE and SE of two-tier Het-

Nets

9. To investigate the performance gains in terms of the achievable EE and SE in the
HetNets consisting of a macrocell and pico BSs in comparison to a traditional

macrocell only network.

10. To investigate the effect of the densification of pico BSs on the achievable EE and

SE of the two-tier HetNets.

11. To obtain the optimum number of pico BSs that maximises achievable EE and SE

for the two-tier HetNets

1.3 Thesis Contributions

The open challenges regarding user association and power allocation mechanisms in
multi-tier HetNets are highlighted, which sheds lights on the research direction. The
contributions of the thesis are summarised as follows:

In chapter 2, a joint network and user adaptive selection mechanism is proposed in
two-tier HetNets to maximise the SE using game theory to dynamically re-configure the

network while satisfying the user’s QoS requirements. The network selection problem
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is formulated using evolutionary game theory where the multi criteria decision making
(MCDM) mechanisms are utilised to define the utility function. The formulated game is
solved using replicator dynamics and an evolutionary equilibrium is considered as an op-
timal solution where no user is willing to deviate from its chosen strategy. In addition, an
evolutionary game with the reduced complexity is also developed which achieves similar
system performance with better computational efficiency in comparison to the previously
proposed approach.

In chapter 3, an energy efficient resource allocation scheme is designed for two-tier
HetNets. In this proposed scheme, a low-complexity user association and power alloca-
tion algorithm is proposed to improve the uplink system EE performance in comparison
to the traditional cellular systems. In addition, an opportunistic joint user association and
power allocation algorithm is proposed in an uplink transmission scheme of device to de-
vice (D2D) enabled HetNets in which each user tries to maximise its own Area Spectral
Efficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. In
order to address the fairness issues among the users, a near-optimal joint user associa-
tion and power allocation approach is proposed for the downlink transmission scheme.
In this proposed approach, a multi objective optimisation problem is formulated to inves-
tigate the tradeoff between the two conflicting objectives such as achievable throughput
and minimising the power consumption in two-tier HetNets for different weighting coef-
ficients and fairness levels.

In chapter 4, a multi-objective optimization problem using weighted sum method is

formulated to jointly maximize the achievable EE and SE in two-tier HetNets. In this
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context, a joint user association and power allocation algorithm is proposed to achieve
the tradeoff between the achievable EE and SE. The formulated problem is solved us-
ing convex optimisation methods to obtain the Pareto-optimal solution for the different

network parameters.

1.4 Thesis Outline

This thesis is organized into 5 chapters.

Chapter 1 provides an introduction to the thesis and presents the motivation for the
proposed research.

Chapter 2 describes the evolutionary game theoretic approach to model the network
selection from both user’s and network’s perspective.

Chapter 3 proposes different energy efficient resource allocation schemes are proposed
for multi-tier HetNets.

Chapter 4 investigates the EE-SE tradeoff as a multi-objective optimisation problem in
two-tier HetNets.

Chapter 5 concludes the thesis and also provides possibilities for future work.

1.5 Author’s Publication

Many of the results presented in the thesis are based on the following papers in various
journals and conferences.

Journal Papers
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6. Haris Pervaiz and Qiang Ni, “User Preferences-Adaptive Dynamic Network Selec-
tion Approach in Cooperative Wireless Networks: A Game Theoretic Approach”,
11th IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), Liverpool, UK, 25th-27th June 2012.



Chapter 2

User Centric Game Theoretic based
Network Selection in Cooperative 5G

Heterogeneous Networks'

This chapter proposes an adaptive realistic mechanism for joint network and user selec-
tion in cooperative wireless networks. We present a novel utility optimization method to
incorporate the quality-of-service (QoS) dynamics of the available networks along with
heterogeneous attributes of each user. The joint network and user selection method is
modelled by an evolutionary game theoretical approach by combining both self-control
of users’ preferences and self-adjustment of networks’ parameters. The replicator dy-
namic is then solved to seek an optimal stable solution. The simulation results demon-

strate that the inverse cumulative ranking scheme significantly improves the overall QoS

I'The work presented in this chapter has been published in Elsevier Journal on Future Generation Com-
puter Systems, Vol. 39, Pages:75-87, Oct. 2014 [Impact Factor: 2.64] and a shorter version has been
published in 11th IEEE International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom) held at Liverpool, UK in June 2012.
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performance and system parameters as compared to current available solutions in litera-
tures, e.g., [10-12]. The simulation results also show that by incorporating the Region of
Interest (Rol) scheme, the complexity of the evolutionary game, with or without network

re-configuration, can be reduced by 23% and 58%, respectively.

2.1 Related Work

A key role of resource management in wireless networks is to provide the highest pos-
sible measures of QoS exploitation according to the users’ requirements while maintain-
ing the high utilization of network resources. A major challenge arising nowadays is that
multiple networks coexist and are to be integrated with different properties, e.g., coverage
area, mobility support, QoS and price [13]. In such cases, the overall system is hetero-
geneous by its nature. Such heterogeneity requires that the integration of various access
technologies is to be coordinated by effective network selection algorithms. However,
existing network selection solutions present pros and cons regarding their performances
on various issues, e.g., optimality, complexity and convergence. Some network selection
algorithms for integrated Wireless Local Area Networks (WLAN) and cellular network
environments are presented in [14—16] . Specifically [15] proposes a methodology that
combines the Analytic Hierarchy Process (AHP) and the Grey Relational Analysis (GRA)
to compare networks on an end-to-end QoS level. Additionally, [16] provides an example
about how these methods can be applied and combined.

Another interesting topic in this research direction is to utilize evolutionary game the-

ory in cognitive radios. The idea is to allocate users between different available primary
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networks and to optimally select spare spectrum for secondary users. The corresponding
network selection issue is modelled in [10] using a payoff function combining both linear
pricing mechanism and allocated bandwidth to each user. Authors use replicator dynam-
ics to identify whether it is profitable for a user to change network and use random selec-
tion approaches to churn the users among different systems. On the other hand, [11] con-
siders a system with multiple access points, where each mobile user chooses the most ef-
ficient access point according to its requirements. In this case, a continuous-time Markov
chain model is developed to represent the arrival/departure processes as well as the ratio-
nal/irrational churning behaviours of users. By introducing an evolutionary equilibrium
solution, [11] investigates cooperative and non-cooperative pricing schemes that aim at
maximising the individual and total revenue of users and service providers, respectively.
Furthermore, authors in [12] consider incomplete information exchange between users to
model the network selection problem as a Bayesian game. The optimal solution is then
given by a Bayesian Nash equilibrium mapped with the equilibrium distribution of the ag-
gregate dynamics. The study in [17] introduces the Y-Comm interworking architecture;
a layered approach that supports both reactive and proactive handovers. Y-Comm frame-
work uses a Stream Bundle Management layer [18] to handle downward QoS residing in
the QoS plane of a mobile node. The layer collects context information from the network,
client and application domains to make intelligent choices in network selection and QoS
management.

The task of establishing trust and reputation becomes more challenging when the nodes
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are mobile. An in-depth information about trust and reputation as well as their applica-
tion in Wireless Sensor Networks (WSN) is presented in [19] which also describes the
components required to build Trust and Reputation Monitoring (TRM) systems. Other
related approaches on joint energy-efficient and QoS issues for heterogeneous networks
can be found in [20-23]

In most of the existing dynamic network selection schemes [10—12], when utilising
evolutionary game theory, all users lying within a geographic area are treated the same,
regardless of their locations and the offered QoS levels. This do not comply with the
realistic wireless environment. In contrast to the existing approaches, we propose a novel
joint network and user selection approach modelling realistic cooperative wireless envi-
ronments to search for evolutionary-equilibrium-driven optimal solutions. In this work,
the initial partition is computed using the AHP-based utility function in comparison to

the randomly chosen values which is considered in most of the current literature.

2.2 Chapter Organisation

The rest of this chapter is organized as follows. Section 2.3 describes the system model.
Section 2.4 describes the user preference model. Section 2.5 presents the formulation
of joint network and user selection based evolutionary game. Section 2.6 explains our
proposed iterative methods to find an optimal solution to the network selection problem
modelled as an evolutionary game. Section 2.7 presents the simulation results. Section 2.8

concludes the chapter.
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2.3 System Model

We consider a heterogeneous wireless access environment consisting of a macrocell
overlaid with a small cell (e.g., pico BS) as shown in Fig. 2.1. The coverage area of the
macro-cell is the service area (1) and (2), and that of small cell is the service area (1). The
interaction area, that is, the service area (1), is the region where Network A is completely
covered by Network B, and is the main focus of this work. In this setting, Network A is a
small cell network that lies within the geographic region of a macro-cell, i.e., Network B.
This work assumes that the channel is ideal (no fading is assumed) and that the only loss

is due to the propagation.

WiFi (Network A) WiMAX (Network B)

i

Population (Set of users within
service area ‘2') with access to
WiMAX network

Population (Set of users within
service area ‘1') with access to
both WiFi &WiMAX network

FIGURE 2.1: System Model of Cooperating Heterogeneous Wireless Networks

The handovers as classified as upward or downward. Upward handovers are considered
for users that move from a small coverage and high bandwidth network to a large coverage
and low bandwidth network. Correspondingly, downward handovers apply to users that

move from a large coverage and low bandwidth network to a small coverage and high
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bandwidth network. In other words, the users of Network B coming into Network A’s
range perform alternative downward handovers, while users of Network A coming into
Network B’s range perform upward handovers.

In this Section, we introduce a set of network selection terms defining the concept of
coverage area as the region where signals from an Access Point (AP), or a Base station
(BS), can be detected. The signals are assumed unreliable when users move on the bound-
ary points of the coverage area. Another assumption is that signals cannot be detected
beyond the coverage area.

In order to reduce the number of handovers, we define two thresholds; the handover
threshold represented by a circle with the corresponding radius R}, and the Remaining
Time in Network (RTiN) threshold represented by TrTin, Which is dependent on the ve-
locity of the user. If TrTin is larger or equal than the RTiN threshold for pedestrian users,
i.e., 20 secs, then the handover is completed before the handover threshold boundary is
reached. This indicates that the mobile users who move with high speed need to initiate
the handover process early. Later, we will incorporate a straightforward mathematical
handover reduction technique along with the game theoretical network selection mecha-

nisms to derive an intelligent and adaptive decision making process.

2.3.1 Mathematical Notations
Each network j has an associated capacity Cap; which shows the maximum number of
users that network j can serve. From the network selection and handover perspective, it
is an optimal strategy to serve the users with no mobility by the pico BS. It can provide

better QoS due to the smaller coverage area; on the other hand, mobile will be better
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off to be served by a macrocell so that we can avoid frequent handovers. Following this
concept, we define 6;; as the preference variable to indicate the degree of preference that
a network j would prefer to serve user i. For example, the static users are preferred by

pico BS than macrocell and this relationship is represented byGiSjt"jltiC such that xj-ta > yj-ta

sta

50 X3+ y¥* = 1 as follows:

sta

, x;% if jis a picoBS.
9?}““ = (2.1a)

yjta, if jis a macrocell.

On the other hand, pedestrian users are preferred by macrocells more than pico BSs

ped S0 xped +yped

i ; ;= 1 as follows:

destri
and are represented by 65.6 estrian

such that x?ed >y
ped .. .. .
gredestian _ %y 1S apieoBS. (2.1b)
y?ed, if j is a macrocell.

Let us also define co;; € {0, 1} that shows the status of connection between user i and

network j, i.e.,

1, if useriis connected to network j,
cojj = (21C)

0, otherwise.

The status of connectivity is also defined in terms of the coverage area with 6;; € {0, 1}

according to

1, if user i € coverage of network j,
Oij = (2.1d)

0, otherwise.

Another important considered parameter for the optimal decision is the quality of the

wireless link A;; represented in terms of the offered bit rate by network j b;;, i.e.,
o;jxb..>0, ifbiijZeq,
Aij = Y (2.1e)
0, otherwise,

where blrfq denotes the minimum required bit rate dependent on the application type k of
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any user. In addition, the coverage area of network j is denoted with ¥; and the distance
between user i and the BS or AP of the network j is defined by d;;. Finally, the mobility

support is denoted by m;; which can be formulated as

1—%, ifdij < Y-

0, otherwise.

2.3.2 Problem Formulation

This Subsection describes the proposed network selection problem formulated as a
Multi-Criteria Decision Making (MCDM) problem [24]. AHP is a structured and efficient
mathematical technique to analyze and solve complex decision problems with multiple
criteria. It decomposes a decision problem into three types of elements; the goal, the
n attributes and the v alternatives. It then chooses the best alternative by measuring the
weight of each alternative against the attributes and ultimately the goal. The element
“goal” is introduced to select an optimal network. The n attributes i.e., n=4, are price
(denoted by ny), reliability (denoted by n,), offered bit rate (denoted by n3) and mobility
support (denoted by n4). The v alternatives are the macrocell or pico BS available to the
users i.e., v=2. The optimal selection hierarchy for our proposed scheme is demonstrated
in Fig. 2.2.

Fig. 2.3 illustrates the three main stages of our proposed scheme: the formulation of
network selection (steps 1-3), the user model (steps 4-5), and the network model (steps
6-7), where d = 1, 2..., 7 stands for the step number. In this work, AHP is used to cal-
culate the relative weights for each attribute. It is worthwhile to mention that deleting the

alternatives might change the ranking of the remaining alternatives and lead to undesired
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Select the Suitable Network

Price Relaibility Offered Bit rate Mobility Support

Macrocell

FIGURE 2.2: Network Selection Hierarchy

outcomes. This is commonly referred to rank reversal problem[ref]. In this work, the rank

preservation is not enforced on the alternatives.

2.4 User Preference Model

Each user expresses its preferences for the following attributes: reliability, offered bit
rate, price and mobility support. Users that request voice applications are classified into
four types of payment plans: pay as you go, pay monthly, business and default. In default
payment plan, the user gives equal importance to all the attributes. In this Section, the
user preference model consisting of three steps are detailed in the following Subsections

2.5.1-2.5.3.

2.4.1 Defining User’s Preferences
To meet the specific needs of different types of user profiles, the preference model

includes a set of pre-defined payment plans p as shown in Table 2.1. Each attribute is
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Formulation of network 1
selection

Decision problem ‘2

Alternatives

nomOZmAmmmA T

5
User - —
model Weight of Weight determination
attributes »  using MCDM
methods
Priority ; Weight determination evaluation
riority score o h
using MCDM e .
Nniglt\;:k alternative mgthods decision matrix
7

FIGURE 2.3: Main Stages of our Proposed Network Selection Model

ordered according to its relative importance for the goals of each user payment plan as

demonstrated in Table 2.11.

TABLE 2.1: User Payment Plan Goals

User Profile Defining Objective

Pay as You Go Low price, acceptable
QoS

Pay Monthly Good QoS, Fixed price

Business Excellent QoS, price
within budget

Based on the order of attributes for voice application with a particular payment plan, the
most preferred choice is assigned by a lowest score of scale ‘1°, while the least preferred

choice is assigned by a highest score of scale ‘9’. The scores are equally spaced integers
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TABLE 2.11: Order of Network Attributes for Each Plan

User profile Order of Network Attributes

Pay-as-You- Price; Reliability; Bit rate; Mobility sup-

Go port

Pay-Monthly Reliability; Bit rate; Mobility support;
Price

Business Bit rate; Price; Reliability; Mobility sup-
port

with the space gap defined as [25]

where N, is the number of attributes and Sj,, S; denote the highest and the lowest possible
scores 1.e., 9 and 1, respectively. In other words, G represents the numeric space gap
between two subsequent scores and it is rounded to the next integer, e.g., when N.= 3,
Sp=9 and §;= 1 give G=231=2.666 ~ 3.

Throughout this chapter, the scores of attributes of each user payment plan for voice ap-

plication are shown in Table 2.III in order to provide examples for our model’s dynamics.

TABLE 2.11I: Attribute Scores per Payment Plan for Voice Application

Score | Pay as you go Pay Monthly Business

1 Price Reliability Bit rate

3 Reliability Bit rate Price

5 Bit rate Mobility support Reliability

7 Mobility support Price Mobility support
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2.4.2 Deriving Pair-Wise Comparison Matrix
In the second step, we build a matrix C,«, for pair-wise comparisons to calculate the
weights of the considered #n attributes and v alternatives. Let C be nxn square matrix, its
eigenvalue equation is given as:
Cy = ey, (2.2)
where y is a non-zero vector called eigenvector and € is an Eigenvalue of C. The vector y

contains the weight of each attribute. The above relation can also be written as

(C—el)y=0, (2.3)

where [ is the n X n identity matrix. In order for a non-zero vector y to satisfy the above
relation, C — €I must not be invertible. The determinant of C — €/ must be equal to 0.
For this reason, the lower triangular elements of C,x, comparison matrix will be the
reciprocal of the upper triangular elements.

Pair-wise comparisons describe the relative importance among the » attributes. As the
attribute cannot be compared with itself, all the diagonal elements of the comparison
matrix should be equal to 1. The relative importance of each attribute can be decided by
comparing each attribute with all others using the aforementioned 1 to 9 score scales. For
example, If s;,(n1) and s;,(n2) represent the scores of attributes n; and n, of user i for

the payment plan p, respectively, then each user can perform pair-wise comparisons by
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computing the relative score c;,(n1,n;) as follows:

cip(ny,ny) = (1—2"”%23) x10, sip(n1)< sip(n2), 2.4)
ip
1 B Sip(n2) ‘ .
m— (I_Sip(]/”)) x10 7Slp (n1)>slp (nz), (25)
C,'p (I’ll,nz) =1 N S,'p (nl) :S,‘p (l’lz) (2.6)

Based on the scores of four considered attributes for each payment plan p as mentioned
in Table 2.111, the relative score between two attributes can be computed by using equa-
tions (2.4), (2.5) and (2.6). In total, four different payment plans are considered which
in result require four comparison matrices, i.e.,C¥P%&, CV:PayM  Cv,Business o qCv.Default
As the constructing method is the same for each matrix, for brevity the computation of
the comparison matrix C¥P?€ for the pay-as-you-go plan (denoted by payg) with voice
applications is only shown. All the diagonal elements of the matrix CVP*¢ equal to 1,

with its upper triangular elements to be calculated as
1 20 1

1 60 3

Cipayg(N2,n4)= (1——) x 10 == R 6, Cipayg(nz,ng)= (1——) x10 =3,
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Its lower triangular elements are reciprocal of its upper triangular elements, i.e.,

1 1 1
Cipayg (”2»”1):W=§ » Cipayg (”&m)zng—»
) )

1 1
Ci ng.ny)=—————=— Cj mm=——————
ipayg ( 4, 1) Cipayg (l’l],l’l4) 9 ) ipayg ( 3, 2) Cipayg (I’lz,l’l:‘,) 47

1 1 ( ) 1
—_— ==, (j ng,n3)— ==
Cipayg (I’lz, l’l4) 6’ s ’ Cipayg (l’l3 ) l’l4) 3’

Cipayg (I’l4,l’l2) =

Consequently, C*"?*¢ is defined as

1 Cipayg (M1,12)  Cipayg(n1,13) Cipayg (11,14)
Cpavs_ Cipayg (n2,11) 1 Cipayg(M2:113)  Cipayg(n2,14) _
Cipayg (N3,11)  Cipayg (n3,m2) 1 Cipayg(n3,n4)
_Cipayg(”4a”1) Cipayg (M4,12)  Cipayg (n4,13) 1 |
_ 1 7 8 9 _
1 4 6
22.7)
b
IR

A matrix C is said to be consistent if every element of the matrix satisfies the constraints,
cij X cji =1 and cj X ¢xj = ¢;j. As the users preferences are based on random judge-

ments, the comparison matrices are often inconsistent. The judgement errors in the users
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preferences can be determined by a Consistency Ratio (CR) according to:

CI (emax_n)
R=_—_—_=— ™12 "/ 2.
R=Ri (n—1) xRI’ 28)

where €nax 1s the largest Eigen value of comparison matrix C, n is the size of compari-
son matrix C and RI values are shown in Table 2.IV. The errors in judgements of users
preferences are considered tolerable when CR < 0.1 otherwise, the pairwise comparisons

need to be adjusted.

TABLE 2.1V: Consistency Index (CI)

n 12 3 4 5 6 7 8 9

Random Consistency Index(RI) 0 0.58 09 1.12 124 132 141 145

2.4.3 Computing Corresponding Weights for Each Attribute
As mentioned in Section 2.4.2, the variable n represents the number of attributes, i.e.,
n=4, while n; € {n,,n»,n3,n4} represent the index of each attribute, i.e. price, reliability,
bit rate and mobility support, respectively. We will continue our modeling by computing
the weight wi, (ny) of the my attributes for each user i that belong to payment plan p
through applying the geometric mean method [26], [27]. More precisely, we will calculate
the k' element of eigenvector wj, denoted by Wip(nk) of attribute n; using the relative

SCOres as

Wip(nk) = {/Cip (”k;nl) X Cip (nk,nz) X Cip (nk,n3) X Cip (nk,mt), ng € {n1,n2,n37n4}

(2.9)
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Upon normalization of the Wiy () for each of the n; attributes, we determine the corre-

sponding weight wip () as:

Wip\Ng) = a0 ng € {I’ll,l’lz,n3,l’l4} (210)

2.5 Proposed Evolutionary Game Theoretic Network Se-

lection Framework

In this Section, we describe the formulation of evolutionary game to model the dynamic
behaviour of the joint network and user selection problem. The replicator dynamics are
utilised to capture the dynamics of strategy adaptation subject to the user’s diverse pref-
erences. The evolutionary equilibrium is considered to be the solution of the evolutionary
game. A distributed user centric network assisted selection mechanism is proposed on
the replicator dynamics. The optimal and stable solution is achieved by obtaining the

evolutionary equilibrium of the replicator dynamics.

2.5.1 Formulation of Evolutionary Game
Some fundamental notations of evolutionary game theory are detailed as follow:
e As shown in Fig. 2.1, any user lying within the service area (1) and (2) is a player
of the game.
e The strategy available to each player, i.e., a potential user, within the service area
(1) is to choose a suitable network. Accordingly, the strategy set can be denoted

by S = {macrocell, pico BS} which corresponds to the selection of macrocell and
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pico BS, respectively.

e The set of players which have same strategy set S constitutes the population in an
evolutionary equilibrium. As shown in Fig. 2.1, all the users lying within service
area (1) constitute one population whereas all the users lying within the service area
(2) constitute another population.

e The number of users (or players) choosing the strategy s € S in population (or
service area) / is denoted by Ns(l). The partition (or population share) of strategy s

(1)
N,
in population / can be then computed as zgl) = ]ﬁ where zgl) € [O, 1} .

e The partition for all two available strategies within the population / constitute the

population state denoted by a vector 7 = [Z(l) 0 } " such that z(l) +

macrocell ZpicoBS macrocell

o _
ZpicoBS =1

e The payoff measures the satisfaction level of a user selecting a strategy s given the
population state z). The payoff utility function is defined considering the strategies
of all users within the same population as well as the offered QoS to the users by the
network in terms of the network modulation scheme, load and available spectrum.
More details can be found in Section 2.5.3.

The assumptions considered in our evolutionary game are as follow:

e Users have no influence on the decision of other users and choose their strategy
independently.

e The rational behaviour of a user is to choose the wireless network with the highest

payoff.
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e Upward handovers is only considered i.e. churning of users from pico BS to macro-
cell.

e As seen from Fig. 2.1, users can be grouped into two populations. Users within
the same population have similar behavior. Without loss of generality, from now
onwards, we will focus on the population of users lying within the service area (1)
and the same analysis can be applied to the population of users lying within the
service area (2).

e The proposed evolutionary game is distributed in nature and the average payoff can
be calculated by the network itself and broadcast back periodically to all potential
users as shown below:

7o (NW) = (ZgizoBs X TooBs (N(l)) 2 psermcels X T e <N(1)>>

e The evolutionary equilibrium is a solution or Evolutionary Stable Strategy (ESS)* to
an evolutionary game and is defined as the stable fixed point of replicator dynamics
(defined in (2.17)) such that the population state will not change. Hence, the rate of
strategy adaptation will be zero, formulated as z'j(l): 0 Vjew.

e Once the Evolutionary equilibrium is achieved, no user will be willing to change its

strategy since its payoff is equal to the average payoff of the population 7rjh°m (N(1)> =

7Ny Ve

’It is also Nash Equilibrium due to it being best response to itself and it provides a strong refinement of
NE
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2.5.2 Adaptive vs Non-Adaptive User Preferences Model
To consider accurate system conditions, users’ preferences can be classified as either
non-adaptive or adaptive. For example, in the non-adaptive case, all users with a pay-as-
you-go payment plan who requesting voice application will have identical preferences.
On the other hand, in the adaptive approach, all users with a pay-as-you-go payment plan
requesting voice application, can have different preferences. In reality, even though dif-
ferent users may request the same application type, they often have different preferences.
Considering such pragmatic conditions, we will carry out the user survey to determine the
preferences of users that request voice application with a particular payment plan for the n
attributes. In our user adaptive approach, the relative scores for the n attributes are given
by user feedbacks utilising the conducted user survey and constituting the comparison
matrices C*"P@8, CVPOM  v.Business and cvDefaull The examples of user profiles for both
non-adaptive and adaptive approaches for the pay-as-you-go payment plan are shown in

Table 2.V.

TABLE 2.V: Example of User Profiles in Non-Adaptive and Adaptive Approaches for
Pay As You Go Payment Plan

Cip Cl2 | €13 | Ci4 | €31 |C32 | C42
Models

Non-Adaptive 7 8 9 178 | 1/4 | 1/6
Adaptive 1 1 5 1 9 177

9 |17 |15 |7 5 1/5

5 5 5 1 /5 |5
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2.5.3 Formulation of Payoff Function
An AHP-based utility function is utilised to obtain the payoff in order to quantify user’s
QoS constraints. In the following Subsection, we present the details on how to compute
the payoffs . To approach our modeling with a realistic view, we consider two different
notions of payoff to be computed by each user i; the heterogeneous and homogeneous

payoffs.

2.5.3.1 Heterogeneous Payoff
Considering price, reliability, bit rate and mobility support parameters, the heteroge-
(1)

neous payoff 7; j] of the user 7 in the network j within the service area (1) is computed

using an AHP-based utility function as

14

”z(jl) =Y wip(m) x aij(mp)), (2.11)

ng=ni

where a;j(ny) represents the relative quality level offered to the user i by the network j
for n attributes. The attribute can be classified as positive, i.e., the larger the better, or
negative, i.e., smaller the better. The calculation of a;;(ny) are dependent on the type of

attribute such that

.. ) a;'kj (k)
Positive attribute: a;; (ny) = -

maxj c v a;; (ng)

min al.(ng

Negative attribute: a;;(ny) = d i » i)
a;;(ng)

where a?‘j (ng) represents the quality level for attribute n; offered to user i by network j.
More details about the computation of quality level for each considered attribute can be

found in Section 2.5.3.3.
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Once ni(j-l)

is calculated for each candidate network, each user chooses the network that

offers the maximum heterogeneous payoff. Going through all of the users N within ser-

)
picoBS

(1)

macrocell

OINNTEO

picoBS macrocell” and z

vice area (1), we define the partition W= where z

represent the set of users that prefer pico BS or macrocell connections, respectively.

2.5.3.2 Homogeneous Payoff
Furthermore, homogeneous payoff is used to satisfy the assumptions of population in
an evolutionary game, where all users within a population are treated the same [10]. The
hom

homogeneous payoff T (N(l)) for any of the users in network j within service area (1)

is defined as [10]

7rjh°m <N(1)> =mean Rg.l), (2.12)

where Rj(l) represents the set of heterogeneous payoffs of all the N(!users within the
. . .. m_ (1) (1) (1) . .

service area (1) choosing network j, i.e., Rj =T T s TN (- The logic behind

(2.12) is that since the 7rjh°m (N(U) payoffs are the same for all users N within the
service area (1), the payoffs homogeneity can be considered as the mean of the set with

the heterogeneous payoffs Rj(l) .

2.5.3.3 Offered Quality level for each Attribute subject to User Specific QoS Con-
straints
Each user defines its minimum QoS thresholds a;; (n2) , a;;(n3) and a;;(n4) based on
reliability n,, offered bit rate n3 and mobility support n4, respectively, i.e.,
6;rrie if j € pico BS

a;;(na, static) = (2.13a)
1— GZ-S]?“’ ic otherwise
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Olf;ed if j € macrocell
a;;(na, pedestrian) = (2.13b)
1— Bi’]’.ed otherwise
b; g if li > 0
aj;(n3) = (2.13¢)
0 otherwise

. ped static
mij Teriy = 20sec or Tpyiy =0

a;i(ng) = (2.13d)
0 otherwise

Equations (2.13a)- (2.13d) denote that the optimal network selection is dependent on
users’ preferences and networks’ quality levels and it should also satisfy users’ minimum
QoS constraints for the considered attributes ny, n3 and n4. This approach provides
flexibility to users to evolve from one network to another satisfying the service specific

QoS constraints and achieving higher payoffs.

2.5.4 Proposed User Churning Selection Mechanism

The churning of users between networks is dependent on users’ relative ranks at their
previous networks. The ranks are decided considering users’ heterogeneous payoffs by
an Inverse Cumulative Ranking (IAR) mechanism. IAR inverts the heterogeneous payoff
of each user and normalises it over the cumulative heterogeneous payoffs of all users
within the same network. Then users are sorted in ascending order with the probability of
selection proportional to their relative rank. In addition, a random number lies within a
specific region to decide which user will shift from one network (e.g. j) to another (e.g.f).

Pseudo code can be found in the following Algorithm 2.1.
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Algorithm 2.1 Inverse Cumulative Ranking based User Churning Selection Algorithm
Initialization of variables:

ni(j-l) = indicates the heterogeneous payoff of user i in network j within service area(1)
(1)

" = indicates the heterogeneous payoff of user i in network}'\within service area(l)

ij
7rjh°m (N(1)>: indicates the homogeneous payoff of users for network j within service area(1)

7" (N(D)= indicates the average homogeneous payoff of all users within service area(1)
M = indicates the available networks
For jeM

Each user i computes its inverse rank 7; = #1

)+
Each user i computes its inverse cumulative rank r; = ZNLT
i=1 "

If 7hom <N(1>) <7 (N1)) then

If rand() € r; then

If 71?-(1) > 71:(1) then

ij i
User i chog)se network j
Else
User i choose network?
End If
End If
End If
End For

2.5.5 Network Adjustment and Re-configuration
The policy aims to increase the system performance by defining the benefit (or utility
value) of the network j € v for serving a particular user i. The overall benefit of a network
is dependent on the location of the user, the ideal modulation scheme for the user, the
transmitting power and the current traffic load of the network. The network adjustment

factor B;’dj for network j is represented as

. Cap™ail\ 4.
Bit = (1— d ) x 2 2.14)
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Variables Cap?v“ﬂ and Cap; represent the available and total capacity of network j,
respectively. The physical meaning of the network adjustment factor ﬁfdj is that users

closer to the base station or access point are more beneficial for the network>. Accounting

(1)

B¢’ we can compute the modified payoff i

; for each user i in network j within the

service area (1) satisfying the conditions mentioned in (2.13a) to (2.13d) as

14

7= [ L twiplne) xaij(ne)) | — B, 2.15)

ng=ni

From (2.15) it is straightforward that the payoffs (or utility values) of the users within
the service area (1) are dependent on the network configuration. This means that network
re-configuration can enhance the quality level offered by the re-configured network for n
attributes.

In our system, users evolve by changing their context to prefer the macrocell instead of
the pico BS; this can be achieved by re-configuring the macrocell by tilting or shaping the
antenna to increase its transmission power. The macrocell coverage is then re-assessed
until either all the users attain a satisfactory QoS or there are no payoff improvements

upon potential strategy alternatives.

2.6 Proposed Iterative Solutions

In this Section, an optimal solution to the user adaptive network selection is provided.

3Network providers can change the value of ﬁfdj by configuring the antennas of the base stations [28].
However, we omit such an option from our modeling as it is out of our research subject.
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2.6.1 Dynamic Contextual Network Selection Approach
In dynamic contextual approach, the optimal network selection is performed based on
user’s preferences and service specific QoS threshold constraints. In particular, the benefit
of network j to serve user i depends on the context of user in terms of how far the user is
away from the base station or directly analogous to the transmitted power. Such benefit

(1)

is considered in the modified payoff calculation 7; j in (2.15). However, to measure the
exact performance of the dynamic contextual approach as a solution to the user adaptive
selection, we consider two different approaches; the Full Evolution and the Region of
Interest (Rol).

In the Full Evolution approach, we model the optimal network selection problem as an
evolutionary game which considers all users within service area (1). On the other hand,
in our proposed Rol approach, we define a Rol threshold represented by a circle with
its corresponding radius Rg,; for pico BS as shown in Fig. 2.4 to focus on users that lie
closer to the cellular coverage boundary. More specifically, the optimal network selection
problem is now modeled as a Rol-based Evolutionary game, which only considers the

users within the service area (1) lying outside the Rol threshold circle and inside the

Handover threshold circle resulting in a considered region AD defined as:

AD = Rpo — RRor (2.16)

In each iteration, the Rol threshold circle Rg,; is iteratively reduced by step size Ad
which in result increases AD. After each iteration cycle, the updated Rol threshold can

be then calculated by R;M = Rpor — Ad to define the updated considered region AD as
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FIGURE 2.4: Region of Interest Concept

AD =R, — R,Ro ;- The stopping criterion of the proposed iterative Rol approach is set to
iteratively change the the Rol threshold circle until an optimal point after which no user

is willing to change its strategy.

2.6.2 Solution to the Proposed Evolutionary Game
At each iteration, the macrocell reconfigures itself by changing its transmission power
to provide enhanced modulation schemes, i.e. improved offered bit rate, to users within
the service area (1). Also, each user observes the payoffs of other users to adopt a more
profitable strategy resulting in a higher payoff. To decide whether it is profitable for a user
to change its strategy to move from its current network to another, we utilise the concept

of replicator dynamics to define the evolutionary equilibrium z'j(l) as follow [29]:

ZJ~(1)=GZJ~(1) <7rjhom (N(1)> _Z(Zj(l) ><7.L}hom (N(1)> ) ) , VJ. (2.17)
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Variable ¢ > 0 in (2.17) denotes the gain for the rate of strategy adaptation and con-

trols the speed of user in observing and adapting to the network selection. The evolu-

(1)

tionary equilibrium z‘jl is the optimal solution of the game and can be then obtained

as a fixed point of a replicator dynamic of each network j through solving (2.17) over

zj(l), ie., z'j(l): 0V j. The physical meaning of such equilibrium is that no user wants

to change strategy or network because all users’ payoffs are equal to the average pay-
off within the service area. Fig. 2.5 shows the flowchart of our proposed user adaptive

dynamic contextual selection mechanism.

2.6.2.1 A Clarification Example
Let us consider the replicator dynamics for two users in service area (1), i.e., N=2,

Also, let us assume that two strategies are available to each user; either select pico BS

(1)

or macrocell, i.e. v=2. Based on our aforementioned symbolization, there would be z;
number of users that choose pico BS and zgl) number of users that choose macrocell
connections. For traceability issues, we additionally admit that the payoff function is

given by U;j <N(1)> :lezgl)%—cjzzél). Then we denote the payoffs through the comparison

C11 C12 0 a

matrix C= = . The replicator equation for this case is calculated
C21 C22 b 0

by (2.17) as follows:

Zgl) = Gz(ll) [ (cllzil) +c12 z(l)> — {zﬁ” (cnzgl) +c12 zél)) + zé” (c21z§” “+ ¢ z§1)> H

(2.18)

After putting the values from the comparison matrix C, (2.18) can be rewritten as:

Z'(l]) = ngl) [ <a X zé”) — {z(ll) (a xz§])> +z§]) (b X z(ll)> H (2.19)
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FIGURE 2.5: Flowchart of User Adaptive Dynamic Contextual Selection Algorithm

For o= 1, we can rewrite (2.19) as follow:
1o ) {0 ox )24 o2 )}

o ) o ) o)
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A =N [a— (a+b) Zﬂ (2:20)

Since zgl) =1- zgl), (2.20) becomes

z‘(ll) = zgl) <1 —z%”) [a— (a+b)z§1)} (2.21)

Solving z'gl) over zj(l) we get that

2 (l —z(11)> [a— (a—l—b)zgl)] =0, (2.22)

The fixed Evolutionary Stable Points are derived as

é”z@lmgﬁy¢b>ﬁ

& =1,00r 5.0, b > 0.

Stability of fixed Evolutionary Stable Points

To evaluate the stability at the fixed point, the eigenvalues of the Jacobian matrix

corresponding to the replicator dynamics are evaluated. The fixed point is assumed

stable if all eigenvalues have a negative real part [19].

2.6.3 Analysis
This Subsection focuses on the proposed distributed evolutionary game theoretic based
algorithm to model the user centric network assisted selection mechanism. As explained
in Section 2.1, most of the existing work in the literature on evolutionary game theory
has mainly focussed on random user churning procedure as outlined in Algorithm 2.2.
Initially, the users randomly select a network. In Algorithm 2.2, each user checks if its
current payoff is less than the average payoff to randomly select a network such that the

payoff is more than its existing payoff. This process continues until the maximum number
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of iterations are reached.

In comparison to the existing approaches, our proposed Algorithm 2.3 compute the
initial partition subject to user’s preferences using Analytic Hierarchy Process (AHP)
as mentioned earlier in Section 2.4 and 2.5. In our proposed algorithm, we utilise the
user’s realistic payoff to decide about the switching from a current network to another
network. Our proposed user churning procedure try to increase the probability of worst
users within a network to churn to another network resulting in a better benefit or payoff

for both the users and networks. More details about our proposed algorithm is outlined in

Algorithm 2.3.

Algorithm 2.2 Evolutionary Game Theoretic based Network Selection Algorithm

Step 1: Each user randomly chooses a network j € {macro, picoBS } and set iter = 1.
loop

Step 2: Each user i measures its average achieved data rate and compute its payoff.
Step 3: This payoff information is then sent back by each user to the network.

Step 4: The average population payoff is calculated by the network.

Step 5: Network broadcast back the average population payoff to all potential users
Step 6: At each iteration, each user checks?*

If (zhom (N<1>) < @on(NM)) then

User i randomly choose network & such that 7rlh,‘€’m > 7tlh;’m where k # j
End If

Step 7: Set iter = iter + 1

if iter > Max, End loop ; otherwise goto Step 2.
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Algorithm 2.3 Proposed Evolutionary Game Theoretic based Network Selection Algo-

rithm
Step 1: Each user give their preferences for the considered attributes.
Step 2: The comparison matrix C>for each user is derived as explained in Section 2.4.2.
Step 3: The comparison matrix C for each user must satisfy the Consistency Ratio (CR)
as given by (2.8).
Step 4: The weight matrix W%for each user is computed by using (2.9) and (2.10).
Set Iter =1
Step 5: Each user compute its heterogeneous payoff 7;; using (2.15).
Step 6: Each user chooses a network j € {macro, picoBS} with highest heterogeneous
payoft.
Step 7: Each network j compute homogeneous payoff ﬂjhom using (2.12) based on
the heterogeneous payoff information broadcast by the users choosing network ;.
Step 8: The average homogeneous payoff is computed as 7" = Y. jZj % njhom
Step 9: At each iteration Iter, call User Churning Procedure outlined in Algorithm 2.1
Step 10: Set Iter = Iter + 1
Step 11: Repeat Steps 5 to 10 until convergence is achieved or Iter > Max.

“In Step 6, the random user selection algorithm is used to churn users from their current network to
another network which is mainly used in most of the work in the literature on Evolutionary Game Theory
such as [refs]

>The size of comparison matrix C is n x n. An example of comparison matrix C is given in (2.7) where
the diagonal elements represents the user preference for an attribute with itself and hence it is equal to 1.
The upper triangular elements represent the user preference for an attribute with another attribute so its
values are on a scale between 1 to 9 whereas the lower triangular elements are an inverse of their respective
upper triangular elements

The size of weight matrix W is n x 1. Each element w; € W must have a value between 0 and 1 such
that),w; = 1.

2.7 Results and Discussions

In this Section, the simulation configuration and results are presented. The performance
comparisons between numerical and analytical methods as well as the performance of the
aforementioned iterative methods are further analysed in this Section. In the following,
the extended evaluations on numerous features of our proposed network selection scheme

1s described.
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2.7.1 Simulation Setup

We consider a heterogeneous wireless network with two service areas as shown in
Fig. 2.1, where all users request voice services. The number of users in the area (1)
is set to NU) = 100, while in the area (2), it is N = 100. The pico BS uses 512
bit-size Fast Fourier Transform (FFT) Orthogonal Frequency Division Multiple Access
(OFDMA) and supports the IEEE 802.16 standard with total bandwidth 7MHz. On the
other hand, the WiMAX macro cell uses 512 bit-size Fast Fourier Transform (FFT) Or-
thogonal Frequency Division Multiple Access (OFDMA) and supports the IEEE 802.16
standard with total bandwidth SMHz. It should be noted that WiMAX is used as a candi-
date air interface technology but this proposed framework can be easily extended to latest
air interface technologies as well. Furthermore, the pico BS expands in a 300 meters ra-
dius coverage area covering the service area (1) and lying within the coverage area of the
macrocell. The macrocell coverage has 1000 and 2000 meters minimum and maximum
radius, respectively covering both areas (1) and (2). We also assume that the pricing coef-
ficient pi is set to 0.005 while considering an AHP-based utility function setting o =1 for
the replicator dynamics. The partition is defined as the proportion of the users selecting

pico BS in the service area (1).

2.7.2 Comparison between Non-Adaptive and Adaptive User Prefer-

ences Model
Fig. 2.6 and Fig. 2.7 illustrate the proportion of adaptive users with four different pay-

ment plans that choose macrocell or pico BS, respectively. The corresponding proportion
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of non-adaptive user preference is shown in Fig. 2.8 and Fig. 2.9, respectively. Observing
the iteration numbers 1, 9, 12, 15 and 19 where users churn from pico BS to macrocell. It
is observed that the adaptive scheme significantly outperforms the non-adaptive scheme.
In the adaptive scheme, the users belonging to the same payment plan can have diverse
preferences whereas all users belonging to the same payment plan can have identical
preferences in the non-adaptive scheme. It is more practical to use adaptive scheme, and

hence for brevity, the rest of the simulations are carried out for the adaptive scheme.
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FIGURE 2.6: Proportion of Users with Adaptive Preference Model Served by macrocell

2.7.3 Impact of Pricing and Network Adjustment Mechanisms
From the network selection perspective, it is important to understand the impact of the

pricing mechanism on the decision of selecting an optimal network. In this work, we
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FIGURE 2.7: Proportion of Users with Adaptive Preference Model Served by pico BS

study the impact of constant and linear pricing mechanisms on the network selection.
In constant pricing mechanism, the network charges a constant price from their users
irrespective of their load whereas in the linear pricing mechanism the network charges
a load dependent price from its users. We observe that as the number of users choosing
macrocell or pico BS increases, their respective price per user also increases. In this work,
the pricing co-efficient pi is set to 0.005, i.e.,pi = 0.005. The pricing mechanism can also

be used as a load-balancing parameter.
2.7.3.1 Performance of Initial Partition using Different Allocation Strategies
In Fig. 2.10 we investigate the performance of the random and AHP-based allocation

strategies by observing the initial proportion of users that choose each network. In other
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FIGURE 2.8: Proportion of Users with Non-Adaptive Preference Model Served by
macrocell

words, Fig. 2.10 shows the effectiveness of the network adjustment in terms of reducing
the churning of users from one network to another. Networks can make their choice on
whether to consider the network adjustment or not in their utility. For this simulation, we
consider three pricing scenarios: a) each network offers the same price; b) the pico BS
price is lower; and c) the macrocell price is lower. In addition, two different thresholds are
set for random allocations: a) rand < 0.75 when all users who have randomly generated
number less than 0.75 to choose the pico BS; and b) rand < 0.9 when all users who
having a randomly generated number less than 0.9 to choose pico BS. The focus is on
the computation of an AHP-based allocation with and without network adjustment and

re-configuration. In the case of network adjustment and re-configuration, both pico BS
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FIGURE 2.9: Proportion of Users with Non-Adaptive Preference Model Served by pico
BS

and macrocell offer the same price. The proportion of the pico BS users with a constant

. . o (1) B (1) _
price at the initial points is computed as z,,..,,..; (0) = 0.52 and z,;.,55(0) = 0.48.
When network adjustment and re-configuration is not considered, the initial points for
. 1 1
the constant price case are computed as z,(mz crocetr (0) = 0.24 and z(piz ops(0) =0.76. In
both scenarios, the computation of the corresponding initial points are used to calculate
the linear price for the next iteration, and hence, the proportion of users choosing the
macrocell or the pico BS is re-computed.

From the numerical results, the impact of constant or linear pricing mechanisms, the

behaviour of network adjustment, and different allocation mechanisms are observed on
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FIGURE 2.10: Initial Proportion of Users Choosing pico BS under Constant Price for
Different Allocation Mechanisms; a)choose pico Bs if random no is greater than 0.75, b)
choose pico Bs if random no is greater than 0.9, ¢) AHP based allocation with network
adjustment with both networks offering same price, d)AHP based allocation without net-
work adjustment with both networks offering same price, ¢)AHP based allocation with
network adjustment with pico BS offering lowest price, f) AHP based allocation without
network adjustment with pico BS offering lowest price, g)AHP based allocation with net-
work adjustment with macrocell offering lowest price, h) AHP based allocation without
network adjustment with macrocell offering lowest price

the user’s network selection. From Fig. 2.10, it is quite evident that the AHP-based alloca-
tion with network adjustment and re-configuration using linear price mechanism provides
more sensible allocations in comparison to the other allocation mechanisms. It also re-
markably reduces the churning of users from one network to another one.
2.7.3.2 System Blocking Rates
In Fig. 2.11, the impact of different allocation mechanisms with or without network
adjustment is investigated on the system blocking rates. The results demonstrate the ef-

fectiveness of AHP-based allocation with network adjustment in terms of reducing the
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system blocking rates as compared to the case where there is no network adjustment.
The results demonstrate the effectiveness of our proposed selection scheme incorporating
AHP-based allocation with network adjustment for three different pricing cases of con-
stant price outperforms in reducing the system blocking rates compared to the random

allocation and AHP-based allocation without network adjustment.
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FIGURE 2.11: Initial System Blocking Rates under Constant Price for Different Allo-
cation Mechanisms; a)choose pico Bs if random no is greater than 0.75, b) choose pico
Bs if random no is greater than 0.9, c) AHP based allocation with network adjustment
with both networks offering same price, d)AHP based allocation without network ad-
justment with both networks offering same price, €) AHP based allocation with network
adjustment with pico BS offering lowest price, f) AHP based allocation without network
adjustment with pico BS offering lowest price, g) AHP based allocation with network ad-
justment with macrocell offering lowest price, h) AHP based allocation without network
adjustment with macrocell offering lowest price
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FIGURE 2.12: Allocated Payoff to Each User in AHP based Allocation using Linear
Price with Network Adjustment
2.7.3.3 Convergence to Evolutionary Equilibrium

Fig. 2.12 and 2.13 present the utility values in each iteration to show the impact of
churning users among networks for linear and constant pricing, respectively. For this sim-
ulation, most users in area (1) initially select the pico BS. We then reconfigure the macro-
cell by slowly increasing its transmission power at each iteration and observe churning of
the users in area (1) from the pico BS to the macrocell. Also, as the number of users in
area (1) choosing pico BS decreases, the traffic load in the macrocell increases. As a re-
sult, the allocated utility value becomes smaller for those users who choose the macrocell
in area (2). Therefore in Fig. 2.12, as the number of users choosing macrocell in area (1)
increases, their allocated utility value increases in each iteration for the linear price case.

In the 17th iteration of Fig. 2.12, it is observed that all users, whether they choose pico
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BS or macrocell, have identical utility value. In other words, Fig. 2.13 shows that the
evolutionary equilibrium (where all users have chosen an optimal network and would not

deviate among networks) can be achieved earlier in comparison to the linear price case.
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FIGURE 2.13: Allocated Payoff to Each User in AHP based Allocation Using Constant
Price with Network Adjustment
2.7.3.4 Dynamics of Strategy Adaptation:

Fig. 2.14 illustrates the trajectories of strategy adaptation for AHP based allocation with
and without network adjustment, for constant and linear pricing. Results demonstrate that
the proposed scheme for incorporating linear price and network adjustment gives the most
accurate partition which reduces the number of handovers and achieves the lowest load in
the pico BS in the first iteration. This result also demonstrate the effectiveness of network
adjustment for constant price case in achieving the accurate partitiion compared to the no

network adjustment case.
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FIGURE 2.14: Trajectories of Strategy Adaptation towards Evolutionary Equilibrium

2.7.4 Performance Comparison of Full Evolution and Rol based Dy-

namic Contextual Approaches

Fig. 2.15 show the number of users moved from pico BS to macrocell and the number
of users who need to be considered for user adaptive selection mechanism by iteratively
changing the Region of Interest. Specifically, Fig. 2.15 shows that if the macrocell is not
re-configured, the Rol based Dynamic Contextual Approach selects the optimal region
AD = 0.25. Without degrading the performance this selection reduces the number of
users or players in an evolutionary game within the service area (1) required to adopt
user adaptive network selection mechanism by 58% as compared to the Full Evolution
Dynamic Contextual Approach. Fig. 2.15 also shows the case when macrocell is re-

configured; the Rol-based Dynamic Contextual Approach selects the optimal region AD =
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FIGURE 2.15: Performance of ROI based Dynamic Contextual Approach as Compared
to the Full Evolution Dynamic Contextual Approach(i.e. ROI=1.0)

0.55 which reduces the number of users or players in an evolutionary game within the
service area (1) required to adopt user adaptive network selection mechanism by 23%
as compared to the Full Evolution Dynamic Contextual Approach without degrading the

performance.

2.8 Summary

The joint network selection algorithm from both user and network perspectives are
proposed in cooperative heterogeneous wireless systems. Initially, the user preferences
are modelled in terms of QoS, interface preference, price and mobility support. Rely-
ing on these four preferences, an adaptive user preference model is firstly formulated,

where users can change their strategy aiming to achieve better services. In particular,
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the network is re-configured by iteratively controlling its transmission power and adjust
its policy by introducing a utility for the service provided to the users within the cover-
age area. Finally, a game-theoretic approach for adaptive network selection is proposed,
where an evolutionary equilibrium guarantees an optimal solution. In addition, a novel
Rol-based Dynamic Contextual strategy is also proposed which significantly reduces the
number of users to be considered in an evolutionary game without degrading the ser-
vice. The simulation results showed that the proposed scheme outperforms the existing
solutions in terms of user allocation, traffic load, blocking rates, convergence and QoS

performance.



Chapter 3

Energy Efficient Resource Allocation in

Heterogeneous Networks'

In Chapters 1 and 2, we have highlighted that the EE is considered as a key performance
metric in the design of the future generation networks which requires advance techniques
and algorithms to address these issues. It should be noted that the HetNets can improve
the overall system coverage and throughput by deploying small cells at the edge of the
macrocell coverage. This improvement is achieved by bringing the small cells closer
to the users resulting in a smaller path loss and better service for the cell edge users.
However, a dense deployment of these smaller cells without considering EE can result
in a higher power consumption causing service degradation. The focus of Chapter 2

was to maximise the system throughput of the two-tier HetNets using the evolutionary

IThe work presented in this chapter have been published in three IEEE conferences; 1) 24th IEEE In-
ternational Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), held at London,
UK in September 2013; 2) 20th IEEE International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD), held at Guildford, UK in September 2015; and 3) IEEE
International Conference on Communications (ICC), held at London, UK in June 2015.
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game theory. In comparison to the work outlined in Chapter 2, we extend our existing
system model to incorporate the energy-efficient radio resource allocation in device-to-
device (D2D) enabled multi-tier HetNets subject to the minimum QoS requirement and
maximum transmission power constraint. Recently, the convex optimisation methods
have gained a lot of attention to address the energy-efficient radio resource allocation
issues in D2D enabled multi-tier HetNets.

This chapter focuses on energy efficient resource allocation schemes in multi-tier Het-
Nets. This chapter proposes joint user association and energy-efficient resource alloca-
tion in the uplink of multi-user two-tier Orthogonal Frequency Division Multiplexing
(OFDM) Heterogeneous Networks (HetNets) subject to user’s maximum transmission
power and minimum-rate constraints as outlined in Section 3.4. The proposed scheme
aims at achieving high rates at low powers satisfying the user’s quality-of-service (QoS)
constraints (in terms of minimum-rate requirements) by offloading the users with low
signal to noise ratio (SNR) from macrocell to the pico base station (BS). A SNR based
rate proportional resource allocation approach is proposed to transform the minimum-rate
constraint into a minimum required transmission power constraint on each subcarrier. The
single-user single-carrier and multi-user multi-carrier energy efficiency (EE) maximiza-
tion problems are then solved under maximum and minimum power constraints using
Karush-Kuhn-Tucker (KKT) conditions. The impact of users’ maximum transmission
power and minimum-rate requirements on EE and throughput are investigated through
illustrative results. The rate-proportional approach is evaluated against the equal rate al-

location approach for different user associations and various numbers of users, maximum
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transmission power, and circuit powers. Significant gains in EE can be achieved for the
HetNets if the path loss based user association is combined with the proposed SNR rate
proportional mechanism.

A multi-tier architecture consisting of a macrocell overlaid with small cells, e.g., pico
base station (BS), with provision of relays and device-to-device (D2D) communication is
needed to satisfy the quality-of-service (QoS) requirements in a joint spectrum and en-
ergy efficient manner for the future Fifth generation (5G) networks. D2D communication
enables the users located in close proximity to each other to communicate directly with-
out going through the macro-cell, and hence, can be utilised to offload the traffic from the
cellular infrastructure. Section 3.5 investigates the trade-off between Area Energy Effi-
ciency (AEE) and Area Spectral Efficiency (ASE) in D2D-enabled uplink heterogeneous
networks. The tradeoff is modelled as an optimization problem, in which each user wants
to maximize its own ASE subject to its required AEE levels. Taking into consideration
of the AEE requirement and maximum transmission power constraint, a distributed re-
source allocation approach is proposed to jointly optimize the mode selection, subcarrier
and optimal power allocation by exploiting the properties of fractional programming. The
relationship between the achievable AEE and ASE trade-off is investigated with different
network parameters.

In Section 3.6, a multi-objective optimization problem (MOP) is proposed to jointly
investigate the tradeoff between throughput and backhaul energy efficiency (BEE) using

-fair utility function for two different backhauling technologies in downlink transmission
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scheme of a two-tier HetNets. We then transform the proposed MOP into a single objec-
tive optimization problem (SOP) employing the weighted sum method to obtain the com-
plete Pareto Frontier solution set with minimum QoS requirements and rate fairness level
. The transformed SOP is solved in an iterative manner using Lagrangian Dual Decom-
position (LDD) with a subgradient method providing a near-optimal solution. Simulation
results demonstrate the effectiveness of our proposed approach in reducing the total area
power consumption irrespective of the backhauling technology by dynamically adjusting
weighting coefficient and rate fairness level . Our numerical results also demonstrate
the fundamental tradeoff between throughput and BEE for different parameters such as

weighting coefficient and rate fairness level .

3.1 Related Work

Recently, several works have considered throughput maximization to measure the per-
formance in the OFDM systems for downlink [30], uplink [31] [32] [33] and joint uplink-
downlink [34] transmission schemes. On the other hand, when EE is the considered
performance metric, [35] proposes an EE-maximization link adaptation and resource al-
location technique for an OFDMA system considering fixed circuit and transmit power
by improving the mobile EE for the flat-fading OFDMA channels. Their approach is
generalized to maximizing the uplink EE in frequency selective channels in [36]. A low
complexity time-sharing bandwidth allocation approach to maximize the EE of a down-
link flat-fading channel is proposed in [37]. Further, energy-efficient channel and power

allocation problem in the uplink of an OFDM system is considered subject to maximum
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transmit power constraint, based on the assumption that each user can transmit at one
channel in [8], wherein two different energy scheduling algorithms were proposed. In
[38], the authors investigate the tradeoff between spectral and energy efficiencies as a
function of the circuit power, power amplifier (PA) efficiency and channel power gain
in time-varying Rayleigh fading point-to-point channels. These works, however, do not
consider the impact of users’ minimum-rate requirements and the use of HetNets on EE
in OFDM systems.

The major contribution of this work is to propose a joint subcarrier and power allocation
technique for maximizing EE within HetNets, based on the user association when user’s
minimum-rate requirements are to be satisfied. Specifically, we consider the pico-BS-first
user association to offload the users from macrocell to pico BS to enhance EE. Further, we
propose a rate-proportional mechanism to divide the user’s minimum-rate requirements
in between its associated subcarriers based on the subcarriers SNRs. Specifically, when
SNR of a subcarrier is higher, higher minimum-rate will be allocated to that subcarrier,
and vice versa. This proposed approach is compared to the equal rate allocation ap-
proach, wherein the user’s minimum-rate requirement is equally allocated among all the
subcarriers [29] [33]. The minimum-rate constraint for single-user and multi-user cases
is transformed into minimum power constraints on each subcarrier. The power allocation
using Karush-Kuhn-Tucker (KKT) conditions are then used to compute the instantaneous
subcarriers transmit powers while not violating the users’ maximum transmit power con-

straints. Simulation results indicate that the proposed rate proportional approach enhances
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the EE in the order of 10.2% as compared to the equal rate approach. Our study also re-
veals that EE increases with the maximum transmission power (Ppax) While on the other
hand, the EE decreases with increase in minimum-rate required by the users. The EE

increases with the number of users and decreases with the distance from their connecting

BS.

3.2 Chapter Organisation

The rest of this chapter is organized as follows. Section 3.3 describes the system model.
Section 3.4 describes the low-complexity suboptimal user association and power alloca-
tion in two-tier HetNets. Section 3.5 describes the formulation of an optimisation prob-
lem to maximise the Area Spectral efficiency (ASE) subject to the Area Energy Efficiency
(AEE) requirement in multi-tier HetNets. Section 3.6 presents the multi-objective opti-
misation problem to optimise the conflicting objectives such as maximise the throughput
and minimise the transmission power in two-tier HetNets from the fairness perspective.

Section 3.7 concludes the chapter.

3.3 System Model

We consider a three-tier (or Hierarchical) HetNets as shown in Fig. 3.1 where tier-1
is modelled as macrocell, tier-2 is modelled as pico BSs and tier-3 is Device-to-Device
(D2D) communication. In total, there are M BSs where BS| is a macrocell (Mc) and BS,,
is a pico BS (PB) (m € {2,3,--- ,M}). The pico BS is connected to the macrocell via a

high capacity wired backhaul. There are N users (n € {1,2,---,N}) randomly generated
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and uniformly distributed within the coverage area of three-tier HetNets with K subcarri-
ers (k€ {1,2,---,K}). The system bandwidth B is divided equally within K subcarriers,
1e., By = % Let A4¢c ={1,2,---,C} denote the set of cellular users associated with either
macrocell or M — 1 pico BS and Ap = {C+1,C+2,--- ,N} denote the set of potential
D2D users. The set of active users in the network could be expressed as .4 = MU Ap.
The potential D2D users have the opportunity to select their operation mode (i.e., cellular
mode or dedicated mode) as they are covered by either the macrocell or M — 1 pico BS.
It is also assumed that the user is associated to same BS for both downlink and uplink
transmission scheme. It is worthwhile to mention that this model is also applicable to

multi-tier HetNets consisting of multiple macrocells and different type of small cells.

Macro cell

FIGURE 3.1: Three-Tier HetNets scenario

At this stage, the effect of the interference from adjacent cells is not taken into consid-
eration. The co-channel interference between pico BS and macrocell is catered assuming

that each of them communicates the usage of subcarrier with each other using Almost
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Blank Frame (ABF). We consider an orthogonal subcarrier selection scheme, introduced

in [39], that assigns each subcarrier exclusively to either pico BS (PB), macrocell or D2D

(PB) M)
Oy

pair at any time. Let and G,E ., denote the subcarrier allocation indices for pico BS

and macrocell, respectively. If the subcarrier k € Kpp, for k = {1,--- ,K}, is allocated to

PB) (PB)

user n, for n = {1---N}, then G,E = 1, and otherwise o,

h = 0. It is assumed that a

subcarrier can only be assigned to one user in a scheduling interval. To maintain the QoS
requirements, each user has a minimum-rate constraint. We assume that the minimum-

rate requirement of all users are identical and is referred by Rpyip.

3.3.1 Uplink System Model

The signal-to-noise-ratio (SNR) of the n-th user in D2D or cellular modes (served by

either macrocell or pico BS) on subcarrier k are given as follow

w_ P
Yen = 5@ (3.1a)
PaaPL
o_ P
i~ (3.1b)

" pRpLY

h,((drz represent the channel amplitude gain on subcarrier k£ from the n-th D2D pair to its
receiver whereas h,(f,z represent the channel amplitude gain on subcarrier £ between the
n-th cellular user and the macrocell (or pico BS). The distance-based path loss for n-th
user in D2D or cellular mode are denoted by PLﬁld) and PL;C), respectively. The noise

power at the macrocell (or pico BS) and the D2D receiver, respectively, are given by

pf q= pric = BNy, where Nj is the noise spectral density.
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The instantaneous rate achieved by user n on subcarrier k choosing either dedicated

mode ’d’ or cellular mode ’c’ are given respectively by

t40) = Belogy (14945 x plf)) Yk € Ky, ¥n € Ap (3.20)
1) = Bylog, (1 + 7 X p,(fﬁ) ,Vk € Ke,Vn € ¢ (3.2b)

Here, p,((drf and p,(f}i indicate the power allocated to the user n on subcarrier k for D2D and

cellular modes, respectively.
In simple terms, the potential D2D transmitter chooses a dedicated mode if ‘cdrlgd,z >

( )

rkle, where r,(cfln) 1s the achievable rate in dedicated mode, r,icn is the achievable rate in the
cellular mode and 7, is a biasing factor. In cellular mode, the D2D pair will need two
subcarriers (one in uplink and one in downlink) and due to this reason 7; = 2 for the
dedicated mode. To guarantee the QoS of D2D pair, both uplink and downlink SNRs
should be larger than a given threshold Yi,. We assume that the macrocell or pico BS

. .. down
can tune 1ts transmission power to ensure that '}/]Ecn7 W )

1s no less than 71&2 [40]. In order to
simplify the optimisation problem, it is assumed that the subcarrier used by one D2D pair
cannot be reused by any other D2D pair. Then, the achievable rate of user n on subcarrier
kis

Tkn = mnr,(cdn) +(1— m,,)r,((f,)l, (3.3)
where m,, € {0,1} is a binary variable used to distinguish between the different modes

where the cellular mode is represented by m,, = 0 whereas the dedicated mode is repre-

sented by m,, = 1. The system sum rate in an uplink transmission scheme can be expressed
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as

K N
R=Y Y ra (3.4)
k=1n=1

Similarly, the transmit power of user n on subcarrier & is given by

Pin = m-p) + (1= my).p) (3.5)

In practice, the transmission power available at n-th user, P,, is limited to a maximum
threshold, i.e., P,"** which can be formulated as:

K
P.=Y pin < P™ Vn (3.6)
k=1

Hence, the overall power consumption and the transmission power in an uplink of D2D

enabled communication can be modelled as:

P =gPr+(1+my,)Pc, (3.7a)
N K

Pr=Y"Y pin (3.7b)
n=1k=1

where &) is an inverse of power amplifier efficiency.
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Energy Efficiency (ngg) is defined as the amount of data transferred per unit energy

consumed by the system (usually measured in (b/J) and is defined as:

R
&Pr+ (1 "’mn)PC,

MEE = (3.8)

where R denote the total achievable data rate compromising of the achieved data rates
in the macrocell, small cell and D2D communication. Ngg is strictly quasi-concave with
respect to transmission power Pr. Hence, there exists one and only one optimal solution
that maximises Ngg. 7Mgg monotonically increases with Pr, when Pr € [O,P;;EE] while it

monotonically decreases with Pr, when Pr € [P;; s )

3.3.2 Downlink System Model

The received downlink SNR of user n» on subcarrier k associated with network m is

given by

h(m)

m) _ k.n 3.9
o NoBPLI™’ G2

where h,(:’r;l) is the channel gain between network m and user n on subcarrier k, Ny is the
thermal noise at user n, PL;“D is the pathloss between user n and network m and By, is the
subcarrier bandwidth spacing assumed to be fixed in each network m.

The instantaneous rate of user n associated with network m on subcarrier & is given as

follow:

i = Bilogy (1493 < p{7 ). (3.10)
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The total data rate of user 7 is
& & (m)_(m)
R, = E z Opn Tk 3.11)

where G,E'Z) is the subcarrier allocation indicator such that G,E’Z) € {0,1}.

3.4 Optimising User Association and Power Allocation in

Heterogeneous Networks

From (3.8), we can observe that improving the EE can result in reduction of the user
achieved rate, and hence degrading the user’s QoS. In this Section, we consider the UE
minimum-rate requirement along with its maximum transmit power constraint in order to

investigate the tradeoff between the achieved EE and QoS requirements.

3.4.1 Received Power based User Association

In order to avoid frequent vertical handoffs in HetNets, user association rules are de-
fined for wireless transmission [41]. In traditional homogeneous cellular networks, the
user association is based on the received signal strength [42]. One of the key issues is
that all BSs within the same tier should have identical biasing factor. Unique association
of users with the macrocell or pico BS is assumed. Specifically, each user can only be
associated with one BS. Define the user association index for pico BS by apg , which is
equal to 1 if the user n is associated to the pico BS and 0, otherwise. Similarly, we can
define the user association index for macrocell by ame , = (1 —app ).

Different user association schemes for the uplink of HetNet with N = 25 are shown
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FIGURE 3.2: Different User Association Metrics

in Fig. 3.2. Fig. 3.2 depicts that pico-BS-first associates more users with pico BS as
compared to the other user association techniques. In this work, we propose uplink path
loss based association in which the user associates to the BS with the lowest path loss.
The motivation behind using the pico-BS first [42] (or path loss) association is to associate

the users with the closest BS which can help in maximizing the overall EE of the system.
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3.4.2 Proposed Low Complexity Solution
Here, we consider the case of a Multi User-Multi Carrier (MU-MC) scenario with N
UEs and K subcarriers in two-tier HetNets” subject to the maximum transmission power
and minimum rate requirement constraints. In an uplink scenario, multiple users trans-
mit data towards a BS so each communication link between user and BS introduces an

individual P¢c. Hence, the EE maximization problem can be formulated as:

X — max Lozt Rt 7 (3.12)
EE K><Pc+2n 1 Pt Picn

s.t.
K
Z Gknxpkn Pmax,Vne{l,'-~,N}
Ry >R™ Yne{1,--- N}

N
Y ovn=1Vke{l,-- K}
n=1

Pk.n > 07 Ok.n € {07 1}7 vnvk

Here, 0 is an N x K matrix with each element o} ,, indicating the allocation of subcarrier
to user n. Similarly, P is an Nx K matrix with each element py , representing the allocated
power to subcarrier k associated with user n. In similar manner, R is an Nx K matrix with
T, representing the allocated rate to subcarrier k associated with user n. Initially Vn, R,
and P, are set to zero.

The proposed suboptimal algorithm with low complexity consists of two stages: sub-

carrier allocation and power allocation. In order to maximize the EE, each subcarrier

2A two tier HetNet compromise of macrocell and pico BSs with no D2D pairs such that Nc = N and
Np=0
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should be allocated to the user that can maximize the achieved rate with the minimal
transmit power while satisfying the minimum-rate and maximum transmit power con-
straints. Once the subcarrier allocation is done, each user can calculate the optimal trans-
mit power on its each allocated subcarrier. The solution to (3.12) can be found by taking

its derivative with respect to py , and putting it equal to zero as follow:

(A + 10g2 (1 + ’}/k,npk,n*) ) (1 + Yk,npk,n*)
Yk,n

~B—KPc=0, (3.13)

where A = Zf:’:l R, and B = Zf:’:l P,. Hence, the optimal power of subcarrier k allocated

to user n is given as min (Pma"?max (pZ > Plon (R(k) )>) .

min

In order to find py ,, (Rr(ﬁi)n), the minimum-rate requirement constraint is converted into
per subcarrier minimum transmission power constraint. The two different approaches are
investigated namely, equal and SNR-based rate proportional allocations. In equal rate

allocation approach, the minimum rate requirement Ry, is divided equally among the

subcarriers k € {1,2,---,|K,|} allocated to each user as follow:
R(k-) _ Rmin
min |Kn |

The sum of the achievable rate on each subcarrier allocated to user n should be at least

equal to its minimum-rate requirement according to

2 K,
+RP 4 RUED S R (3.14)

r0)

min
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In SNR-based rate proportional mechanism, the minimum-rate constraint is distributed

among the subcarriers k € {1,-- -, |K,|} allocated to user n, proportional to their respective
Y's as
1 2 K»
R R i RO =iy, (3.15)

which can be transformed into

RO RUEID Rl
min _ “‘min _  _ “‘min — _min (3.16)
4l %) YK, |1 YK,

Now, by substituting (3.16) into (3.14), we get

RUKD _ Ruin

i o ’ (3.17a)
i /B B V\m)
(Y\Krﬂ T YKn| t + Yikn|
' Yi i+1) .
Rr(rll)in: . XRI(;;)’ l:1727"'7‘Kn’_1- (317b)
Yi+1

Similarly, the minimum transmission power required on each subcarrier denoted by py ,, (Rg;)n> ,

Vk € {1,---,|Ky|} to satisfy the user’s minimum rate requirement can be computed as:
R
k 2 B —1
pin (R ) == > =12, Kol (3.18)

More details about the proposed algorithm can be found in Algorithms 3.1 and 3.2.

3.4.3 Simulation Results
We consider a two-tier HetNets environment with a single macrocell with 500 m radius

overlaid with a pico BS with a radius of 125 m. For EE measurements, the bandwidth of
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Algorithm 3.1 User Association and Energy-Efficient Resource Allocation in two-tier
HetNets: A Suboptimal Approach
Initialization of variables:
Nroq : Total number of schedulable users in the system
§={1,2,--- K}
Vn=1toN,C,=0,P,=0,R, =0
Step 1: User Association

2 2

o _ |t
c) n
and ¥, = PL{VNoB

(PB)
PB) "’k,n
n PLYPNoB

PB M
Yin = aPB,n'}’é,, ) +aMc,n’y](€7nC)7Vk €S
Step 2: Subcarrier Allocation
For each subcarrier k € S, select the user n with maximum value of ¥ ,

Cp =C,U{k}
S=5—{k}

count,, = size (C,),Vn

Compute y,i

Step 3: Power Allocation

If count,, =1,
R

2 B —1
Y

Compute energy-efficient power as

Compute P, (Rpyin) =

log, (1+yp*) (1+yp") —Pc=0
Y
Compute optimal power as min (Ppax, max (p*, B, (Rmin)))

if P < P, (Rmin)
No Feasible Solution exists, call Algorithm 3.2
else (Vke€Cy,)
(k)

Transform R,,;, into Rmin, , over the number of allocated subcarriers k € G, to
user n using (3.17a) and (3.17b)

Compute optimal power py ,* satisfying the power constraint for multi-user

multi-subcarrier case using (3.13)

Check the maximum transmit power violation for each user otherwise call

Algorithm 3.2.

end If

each subcarrier is 180 kHz. The minimum-rate requirement for each user is considered as
0.42 b/s/Hz. The maximum transmission power of macrocell and pico BS are 20 W and
200 mW respectively whereas the value of circuit power is Pc = 100 mW. We assume that
the total number of users N = 25 are uniformly distributed within the simulated scenario.

The path-loss model for macrocell and pico BS are given as PL(dB) = 34 +40log,((d,)
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Algorithm 3.2 Reallocate the Subcarriers
Step 1: U is the set of users not satisfying the minimum rate

requirement
While U # 0

(a) Selectausern € U

(b) Randomly select a subcarrier k € {1,---,K} such that k¢ C,

(c) Let x be an owner of subcarrier k and to check by removing k whether x can still
satisfy the R,,;, constraint

If ﬁ)]g(Rmin) S Pmax

C, =C,U{k}
Cy=Cy—{k}

else
goto (b)

else If (no more subcarrier k)
break While;
goto (a)

end If

Compute the new minimum required power and compare it with Ppax
Remove n from U and goto (a)

Step 2:

Finally the EE of the system is given as follow:

N
n:IRn
Ntotal><PC +Z£1V:1 Pt

* pR—
Niotal =

and PL(dB) = 37 4 30log;(dy,) [41], where d, is the is the distance of a user n from
the BS in km and therefore, PLM = 10(PLy'(4B)/10) anqg PLP = 10(PLy (dB)/10) ' The noise
spectral density is assumed to be Ny = —141 dBm/Hz.

We investigate the effects of the proposed SNR-based rate proportional allocation as
opposed to the equal rate allocation on EE in MU-MC case with N =25 and K =5 in
Fig. 3.3. Fig. 3.3 shows that the EE increases with the number of users and the SNR-rate
proportional approach enhances the EE in the order of 10.2% (when N=25 and K=5) as
compared to the equal rate allocation approach. This increase in EE is due to the fact

that SNR-based rate proportional approach allocates higher rates (with lower power) to
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subcarriers with higher SNRs.

40

T
—6— Rate Proportional Approach
—&— Equal Allocation Approach

35

EE (b/J/Hz)
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Number of Users 'N’

FIGURE 3.3: Achievable EE (measured in b/J/Hz) with K =5 and N = 25 for proposed
SNR rate proportional and equal rate allocation approaches.
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FIGURE 3.4: Performance of EE (measured in b/J/Hz) for pico BS first and Macrocell
first user association scheme for varying number of users N with K =5 and Pr = 100
mW.
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We further investigate the impact of Macrocell-first and pico-BS-first user associations
on EE while considering SNR-based rate proportional approach.Fig. 3.4 reveals that the
EE of pico-BS-first user association is in order of 2.6% when compared to the EE of
Macrocell-first for the case where Ny; >> Np. As the EE increases with the number of
users, the pico-BS-first association will achieve higher EE at the cell boundary users.
Since the large coverage area of Macrocell-first user association causes higher path loss
for users far away from BS, higher transmit powers, which results in lower EE, is required
to maintain the QoS of such users. In short, the pico-BS-first association could be a
useful technique to offload the cell edge users from macrocell to pico BS, and as a result,

increases the EE of the system.

265 T T

—8— Macrocell First+RP approach
—©— Pico BS First+RP approach

Rate (b/s/Hz)

220 1 1 1
1 5 10 15 20 25

Number of Users 'N’

FIGURE 3.5: Performance of throughput b/s/Hz for pico BS first and Macrocell first user
association schemes with K =5, Po = 100 mW and N = 25.

We also study the throughput for SNR-based rate proportional and equal rate allocation
approaches for different user associations with N =25, K =5 and Pc = 100 mW as shown

in Fig. 3.5. Fig. 3.5 depicts that pico-BS-first marginally performs better in terms of
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throughput by utilizing the lower path-loss property as compared to the Macrocell-first.

Similarly, an increase in P¢ causes reduction in the overall EE of the system.

3.5 Optimising User Association and Power Allocation in

Device-to-Device enabled Heterogeneous Networks

3.5.1 Related Work

A multi-tier architecture for 5G networks consisting of macrocell overlaid with small
cells (e.g. pico BS) with provision of relays and device-to-device (D2D) networks is
needed to satisfy the quality-of-service (QoS) requirements in a spectrum and energy-
efficient manner. A D2D pair consists of a D2D transmitter and a D2D receiver lying in
close proximity of each other. The concept of D2D communications in cellular networks
is to allow the D2D pair in close proximity of each other to directly communicate instead
of using a cellular infrastructure.

On the other hand, one of the solutions to jointly improve the system throughput and
to reduce the energy consumption is using heterogeneous networks (HetNets) consisting
of low-power small cells (e.g., microcells, picocells, and femtocells) overlaid within the
macrocell geographical area, deployed by network operator who share the same spectrum
with the macrocells [41]. Each promising solution alone is unlikely to meet the QoS and
throughput requirements for 5G [2]. One of the promising solution is a three-tier hierar-
chical HetNets in which the two above mentioned technologies can coexist in parallel to
improve the network performance. In tier 1, the macrocell is used to ensure outdoor cov-
erage whereas in tier 2, small cells are used to serve the users with low mobility in indoor
and outdoor coverage. In tier 3, the users in both macrocell and small cell coverage areas
can engage to communicate directly using D2D communication.

The radio resource management (RRM) mechanism in D2D communication consist of
mode selection, resource allocation and power control [43]. The spectrum sharing among
D2D and cellular users can be classified as either overlay or underlay. In overlay spec-
trum sharing scheme, the orthogonal resources are dedicated to both cellular and D2D

users in order to avoid mutual interference, whereas the D2D users are allowed to reuse
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the resources occupied by the cellular users to improve the spectral efficiency in underlay
spectrum sharing scheme [43]. One of the important RRM decisions in the D2D com-
munication is mode selection mechanism in order to determine one of the possible three
communication modes namely as cellular, dedicated (or orthogonal resource sharing) or
reuse (or non-orthogonal resource sharing) mode.

In cellular mode, the two users can communicate with each other through cellular in-
frastructure whereas in dedicated mode the D2D pairs can communicate directly using
the exclusively dedicated resources to avoid the mutual interference between D2D users
and cellular users at the cost of reduced spectrum utilization. In reuse mode, the D2D
pairs directly communicate with each other by reusing the partial or all of the resources
currently occupied by the cellular user. One of the challenges in the reuse mode is to
assign the reusing resources such that the co-channel interference between cellular and
D2D links can be mitigated.

EE is, in fact, one of the key performance indicators for the next generation wireless
communications systems. However, most of EE gains are achieved with sacrifices in
SE. Most of the work in the literature mainly focuses on either maximizing the system
throughput (e.g., [43] [44]) or EE (e.g., [45] [40]) for two-tier cellular networks (i.e.,
macrocell overlaid with D2D communication). In this direction, a pricing scheme for two-
tier 5G networks using game theory and auction theory as mentioned is proposed in [46]
which also outlines the significant gains achieved by both operators and users in two-tier
cellular networks as compared to the macrocell only system. A joint mode selection,
channel assignment and power control to maximise the system throughput for two-tier
cellular networks is proposed in [47]. The problem is decomposed into two subproblems
where the power control subproblem is solved by using standard optimization method,
and the mode selection and subchannel assignment subproblem is solved using branch-
and-bound (BB) method. A low complexity distributed resource allocation mechanism
based on auction theory in multi-tier heterogeneous networks is proposed in [48]. The
objective of the considered resource allocation scenario is to maximise the achievable
throughput of the small cell and D2D users as long as the interference caused to the

macrocell users are within a predefined threshold.
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To the best of our knowledge, there is no work in the literature to jointly optimize
the ASE-AEE tradeoff radio resource allocation in multi-tier HetNets overlaid with D2D
communication (or Hierarchical HetNets) considering multi-user multi-carrier systems in
distributed manner. In this work, we address the ASE-AEE tradeoff resource allocation
technique in an uplink of hierarchical HetNets. By exploiting the fractional programming
concept, the optimization problem can be transformed into its equivalent subtractive form
which is tractable. Numerical results demonstrate the impact of the required AEE level
and the transmit power constraints on the ASE-AEE tradeoff. It is worth to mention that
the scope of this paper is not to investigate the benefits of D2D communication itself,
but rather its opportunistic integration with HetNets to satisfy the requirements for 5G

networks to achieve higher data rates with lower energy consumption.

3.5.2 System Setup

Each D2D pair n € A4p consists of a D2D transmitter and a D2D receiver. It is as-
sumed that the neighbour discovery algorithms (e.g., [49] [50]) already exists to establish
the D2D communication and the D2D proximity rpyax is the maximum distance between
the D2D pair due to the maximum transmit power P,"** of a user and the receiver sen-
sitivity [51]. It should be noted that the potential D2D user does not necessarily select
the dedicated mode. The mode is selected based on a mode selection scheme presented
later in the paper. It is also worthwhile to mention that due to the practicality reasons, it
is assumed that C > D. Each D2D pair can communicate in two modes, i.e., cellular or
dedicated. In cellular mode, the D2D transmitter communicate with a D2D receiver with
the help of the macrocell or pico BS, whereas in dedicated mode, the D2D transmitter
directly communicates with a D2D receiver.

Depending on this assumption, each D2D pair and cellular users will be allocated ded-
icated subcarriers for the case of K > C + D. In the case of C < K < C+ D, some D2D
pairs will use dedicated subcarriers whereas others will reuse the subcarriers allocated to
the cellular users resulting in mutual interference. Similarly, in the case of K < C, all
the D2D pairs need to reuse the subcarriers allocated to the cellular users. For example,

Let DN be the number of D2D pairs which cannot reuse the subcarriers allocated to the
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cellular user. If Dy < K — C, it means that all the D2D pairs can communicate as the
number of available dedicated subcarriers are K — C. Similarly, if Dy > K — C, it means
that atleast Dy — K + C D2D pairs cannot communicate which is dependent on the level
of interference caused by the D2D pair to the cellular user.

Furthermore based on the system model described in Section 3.3, AEE (nagg) of the
three-tier HetNet can be defined as the sum of the amount of data transferred per unit en-
ergy consumed by the macrocell, the small-cell and D2D communication per unit band-

width per unit coverage area (b/J/Hz/km?) and can be expressed as

NEE NEE
= — = .1
TNAEE 0 \ <« B’ (3 9)

where A represents the total coverage area and B is the total occupied bandwidth. SE
(nsk), on the other hand, is a measure that reflects the efficient utilization of the available
spectrum in terms of throughput and it is commonly expressed in (b/s/Hz). nsg is strictly

increasing with transmission power Pr and is concave in Pr. Nsg is defined as:

R
NSE = 3’ (3.20)

The ASE of the three-tier HetNet is defined as the sum of the achievable rates of the
macrocell, the small-cell and D2D communication per unit bandwidth per unit coverage

area (b/s/Hz/km?) and can be formulated as

(3.21)

S

NASE =

3.5.3 Problem Formulation of ASE-AEE Tradeoff
In order to analyse the ASE-AEE tradeoff, we formulate the optimisation problem
to maximise ASE subject to a required AEE level and maximum transmission power

constraints. The maximisation problem can be mathematically expressed as

) (1n)
Zmn 0L Xn- 10-knn Ten

{ASEAEE} =  mMax - 0 (3.22a)
O-k nn P nn
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S.t.

(ma)  (my)
mn Ozk len rkn

> 1,4, Vn. (3.22b)
9<302 o Xh 1Pkn )+ Pc )
1 K
Z Zok(n Pknzf <Prllnax7vn' (3.22¢)
=1
1 N
Y Y o™ <1,vk. (3.22d)
~0n=1
p{") > 0,6 € (0,1}, Vn, VK, Vim. (3.22¢)

In (3.22a), Niasg.agg) represents the ASE-AEE tradeoff objective function and G,SZ") is

a binary variable to indicate whether the subcarrier & is assigned to the user u with mode
m,, or not, where m,, € {0,1}. For the user n € 4¢, which is a cellular user with only
the cellular mode of transmission, and hence 0‘,5 ) =0, Further, 17,"! denotes the required

AEE level. Specifically, the ratio of the total required achievable AEE over the total

maximum achievable AEE is referred to as the AEE-loss-rate and can be expressed as

follow:
_ nreq B N 1nrrzeq
OAEE = T N s (3.23)

where 0 < aagg < 1. Similarly, we define the ASE that can be achieved corresponding
to N™** by ASEpmax. The ASE-gain-rate is the ratio of ASEpreq over ASEymax and can be

formulated as follow:
ASEnI’EQ

_ 3.24
ASEn max ( )

OASE =

It is worth to mention that for any required 7, level, there exists two optimal points
for nasg for the case of P;"* > Pymax. As our optimization problem is to maximize the
Nase. we will always choose the achievable ASEyrq which lies on the right side of the

achievable n,"**.
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3.5.3.1 Optimal Power Allocation
The maximisation problem (3.22a) is an integer combinatorial fractional program-

ming problem and is generally NP-hard. For better tractability, we first relax the inte-

ger variables, Gk(m” € {0, 1} into continuous variables, Gk(m”) € [0,1]. The N¢asE,AEE}-

maximisation problem, hence, can be expressed as

Z Z ZN (~7 s (":tn)
T{ASE,AEE} =  Max il 0 1%n Tk, (3.25a)

(mn) (mn)
Gknn 7pknn

S.t. ) ()
NS S e A o
=0 &k=1 “k.n k, Zn;ﬁequn- (3.25b)
9(*‘302 oY lpkn +PC>
1 K
) ZGIEZ”)P/(!Z”) < B, Vn. (3.25¢)
mp=0k=1
1 N
Y Yo <1,vk (3.25d)
my=0n=1 ’
PJE'Z") >0, Uﬁ,",i") € {0,1}, Vn,Vk,Vm. (3.25¢)

The constraint (3.25b) in fractional form can be transformed into its equivalent subtractive

form and can be rewritten as

1 K
Y X UE,'Z")'”J(C My 10 (80 Z Zp +Pc> >0 (3.26)

We utilise the dual decomposition approach to solve the optimisation problem (3.25a). It
is shown that the dual-composition approach has lower computational complexity and the
duality gap for non-convex optimisation approaches to zero for sufficiently large number
of subcarriers [52]. In order to apply dual decomposition method, we first need to find the

Lagrangian function of (3.25a). Using standard optimisation methods proposed in [52],
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the Lagrangian function of (3.25a) can be written as:

K
Z = (mn)r(mn)
kn “kn
mp=0k=1n=1 n=1 mp=0k=1

1 K
e (e ) Zpkn)+Pc)) (3.27)

m,=0k

(m) 1 1 K N m N 1
(a5 £ E Tl Eu( ¥

The equivalent dual problem can be decomposed into two subproblems, which is given
by

(1)
L 2
min g}jio (pkn ,ln) (3.28)

The dual problem can be decomposed into two layers, namely, lower layer and master
layer. In the lower layer, K subproblems are solved in parallel to compute the power and
subcarrier allocation on each subcarrier k € K for the given values of A,. In the master
layer, the Lagrangian multipliers are updated using subgradient method. By applying the
Karush-Kuhn-Tucker (KKT) conditions, we get

4
~0, g = pp

)

<0, p;(!ffl") =0

\

(my,) *

At the optimal power allocation p, "', we have

JL (p,(!ff,"),ln)
— =0,= (3.29a)
Ip;, i =p)”
(my) 1
By, (1 + —>
(my) _(my)* kin 04n
1 — 3.29b
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From (3.29b), the optimal power distribution scheme can be found as

J’_
Bi( 145
[z;S ) 1n>] L if e = 1.

(my)* Nn €0601n(2) Y}E’Z

i (3.30)

0, otherwise.

where [x]" = max[0,x]. Therefore, a feasible subcarrier assignment matrix for subcarrier

k € K is given as:

1, if (m;,n*) = argmax,,, P ),VkEK
o) = ’ B (3.31)

0, otherwise.

(mn)

where 6,{’ . = 1l indicates that the subcarrier k is assigned to user n with the mode m,.
When using the optimal power from (3.30), the achieved rate of each user n on subcarrier
k working in the mode m, is computed as r,(f'; n) = = Bylog, (1 + 7,5 " 2 p,(( " )>. In general,
the user n on subcarrier k will choose the dedicated mode m, = 1 if and only if the
r,g'zl”zl) > r,(:';”zo) and otherwise it will choose cellular mode.

Therefore, optimal value for A, (referred to as A,°) can be found such that the constraint

(3.26) is satisfied with equality, yielding

1 K By (1 + L) 1]
() O
Z Z By log, <1 + Yk,n [ rquoe 1n(2) - (m,,)] )

my=0k=1 T Yin
I K [By (1 + ﬁ) 11"
“nredg | g - +prc| =0
mZ L [n,?qs oIn(2) Hml | TTC

For solving the minimisation problem, the Lagrangian multiplier can be updated by using
the subgradient method [52]. The subgradient of A, are given by taking the derivative of
L ( p,(ﬁ”) , 7Ln> with respect to A, yielding

JL <pa](( nn),ln) i

m,=0k=

mn req
k.n rk n 6

Mw

—_
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(&zgj szkn-+Pc)

Then, A, are updated by using the subgradient method as

(i) = (1) -2 ). 3:32)

where i > 0 is the iteration index, s’ is the positive step size which is taken in the direction

of the negative gradient for the dual variable at iteration i and f3, is given as follow:

1 K
Bo=Y Y &l req@( Z Zp’"" —i—Pc) (3.33)

(11

Based on Pin (obtalned from (3.30)) and P;"**, the solution for the maximization

(ma)*

problem (3.25a) can be divided into two regions. When Pin > P the optimal so-
lution of (3.25a) can then be expressed as p,(cnrll”)* = min (p,(( N 2 P,Ilnax> However, when

p,(( n”) < P the optimal solution for (3.25a) is given by (3.30).

Algorithm 3.3 Joint Mode selection, Subcarrier and Power Allocation in D2D enabled
HetNets
(m )]

Input: [0, &, Yin

Step 1: Initialize
i=0, p( W — 029 =0.01,for n=1,--- N,
k=1,--- , Kim=1,--- M.

Step 2:

Fork=1:K

Calculate p,(( n ) according to (3.30).

Obtain the mode selection and the subcarrier assignment
according to (3.31).
end For
Step 3:
i=i+1
Update A,V according to (3.32).
Step 4:

Repeat steps (2)-(3) until /1,?“) are converged.

Output: [p""), 5" m,]




Chapter 3. Energy Efficient Resource Allocation in HetNets 82

3.5.4 Simulation Results

We consider a three-tier Hierarchical HetNet environment with a single macrocell with
Ry = 500 m, as otherwise stated overlaid with uniformly distributed N = 40 pico BSs
(where N is calculated as mentioned in [53]) of Ry, = 50 m. The pico BS’s are deployed
at the edge of a macrocell. The bandwidth of each subcarrier is 31.25 kHz. The maximum
transmission power of users considered in the simulation is 200 mW and the value of
circuit power of users is set fixed to Pc = 50 mW. We assume that the users are uniformly
distributed within the simulated scenario. The noise spectral density is assumed to be
Ny = —174dBm/Hz. In this work, the power amplifier efficiency is assumed as 38% 1i.e.
& = ﬁ. The maximum transmission power for all users are same, hence, P,"** will be
referred to as P™*. All the simulation results presented are averaged over 10,000 channel
realizations.

Fig. 3.6 demonstrates the achievable AEE versus the macrocell radius Ry for vari-
ous values of aagg. Due to the weaker SNR for the mobile user in the macrocell, the
degradation of AEE is obvious due to the fact that more users transmit with their maxi-
mum transmission power with an increase in Ry;. The hierarchical HetNet outperforms
in terms of AEE as compared to the traditional HetNets and macrocell only system by
6.55% and 496% respectively, at Ry = 300 m. This is due to the fact that the dedicated
mode in hierarchical HetNet allows the cell edge users to communicate directly which
enhances the overall system AEE as compared to the traditional HetNets.

Similalrly, the plot of achievable ASE versus the macrocell radius Ry for various values
of aagg is shown in Fig. 3.7. Generally, as the AEE requirement level is reduced from
N, to 0.985n,"%%, each user will transmit with more power resulting in a higher achieved
ASE and a lower achieved AEE. For example, in hierarchical HetNets by reducing the
oagg from 100% to 98.5% (with only 1.5% loss in AEE) achieve an ASE gain for any
value of Ry;. Specifically, with Ry = 300m, the ASE is improved from 374.3 b/s/Hz/km?
to 395.8 b/s/Hz/km?. It is also worthwhile to mention that ASE is non-decreasing with
the respect of aagg whereas AEE is non-increasing with the respect of oapg. When

oage — 100% the tradeoff solution maximize the AEE whereas at the smaller values of
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FIGURE 3.6: Comparison of AEE versus Ry; with N = 100 and K = 100 for various &¢agg

in three different configurations: (i) Macrocell only network, (ii) Traditional HetNet and
(111} Hierarchical HetNet with N, — 20

600

—a— Macrocell only, aAEEzloo%

~ —&— Traditional HetNet, a, __=100%
= 0,

- = = Macrocell only, uAEE—QS.SA)

- = = Traditional HetNel,aAEE:Q&S%

- = = Hierrachical HetNet, a, __=98.5%
400 nee

—e— Hierrachical HetNet, aAEE:mo%

ASE (b/s/Hz/km?)
w
o
o
T

|
200 250 300 350 400 450 500
Ry, Im]

FIGURE 3.7: Comparison of ASE versus Ry with N = 100 and K = 100 for various &¢agg
in three different configurations: (i) Macrocell only network, (ii) Traditional HetNet and
(iii) Hierarchical HetNet with N; = 20.

OAEE =~ 0% the tradeoff solution maximize the ASE.

Fig. 3.8 demonstrates the total transmit power consumption of the macrocell only,
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FIGURE 3.8: Total transmit power versus (1 — otagg) with P™* = 0.2 W, Pc = 0.05 W,
and B") = 31.25 kHz.

traditional HetNets and Hierarchical Hetnets against the ratio of loss in AEE to the max-
imum achievable AEE; that is 1 — aagg. With an increase in the value of (1 — aAgE),
the ASE gain increases, hence require the users to transmit with more power as long as
P™* > Ppreq. It is quite obvious that the Hierarchical HetNet users transmit with lower
power due to close proximity between the D2D transmitter and receiver as compared to
the pico BS and macrocell users. The Hierarchical HetNet users can reduce their transmit
power with Ry = 500 m and (1 — aagg) = 7% upto 48.51% and 1404% as compared
to the traditional HetNet and macrocell, respectively. Fig. 3.8 also depicts that the total
transmit power is equal to the total available transmit power of 20 W irrespective of the
value of (1 — @agg) in maximization ASE with no requirement AEE level as compared to
the maximization ASE with the required AEE level where the total transmit power is de-
pendent on the value of (1 — aagg). At the value of (1 — aagg) = 10%, the total transmit
power in the macrocell only system converges to the total available transmit power of 20
W.

Fig. 3.9 shows the AEE and ASE tradeoff for traditional HetNets and Hierarchical Het-
Nets for the corresponding P™* = 0.2 W and Pc = 0.05 W. As the required AEE level
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FIGURE 3.9: Achievable ASE versus required AEE level with P™** = 0.2 W, Pc = 0.05
W, and B{" = 31.25 kHz.

is varied from 1160 b/J/HZ/km? to 1900 b/J/HZ/km?, the corresponding ASE is obtained
by Algorithm I. For the case of P™** < P;;max, the maximum achievable ASE is limited
by P™¥*, resulting in lower AEE, as compared to the n™**. As the required AEE level
is increased, the corresponding achievable ASE is reduced. At the required AEE level
of 1400 b/J/Hz/km?, the corresponding ASE in the traditional and hierarchical HetNets
are approximately 118 b/s/Hz/km? and 124 b/s/Hz/km?, respectively. When the required
AEE level is increased close to the n™®*, a significant loss in ASE occurs,causing the
corresponding ASE of the traditional and hierarchical HetNets to 107 b/s/Hz/km? and
118 b/s/Hz/km? respectively. It should be mentioned that the achievable ASE of approx-
imately 118 b/s/Hz/km?, is obtained at the corresponding AEE level of 1900 b/J/Hz/km?
and 1160 b/J/Hz/km? in the hierarchical and traditional HetNets respectively.

Fig.3.10 shows the plots for oagg in percentage versus the oasg in percentage for
the traditional and Hierarchical HetNets. It also demonstrates that asg monotonically
increases with the decrease of aagg. Fig. 3.10 shows that a minor loss in AEE around its
maximum (when agg is close to 100%) results in a significant gain in ASE (i.e., rapid

increase in dasg). When aagg is reduced beyond 95% , the gain in oasg versus reduction
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FIGURE 3.10: aagg in percentage versus aasg in percentage for Hierarchical and Tra-
ditional HetNets with N; = 20

of aagg becomes slower. For example, at aagg = 80%, significant ASE gains of 108.1%
and 108.7% are achieved in the traditional and hierarchical HetNets. Furthermore, higher
ASE gain is observed in the hierarchical HetNet as compared to the traditional HetNet.

These observations justify the simulations results obtained from Fig. 3.9.

3.6 Optimising User Association and Power Allocation in

Heterogeneous Networks: A Fairness Perspective

3.6.1 Related Work
One of the emerging technologies towards enabling Fifth Generation (5G) is heteroge-
neous networks (HetNets) which include Green Small Cell Networks consisting of low-
power base station (BS), (e.g., microcells, picocells, and femtocells), overlaid within the
macrocell geographical area, deployed by either users or network operators who share

the same spectrum with the macrocells [20] and [41]. The purpose of HetNets is to allow
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user equipments (UEs) to access small cells even though the UEs are within the coverage
of macrocell. The deployment of small cells has a great potential to improve the spatial
reuse of radio resources and also to enhance the energy efficiency (EE) of the network [20]
and [54]. Although, some works [55] and [56] have been done on fairness based energy
efficient radio resource management in traditional OFDMA systems mainly maximising
either EE or spectral efficiency (SE). In [57], authors proposed a MOP approach to jointly
maximise EE and SE along with fairness for downlink transmission scheme of the tradi-
tional OFDMA systems.

Most of the work in the literature mainly focuses on maximising EE or SE with respect
to the transmission power without considering the backhaul energy consumption [58].
The authors in [59] proposed a mechanism to compute backhaul energy efficiency (BEE)
in a heterogeneous network deployment consisting of a macrocell with enabled device to
device (D2D) communication to reduce the overall network power consumption in com-
parison to the small cell deployment. In [60], the authors analysed the energy efficiency
optimisation with subject to SE constraint in the downlink of Green HetNets using Coor-
dinated Multi-Point (CoMP) transmission scheme to reduce the total power consumption
including the backhaul power consumption for two backhauling technologies, i.e., mi-
crowave and fiber. The contribution of the backhaul energy consumption to the total
energy consumption is dependent on the network deployment scenario and technology
and the topology of the backhaul itself [61].

According to the best of our knowledge, there is no previous work on joint through-

put and BEE tradeoff with fairness in downlink transmission scheme of two-tier HetNets
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considering multi-user multi-carrier systems. In this paper, we investigate the two con-
flicting objectives such as jointly maximising throughput and BEE subject to minimum
QoS requirements, maximum input power constraint and rate fairness level m as a multi-
objective optimisation problem (MOP). The MOP is transformed into a single-objective
optimisation problem (SOP) using weighted sum method obtaining a complete Pareto-
optimal set or Pareto Frontier providing a quantitative insight into the throughput and

BEE tradeoff with different rate fairness level .

3.6.2 System Setup and Problem Formulation

We consider a downlink scenario of two-tier HetNets consisting of a macrocell and
M — 1 pico BS’s with the total number of users N and K non-overlapping subcarriers.
We denote the index set of all subcarriers as k = {1,---,K}, the set of all users as n =
{1,---,N} and the set of networks as m = {1, --- , M }. Further, we consider an orthogonal
subcarrier selection scheme which assigns each subcarrier exclusively to either pico BS
(PB) or macrocell (Mc) at any time. We assume that Ny, indicates the set of all subcarriers
allocated to the network m and |N,| is the cardinality of the set N,, denoting the total
number of subcarriers allocated to the network m.

To model fairness, we adopt w-fair utility function

In(Ry), ifo=1,
e (Ry) = (3.34)

RIT®/(1-w), ifw#1,0>0,

where the value of @ represents different rate fairness levels. For no fairness requirement,

o =0, and uy (R,) = R,. By increasing o, the rate fairness among users also increases.
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For the special case of @ — oo, an absolute rate fairness among users is achieved.

3.6.2.1 Power Consumption Model
Hence, the overall consumed power in downlink of two-tier HetNets can be modelled

as below [59, 60]:

N M
P=¢& Z Z Z GISZ)P;(CTB +M x Pc + Py, (3.35)
k=1n=1m=1

where Ppy is the backhaul power consumption. In two-tier HetNets, the backhaul power

consumption consists of the backhaul power consumed at aggregation switch (or switches)

(mb)

Py, to forward the traffic from all the macro BS’s to the core network and the backhaul

)

power consumed at sink switch (or switches) Pffé , located at the macro BS to receive
the traffic from the M — 1 small cells then aggregate it with the macrocell BS traffic and
forward it to the core network. Optical fiber is most commonly used for backhaul links

between all macro BS’s to the aggregation switch. The backhaul power consumption

Pézb) can be expressed as follow [62]:

1
Pg;b) = | 22| % Pyyy+ Ly X Pag + Ly X Pup, (3.36)
maxg;

where I, is the number of macro BS’s which is equal to 1 according to our system
model, maxg; is the maximum number of downlink interfaces at aggregation switch of
macro BS and Py; is the power consumption of a downlink interface at the macro BS
aggregation switch. L, = (%) and P,; are the total number of uplink interfaces and

power consumption of an uplink interface, respectively. T4, and Cpax are the total traffic
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at the aggregation switches of the macrocell BS and the maximum transmission rate of an
uplink interface, respectively. P, represents the power consumption of the aggregation

switch at the macrocell BS and (3.36) can be rewritten as:

m 1 max Ca max
PI(BHb):[ ](ﬁ'Psw +(1_B) ggP )

max = SW
Csw

T,
+Py + ( ass ) P,, (3.37)
Cmax

where 8 € [O, 1] , Po* is the maximum power consumption of the switch, Cygg is the total
traffic at the macrocell aggregation switch and Ci,** denotes the maximum traffic switch
can handle.

Similarly, either optical fiber or microwave can be used for backhaul links between all
the small cells and the sink switch located at the macro BS. However, in this paper we

assume that optical fiber is used and Pfg”;;) can be defined as [60]:

K—1
maXg;

(sc) _
Iy BH—Fiber —

C
Py - ( - )Puz, (3.38)
Crnax

where C denotes the total traffic of the small cells. Hence, PIS;) can also be defined for

the case where all the traffic from the small cells goes to the core network via internet
without using aggregation node at macrocell as [59]:

(M—1)C;
4Gbps

P router

40

Py = +Port | + (M —1) Poxu, (3.39)

where Prouter represents the power consumption of the edge router, Porr denotes the power
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consumption of the OLT and Pony represents power consumption of ONU. The total

power consumption of two-tier HetNets can be written as:

M
Pow = €0 Y, Pn™ +M x Pc+ PR~ (3.40)

m=1

where P;** is the maximum transmission power of network m, P( is the circuit power
of network m and Pgy* is the maximum power consumed by the backhaul to forward
the collected traffic (i.e., when all networks are operating at their maximum transmission

power) to the core network. Now, we can define the Backhaul Energy Efficiency (BEE)

as follow:
N
Y Ry
o n=1
BEE = N ) (3.41)
k=1n=1m=1 " ’

Similalrly, we can also define Energy Efficiency (EE) as a special case of (3.41) when no

backhaul power consumption is assumed, i.e., Pgg = 0.

3.6.2.2 Problem Formulation
Our goal is to simultaneously optimise throughput and BEE with fairness and QoS
guarantees while ensuring that the interference power does not exceed their specific thresh-
olds. The joint optimisation problem to maximise the throughput and BEE is equivalent
to maximising the sum rate and minimising the total power consumption. In this Section,
we investigate the Throughput-BEE tradeoff in downlink transmission scheme of two-

tier HetNets as a multi-objective optimization problem (MOP) by normalising the two
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conflicting objective functions to ensure a consistent comparison as below:

N .
( £ o ()~ u")
(P1) max =L and max P, (3.42)

max i
p,0 (”a) _ulclonn) P.0 Poal

o g m)
st. Cl: Y Y o,/ pp,, < By Vm,
k=ln=1 """ 7
C2: R,>R™" Vn.
C3: p™ >0, Vm, Vn,Vk,
N gm
C4: Y o,/ <1, Vm,k,
n=1 "
cs: o™ e[0,1], Vm, Vn,Vk,
where u?* are the maximum achievable utility value of (3.34) for a given value of @
under the constraints C1-CS5. ug,‘i“ is the minimum achievable utility value computed by
setting R, = & in (3.34) for a given value of @ where 0 > 0 is a predefined sufficiently
small value. P™ is the maximum transmission power of network m and R™" is the
minimum rate requirement for each user n. C1 is the maximum transmission power of
each network m which should not exceed P);**. C2 is the minimum rate requirement for
each user which is applicable only if user  is admitted, 1.e., GIE'Z) = 1. C3 ensures that the

power p,((";) should be positive. C4 and C5 indicate that G,Erz)

is a binary variable such that
each subcarrier k can be exclusively assigned to one user within network m. For better

tractability, we relax the constraint C6 by allowing time sharing.
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The MOP defined in (3.42) can be transformed into a single objective optimization

problem (SOP) by applying the weighted sum method [63] as follow:

N .
Y ue (Ry) — Ug"

n=1
(P2) max o T (1-—a)

(3.43)

s.t. C1—-Cs,

where o € [0, 1] is the Throughput-BEE tradeoff biasing factor.

3.6.3 Proposed Distributed Solution
In this Section, we propose a distributed solution to the problem (P2) for different
values of w which can collectively form the Pareto optimal set. In other words, by tuning
o, we investigate the Throughput-BEE tradeoff for a given value of .

Firstly for the case of @ > 0, we define a vector X = [x,x, ...,xn]T and rewrite (P2) as

M

Zl Ug (Xp) — uli p
m=
(P3) max o T (1-a) e (3.44)
s.t. C1-C5,
C6: x, <R,, Vm.
where p={p). p@ ... pMland 6 ={cM 6@, ... o™} Itis worthwhile to men-

tion that p(l), p(z) and p(M) are K x N power allocation indication matrix. The size of
oM, 6@ and 6™ are also same as p(l),p(z) and pM). u, (+), is a strictly increasing
function, hence, for an optimal solution, x;,, must be equal to R,,.

We then utilize Hierarchical Decomposition method [64] to find an optimal solution
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to (P3). To characterize the duality gap between the primal and dual solutions, the time-
sharing condition is first defined in [65] and it is proved that if it holds, the duality gap
is zero even if the original optimization problem is not convex. In practical multicarrier
systems with a large number of subcarriers, channel conditions in adjacent subcarriers
are often similar. In such case, the time-sharing condition is approximately satisfied, and
accordingly the duality gap is nearly zero [65]. We define the partial Lagrangian function
of primal problem in (P3) formed by dualising the constraint C6:

N .
L e (¥n)—ug"

L(p,o,x,A) =" —m——(1- Q)

N
P X (Ry =)

Up " —Ugp
. | 3.45
;’1 Uy (Xn) —uigy" N N P ( )
_ O‘W_ lenxn +<ZIAan_(1_a)Pwl>’
» m = = otal

where A = [A1, A2, ...,Ay|T is the dual vector for constraint C6 corresponding to each user.
Then the dual function is

max L(p,o,x,A),
gA)=¢ *P° (3.46)

s.t. C1-C5.

Obviously, the dual function in (3.46) can be separated into two maximisation subprob-

lems as shown in (3.47) and (3.48) respectively.

N .
L o (Xn) — ug"

N
g1 (L) =max f(x)= o= e Z AnXn, (3.47)
X Uy ™ — Uy n—1
N
max Y AR, —(1—a) %,
g@A)=q P7 = . (3.48)

s.t. C1-C5.
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3.6.3.1 Solution to subproblem g; (1):
In (3.47), as ug (x,) is a concave function of x, and hence, f(x) is also a concave
function of x,. Therefore, the optimality of (3.47) can be solved by taking the derivative

of f(x) with respect t