20,992 research outputs found

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Towards a Systematic Repository of Knowledge About Managing Collaborative Design Conflicts

    Get PDF
    Increasingly, complex artifacts such as cars, planes and even software are designed using large-scale and often highly distributed collaborative processes. A key factor in the effectiveness of these processes concerns how well conflicts are managed. Better approaches need to be developed and adopted, but the lack of systematization and dissemination of the knowledge in this field has been a big barrier to the cumulativeness of research in this area as well as to incorporating these ideas into design practice. This paper describes a growing repository of conflict management expertise, built as an augmentation of the MIT Process Handbook, that is designed to address these challenges.

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Domain-independent exception handling services that increase robustness in open multi-agent systems

    Get PDF
    Title from cover. "May 2000."Includes bibliographical references (p. 17-23).Mark Klein and Chrysanthos Dellarocas

    Enabling Personalized Composition and Adaptive Provisioning of Web Services

    Get PDF
    The proliferation of interconnected computing devices is fostering the emergence of environments where Web services made available to mobile users are a commodity. Unfortunately, inherent limitations of mobile devices still hinder the seamless access to Web services, and their use in supporting complex user activities. In this paper, we describe the design and implementation of a distributed, adaptive, and context-aware framework for personalized service composition and provisioning adapted to mobile users. Users specify their preferences by annotating existing process templates, leading to personalized service-based processes. To cater for the possibility of low bandwidth communication channels and frequent disconnections, an execution model is proposed whereby the responsibility of orchestrating personalized processes is spread across the participating services and user agents. In addition, the execution model is adaptive in the sense that the runtime environment is able to detect exceptions and react to them according to a set of rules

    Towards a systematic repository of knowledge about managing collaborative design conflicts

    Get PDF
    "October 1999."Includes bibliographical references (p. 15-16).Mark Klein

    SmartPM: Automated Adaptation of Dynamic Processes

    Get PDF
    In this demonstration paper, we present the first working version of SmartPM, a Process Management System that is able to automatically adapt dynamic processes at run-time when unanticipated exceptions occur, thus requiring no specification of recovery policies at design-time

    Intelligent Agent Supported Exception Management in Securities Trading

    Get PDF

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work

    An Agent-based Approach for Improving the Performance of Distributed Business Processes in Maritime Port Community

    Get PDF
    In the recent years, the concept of “port community” has been adopted by the maritime transport industry in order to achieve a higher degree of coordination and cooperation amongst organizations involved in the transfer of goods through the port area. The business processes of the port community supply chain form a complicated process which involves several process steps, multiple actors, and numerous information exchanges. One of the widely used applications of ICT in ports is the Port Community System (PCS) which is implemented in ports in order to reduce paperwork and to facilitate the information flow related to port operations and cargo clearance. However, existing PCSs are limited in functionalities that facilitate the management and coordination of material, financial, and information flows within the port community supply chain. This research programme addresses the use of agent technology to introduce business process management functionalities, which are vital for port communities, aiming to the enhancement of the performance of the port community supply chain. The investigation begins with an examination of the current state in view of the business perspective and the technical perspective. The business perspective focuses on understanding the nature of the port community, its main characteristics, and its problems. Accordingly, a number of requirements are identified as essential amendments to information systems in seaports. On the other hand, the technical perspective focuses on technologies that are convenient for solving problems in business process management within port communities. The research focuses on three technologies; the workflow technology, agent technology, and service orientation. An analysis of information systems across port communities enables an examination of the current PCSs with regard to their coordination and workflow management capabilities. The most important finding of this analysis is that the performance of the business processes, and in particular the performance of the port community supply chain, is not in the scope of the examined PCSs. Accordingly, the Agent-Based Middleware for Port Community Management (ABMPCM) is proposed as an approach for providing essential functionalities that would facilitate collaborative planning and business process management. As a core component of the ABMPCM, the Collaborative Planning Facility (CPF) is described in further details. A CPF prototype has been developed as an agent-based system for the domain of inland transport of containers to demonstrate its practical effectiveness. To evaluate the practical application of the CPF, a simulation environment is introduced in order to facilitate the evaluation process. The research started with the definition of a multi-agent simulation framework for port community supply chain. Then, a prototype has been implemented and employed for the evaluation of the CPF. The results of the simulation experiments demonstrate that our agent-based approach effectively enhances the performance of business process in the port community
    • 

    corecore