48,485 research outputs found

    Exploring EEG for Object Detection and Retrieval

    Get PDF
    This paper explores the potential for using Brain Computer Interfaces (BCI) as a relevance feedback mechanism in content-based image retrieval. We investigate if it is possible to capture useful EEG signals to detect if relevant objects are present in a dataset of realistic and complex images. We perform several experiments using a rapid serial visual presentation (RSVP) of images at different rates (5Hz and 10Hz) on 8 users with different degrees of familiarization with BCI and the dataset. We then use the feedback from the BCI and mouse-based interfaces to retrieve localized objects in a subset of TRECVid images. We show that it is indeed possible to detect such objects in complex images and, also, that users with previous knowledge on the dataset or experience with the RSVP outperform others. When the users have limited time to annotate the images (100 seconds in our experiments) both interfaces are comparable in performance. Comparing our best users in a retrieval task, we found that EEG-based relevance feedback outperforms mouse-based feedback. The realistic and complex image dataset differentiates our work from previous studies on EEG for image retrieval.Comment: This preprint is the full version of a short paper accepted in the ACM International Conference on Multimedia Retrieval (ICMR) 2015 (Shanghai, China

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Miniature illustrations retrieval and innovative interaction for digital illuminated manuscripts

    Get PDF
    In this paper we propose a multimedia solution for the interactive exploration of illuminated manuscripts. We leveraged on the joint exploitation of content-based image retrieval and relevance feedback to provide an effective mechanism to navigate through the manuscript and add custom knowledge in the form of tags. The similarity retrieval between miniature illustrations is based on covariance descriptors, integrating color, spatial and gradient information. The proposed relevance feedback technique, namely Query Remapping Feature Space Warping, accounts for the user’s opinions by accordingly warping the data points. This is obtained by means of a remapping strategy (from the Riemannian space where covariance matrices lie, referring back to Euclidean space) useful to boost the retrieval performance. Experiments are reported to show the quality of the proposal. Moreover, the complete prototype with user interaction, as already showcased at museums and exhibitions, is presented

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases

    Novel CBIR System Based on Ripplet Transform Using Interactive Neuro-Fuzzy Technique

    Get PDF
    Content Based Image Retrieval (CBIR) system is an emerging research area in effective digital data management and retrieval paradigm. In this article, a novel CBIR system based on a new Multiscale Geometric Analysis (MGA)-tool, called Ripplet Transform Type-I (RT) is presented. To improve the retrieval result and to reduce the computational complexity, the proposed scheme utilizes a Neural Network (NN) based classifier for image pre-classification, similarity matching using Manhattan distance measure and relevance feedback mechanism (RFM) using fuzzy entropy based feature evaluation technique. Extensive experiments were carried out to evaluate the effectiveness of the proposed technique. The performance of the proposed CBIR system is evaluated using a 2 £ 5-fold cross validation followed by a statistical analysis. The experimental results suggest that the proposed system based on RT, performs better than many existing CBIR schemes based on other transforms, and the difference is statistically significant

    Active SVM-based Relevance Feedback with Hybrid Visual and representation

    Get PDF
    Most of the available image databases have keyword annotations associated with the images, related to the image context or to the semantic interpretation of image content. Keywords and visual features provide complementary information, so using these sources of information together is an advantage in many applications. We address here the challenge of semantic gap reduction, through an active SVM-based relevance feedback method, jointly with a hybrid visual and conceptual content representation and retrieval. We first introduce a new feature vector, based on the keyword annotations available for the images, which makes use of conceptual information extracted from an external ontology and represented by ``core concepts''. We then present two improvements of the SVM-based relevance feedback mechanism: a new active learning selection criterion and the use of specific kernel functions that reduce the sensitivity of the SVM to scale. We evaluate the use of the proposed hybrid feature vector composed of keyword representations and the low level visual features in our SVM-based relevance feedback setting. Experiments show that the use of the keyword-based feature vectors provides a significant improvement in the quality of the results

    Encrypted Image Retrieval System based on Features Analysis

    Get PDF
    Abstract – Content-based search provides an important tool for users to consume the ever-growing digital media repositories. However, since communication between digital products takes place in a public network, the necessity of security for digital images becomes vital. Hence, the design of secure content-based image retrieval system is becoming an increasingly demanding task as never before. This paper, presents a mechanism that addresses the secure CBIR as a novel improvement and application for the image retrieval. The proposed system consists of six phases briefly described as follows: first, feature extraction phase, which produces the low-level quantitative description of the image (color and texture) that allows the computation of similarity measures, the definition of the ordering of the images, and the indexing of the search processes. Second, indexing for search process phase, hash table and bloom filter were employed for classification. Third, feature encryption phase, where content protection is performed using a method developed by us (including Chaotic Logistic Map). Fourth,  image encryption phase, as security mechanism for CBIR, we combine two research fields in computer science, CBIR and image cryptography, which grow up to meet the trends of security and speed in current computer sciences, chaos and stream cipher systems were applied as an image encryption system. Fifth, the retrieval phase, which provides a subset of images answering the query based on the similarity between images computed over the feature vector extracted from each image. Finally, Relevance feedback phase, a technique that attempts to capture the user’s needs through iterative feedback. Although the system proved its efficiency in search performance (with 88% of average precision), security strength, and computational complexity, it does not mean the optimal system is designed, since some weakness points still can be found that are suggested to be improved as a future work

    Hybrid models for combination of visual and textual features in context-based image retrieval.

    Get PDF
    Visual Information Retrieval poses a challenge to intelligent information search systems. This is due to the semantic gap, the difference between human perception (information needs) and the machine representation of multimedia objects. Most existing image retrieval systems are monomodal, as they utilize only visual or only textual information about images. The semantic gap can be reduced by improving existing visual representations, making them suitable for a large-scale generic image retrieval. The best up-to-date candidates for a large-scale Content-based Image Retrieval are models based on the Bag of Visual Words framework. Existing approaches, however, produce high dimensional and thus expensive representations for data storage and computation. Because the standard Bag of Visual Words framework disregards the relationships between the histogram bins, the model can be further enhanced by exploiting the correlations between the visual words. Even the improved visual features will find it hard to capture an abstract semantic meaning of some queries, e.g. straight road in the USA. Textual features, on the other hand, would struggle with such queries as church with more than two towers as in many cases the information about the number of towers would be missing. Thus, both visual and textual features represent complementary yet correlated aspects of the same information object, an image. Existing hybrid approaches for the combination of visual and textual features do not take these inherent relationships into account and thus the combinations performance improvement is limited. Visual and textual features can be also combined in the context of relevance feedback. The relevance feedback can help us narrow down and correct the search. The feedback mechanism would produce subsets of visual query and feedback representations as well as subsets of textual query and textual feedback representations. A meaningful feature combination in the context of relevance feedback should take the inherent inter (visual-textual) and intra (visual-visual, textualtextual) relationships into account. In this work, we propose a principled framework for the semantic gap reduction in large scale generic image retrieval. The proposed framework comprises development and enhancement of novel visual features, a hybrid model for the visual and textual features combination, and a hybrid model for the combination of features in the context of relevance feedback, with both fixed and adaptive weighting schemes (importance of a query and its context). Apart from the experimental evaluation of our models, theoretical validations of some interesting discoveries on feature fusion strategies were also performed. The proposed models were incorporated into our prototype system with an interactive user interface
    corecore