893 research outputs found

    A Nonlinear Projection Neural Network for Solving Interval Quadratic Programming Problems and Its Stability Analysis

    Get PDF
    This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    A Nonlinear Projection Neural Network for Solving Interval Quadratic Programming Problems and Its Stability Analysis

    Get PDF
    This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper

    A Nonlinear Projection Neural Network for Solving Interval Quadratic Programming Problems and Its Stability Analysis

    Get PDF
    This paper presents a nonlinear projection neural network for solving interval quadratic programs subject to box-set constraints in engineering applications. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the interval quadratic optimization problems. By employing Lyapunov function approach, the global exponential stability of the proposed neural network is analyzed. Two illustrative examples are provided to show the feasibility and the efficiency of the proposed method in this paper

    Neurodynamic approaches to model predictive control.

    Get PDF
    Pan, Yunpeng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (p. 98-107).Abstract also in Chinese.Abstract --- p.ip.iiiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.2Chapter 1.1 --- Model Predictive Control --- p.2Chapter 1.2 --- Neural Networks --- p.3Chapter 1.3 --- Existing studies --- p.6Chapter 1.4 --- Thesis structure --- p.7Chapter 2 --- Two Recurrent Neural Networks Approaches to Linear Model Predictive Control --- p.9Chapter 2.1 --- Problem Formulation --- p.9Chapter 2.1.1 --- Quadratic Programming Formulation --- p.10Chapter 2.1.2 --- Linear Programming Formulation --- p.13Chapter 2.2 --- Neural Network Approaches --- p.15Chapter 2.2.1 --- Neural Network Model 1 --- p.15Chapter 2.2.2 --- Neural Network Model 2 --- p.16Chapter 2.2.3 --- Control Scheme --- p.17Chapter 2.3 --- Simulation Results --- p.18Chapter 3 --- Model Predictive Control for Nonlinear Affine Systems Based on the Simplified Dual Neural Network --- p.22Chapter 3.1 --- Problem Formulation --- p.22Chapter 3.2 --- A Neural Network Approach --- p.25Chapter 3.2.1 --- The Simplified Dual Network --- p.26Chapter 3.2.2 --- RNN-based MPC Scheme --- p.28Chapter 3.3 --- Simulation Results --- p.28Chapter 3.3.1 --- Example 1 --- p.28Chapter 3.3.2 --- Example 2 --- p.29Chapter 3.3.3 --- Example 3 --- p.33Chapter 4 --- Nonlinear Model Predictive Control Using a Recurrent Neural Network --- p.36Chapter 4.1 --- Problem Formulation --- p.36Chapter 4.2 --- A Recurrent Neural Network Approach --- p.40Chapter 4.2.1 --- Neural Network Model --- p.40Chapter 4.2.2 --- Learning Algorithm --- p.41Chapter 4.2.3 --- Control Scheme --- p.41Chapter 4.3 --- Application to Mobile Robot Tracking --- p.42Chapter 4.3.1 --- Example 1 --- p.44Chapter 4.3/2 --- Example 2 --- p.44Chapter 4.3.3 --- Example 3 --- p.46Chapter 4.3.4 --- Example 4 --- p.48Chapter 5 --- Model Predictive Control of Unknown Nonlinear Dynamic Sys- tems Based on Recurrent Neural Networks --- p.50Chapter 5.1 --- MPC System Description --- p.51Chapter 5.1.1 --- Model Predictive Control --- p.51Chapter 5.1.2 --- Dynamical System Identification --- p.52Chapter 5.2 --- Problem Formulation --- p.54Chapter 5.3 --- Dynamic Optimization --- p.58Chapter 5.3.1 --- The Simplified Dual Neural Network --- p.59Chapter 5.3.2 --- A Recursive Learning Algorithm --- p.60Chapter 5.3.3 --- Convergence Analysis --- p.61Chapter 5.4 --- RNN-based MPC Scheme --- p.65Chapter 5.5 --- Simulation Results --- p.67Chapter 5.5.1 --- Example 1 --- p.67Chapter 5.5.2 --- Example 2 --- p.68Chapter 5.5.3 --- Example 3 --- p.76Chapter 6 --- Model Predictive Control for Systems With Bounded Uncertainties Using a Discrete-Time Recurrent Neural Network --- p.81Chapter 6.1 --- Problem Formulation --- p.82Chapter 6.1.1 --- Process Model --- p.82Chapter 6.1.2 --- Robust. MPC Design --- p.82Chapter 6.2 --- Recurrent Neural Network Approach --- p.86Chapter 6.2.1 --- Neural Network Model --- p.86Chapter 6.2.2 --- Convergence Analysis --- p.88Chapter 6.2.3 --- Control Scheme --- p.90Chapter 6.3 --- Simulation Results --- p.91Chapter 7 --- Summary and future works --- p.95Chapter 7.1 --- Summary --- p.95Chapter 7.2 --- Future works --- p.96Bibliography --- p.9

    Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network

    Full text link

    Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach

    Get PDF
    Previous works of traditional zeroing neural networks (or termed Zhang neural networks, ZNN) show great success for solving specific time-variant problems of known systems in an ideal environment. However, it is still a challenging issue for the ZNN to effectively solve time-variant problems for uncertain systems without the prior knowledge. Simultaneously, the involvement of external disturbances in the neural network model makes it even hard for time-variant problem solving due to the intensively computational burden and low accuracy. In this paper, a unified neural approach of simultaneous identification, tracking control and disturbance rejection in the framework of the ZNN is proposed to address the time-variant tracking control of uncertain nonlinear dynamics systems (UNDS). The neural network model derived by the proposed approach captures hidden relations between inputs and outputs of the UNDS. The proposed model shows outstanding tracking performance even under the influences of uncertainties and disturbances. Then, the continuous-time model is discretized via Euler forward formula (EFF). The corresponding discrete algorithm and block diagram are also presented for the convenience of implementation. Theoretical analyses on the convergence property and discretization accuracy are presented to verify the performance of the neural network model. Finally, numerical studies, robot applications, performance comparisons and tests demonstrate the effectiveness and advantages of the proposed neural network model for the time-variant tracking control of UNDS
    • …
    corecore