24 research outputs found

    Efficient Visual Computing with Camera RAW Snapshots

    Get PDF
    Conventional cameras capture image irradiance (RAW) on a sensor and convert it to RGB images using an image signal processor (ISP). The images can then be used for photography or visual computing tasks in a variety of applications, such as public safety surveillance and autonomous driving. One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing. In this paper, we propose a novel ρ-Vision framework to perform high-level semantic understanding and low-level compression using RAW images without the ISP subsystem used for decades. Considering the scarcity of available RAW image datasets, we first develop an unpaired CycleR2R network based on unsupervised CycleGAN to train modular unrolled ISP and inverse ISP (invISP) models using unpaired RAW and RGB images. We can then flexibly generate simulated RAW images (simRAW) using any existing RGB image dataset and finetune different models originally trained in the RGB domain to process real-world camera RAW images. We demonstrate object detection and image compression capabilities in RAW-domain using RAW-domain YOLOv3 and RAW image compressor (RIC) on camera snapshots. Quantitative results reveal that RAW-domain task inference provides better detection accuracy and compression efficiency compared to that in the RGB domain. Furthermore, the proposed ρ-Vision generalizes across various camera sensors and different task-specific models. An added benefit of employing the ρ-Vision is the elimination of the need for ISP, leading to potential reductions in computations and processing times

    Recording, compression and representation of dense light fields

    Get PDF
    The concept of light fields allows image based capture of scenes, providing, on a recorded dataset, many of the features available in computer graphics, like simulation of different viewpoints, or change of core camera parameters, including depth of field. Due to the increase in the recorded dimension from two for a regular image to four for a light field recording, previous works mainly concentrate on small or undersampled light field recordings. This thesis is concerned with the recording of a dense light field dataset, including the estimation of suitable sampling parameters, as well as the implementation of the required capture, storage and processing methods. Towards this goal, the influence of an optical system on the, possibly bandunlimited, light field signal is examined, deriving the required sampling rates from the bandlimiting effects of the camera and optics. To increase storage capacity and bandwidth a very fast image compression methods is introduced, providing an order of magnitude faster compression than previous methods, reducing the I/O bottleneck for light field processing. A fiducial marker system is provided for the calibration of the recorded dataset, which provides a higher number of reference points than previous methods, improving camera pose estimation. In conclusion this work demonstrates the feasibility of dense sampling of a large light field, and provides a dataset which may be used for evaluation or as a reference for light field processing tasks like interpolation, rendering and sampling.Das Konzept des Lichtfelds erlaubt eine bildbasierte Erfassung von Szenen und ermöglicht es, auf den erfassten Daten viele Effekte aus der Computergrafik zu berechnen, wie das Simulieren alternativer Kamerapositionen oder die Veränderung zentraler Parameter, wie zum Beispiel der Tiefenschärfe. Aufgrund der enorm vergrößerte Datenmenge die für eine Aufzeichnung benötigt wird, da Lichtfelder im Vergleich zu den zwei Dimensionen herkömmlicher Kameras über vier Dimensionen verfügen, haben frühere Arbeiten sich vor allem mit kleinen oder unterabgetasteten Lichtfeldaufnahmen beschäftigt. Diese Arbeit hat das Ziel eine dichte Aufnahme eines Lichtfeldes vorzunehmen. Dies beinhaltet die Berechnung adäquater Abtastparameter, sowie die Implementierung der benötigten Aufnahme-, Verarbeitungs- und Speicherprozesse. In diesem Zusammenhang werden die bandlimitierenden Effekte des optischen Aufnahmesystems auf das möglicherweise nicht bandlimiterte Signal des Lichtfeldes untersucht und die benötigten Abtastraten davon abgeleitet. Um die Bandbreite und Kapazität des Speichersystems zu erhöhen wird ein neues, extrem schnelles Verfahren der Bildkompression eingeführt, welches um eine Größenordnung schneller operiert als bisherige Methoden. Für die Kalibrierung der Kamerapositionen des aufgenommenen Datensatzes wird ein neues System von sich selbst identifizierenden Passmarken vorgestellt, welches im Vergleich zu früheren Methoden mehr Referenzpunkte auf gleichem Raum zu Verfügung stellen kann und so die Kamerakalibrierung verbessert. Kurz zusammengefasst demonstriert diese Arbeit die Durchführbarkeit der Aufnahme eines großen und dichten Lichtfeldes, und stellt einen entsprechenden Datensatz zu Verfügung. Der Datensatz ist geeignet als Referenz für die Untersuchung von Methoden zur Verarbeitung von Lichtfeldern, sowie für die Evaluation von Methoden zur Interpolation, zur Abtastung und zum Rendern

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined

    Doctor of Philosophy

    Get PDF
    dissertationOptics is an old topic in physical science and engineering. Historically, bulky materials and components were dominantly used to manipulate light. A new hope arrived when Maxwell unveiled the essence of electromagnetic waves in a micro perspective. On the other side, our world recently embraced a revolutionary technology, metasurface, which modifies the properties of matter-interfaces in subwavelength scale. To complete this story, diffractive optic fills right in the gap. It enables ultrathin flat devices without invoking the concept of nanostructured metasurfaces when only scalar diffraction comes into play. This dissertation contributes to developing a new type of digital diffractive optic, called a polychromat. It consists of uniform pixels and multilevel profile in micrometer scale. Essentially, it modulates the phase of a wavefront to generate certain spatial and spectral responses. Firstly, a complete numerical model based on scalar diffraction theory was developed. In order to functionalize the optic, a nonlinear algorithm was then successfully implemented to optimize its topography. The optic can be patterned in transparent dielectric thin film by single-step grayscale lithography and it is replicable for mass production. The microstructures are 3?m wide and no more than 3?m thick, thus do not require slow and expensive nanopatterning techniques, as opposed to metasurfaces. Polychromat is also less demanding in terms of fabrication and scalability. The next theme is focused on demonstrating unprecedented performances of the diffractive optic when applied to address critical issues in modern society. Photovoltaic efficiency can be significantly enhanced using this optic to split and concentrate the solar spectrum. Focusing through a lens is no news, but we transformed our optic into a flat lens that corrects broadband chromatic aberrations. It can also serve as a phase mask for microlithography on oblique and multiplane surfaces. By introducing the powerful tool of computation, we devised two imaging prototypes, replacing the conventional Bayer filter with the diffractive optic. One system increases light sensitivity by 3 times compared to commercial color sensors. The other one renders the monochrome sensor a new function of high-resolution multispectral video-imaging

    Sparse Reconstruction of Compressive Sensing Magnetic Resonance Imagery using a Cross Domain Stochastic Fully Connected Conditional Random Field Framework

    Get PDF
    Prostate cancer is a major health care concern in our society. Early detection of prostate cancer is crucial in the successful treatment of the disease. Many current methods used in detecting prostate cancer can either be inconsistent or invasive and discomforting to the patient. Magnetic resonance imaging (MRI) has demonstrated its ability as a non-invasive and non-ionizing medical imaging modality with a lengthy acquisition time that can be used for the early diagnosis of cancer. Speeding up the MRI acquisition process can greatly increase the number of early detections for prostate cancer diagnosis. Compressive sensing has exhibited the ability to reduce the imaging time for MRI by sampling a sparse yet sufficient set of measurements. Compressive sensing strategies are usually accompanied by strong reconstruction algorithms. This work presents a comprehensive framework for a cross-domain stochastically fully connected conditional random field (CD-SFCRF) reconstruction approach to facilitate compressive sensing MRI. This approach takes into account original k-space measurements made by the MRI machine with neighborhood and spatial consistencies of the image in the spatial domain. This approach facilitates the difference in domain between MRI measurements made in the k-space, and the reconstruction results in spatial domain. An adaptive extension of the CD-SFCRF approach that takes into account regions of interest in the image and changes the CD-SFCRF neighborhood connectivity based on importance is presented and tested as well. Finally, a compensated CD-SFCRF approach that takes into account MRI machine imaging apparatus properties to correct for degradations and aberrations from the image acquisition process is presented and tested. Clinical MRI data were collected from twenty patients with ground truth data examined and con firmed by an expert radiologist with multiple years of prostate cancer diagnosis experience. Compressive sensing simulations were performed and the reconstruction results show the CD-SFCRF and extension frameworks having noticeable improvements over state of the art methods. Tissue structure and image details are well preserved while sparse sampling artifacts were reduced and eliminated. Future work on this framework include extending the current work in multiple ways. Extensions including integration into computer aided diagnosis applications as well as improving on the compressive sensing strategy

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included
    corecore