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Abstract 

Model predictive control (MPC)，also known as receding horizon control (RHC), is 
a powerful technique for optimizing the performance of control systems. However, 
the high computational demand in solving optimization problem associated with 
MPC in real-time is a major obstacle. In addition, when process models are 
unkriowri, nonlinear or contain uncertainties, there would be more challenges in 
the analysis and synthesis of nonlinear and robust MPC systems. To overcome 
these obstacles and challenges, recurrent neural networks (RNNs) are employed 
in controller design. This thesis is concentrated on the analysis and synthesis 
of RNN-based MPC for linear systems, nonlinear systems, and systems with 
uncertainties. 

This thesis consists of seven chapters. We first develop RNN-based MPC 
scheines for linear systems. As linear MPC problems can be generally formulated 
as linear programming (LP) or quadratic programriiiiig (QP) problems, two RNNs 
are applied iii controller design to solve the associated LP or QP problems. Both 
RNNs have desired convergence property and relatively lower computational coiri-
plcxity. For nonlinear affino systems, general noiilinoar systems, and iiiiknown 
systems, MPC based on RNNs are also developed. When the system model is un-
kriowri, two types of RNNs (e.g., echo state network and simplified dual network) 
are employed for system identification and optimization, respectively. Further-
riiore, the RNN-based nonlinear MPC is applied to mobile robot tracking. When 
bounded uncertainties are considered in linear systems, the MPC synthesis prol)-
leni can be formulated as a rninirnax optimization problem, a discrete-time RNN 
is developed for solving this niiiiiniax problem. The proposed RNN has global ex-



porieiitial convergence property and can be implemented using digital hardware. 
Simulation results are provided to demonstrate the effectiveness and efficiency of 
the proposed RNN-based approaches. 



摘要 

模型預測控制，又名滾動時域控制，是一種用於優化控制系统的技術。然而， 

用於解決模型預測控制中優化問題的高計算複雜度成為即時應 f f l中的障礙。另 

外，當模型是未知，非線性，或者含有不確定因素時，設計控制器會更加困難。 

為了克服這些困難，回饋神經網路被應用於控制器設計。此硬士論文的內容主 

要為針對線性，非線性，以及含有不確定因素系統的基於回饋神經網路的模型預 

測控制器的分析與設計。 

此篇論文包含七個章節。我們首先提出了基於回饋神經網路的線性模型預 

測控制方法。線性模型預測控制問題可以被轉化為線性規劃或二次規劃問題，兩 

種回饋神經網路分別應用於解決模型預測控制中的線性規劃和非線性規劃問題， 

此二種神經網路均含有全局收敛性以及較低的計算複雜度。對於非線性仿射系 

統，一般非線性系統以及未知系統，我們也提出了相應的基於回饋神經網路的模 

型預測控制方法。當糸統未知時，兩類回饋神經網路(回载狀態神經網路以及 

簡化對偶神經網路）分別應用於系統辨識和優化。另外，基於回饋神經網路的 

非線性模塑預測控制方法被應用於移動機器人跟縱控制。當線性模型中含有不 

確定因素時，預測控制問題可轉化為最大最小優化問題，我們提出一個離散回饋 

神經網路來解決此問題，此神經網路被證明含有指數收敛性，並可以用數位硬體 

實現。仿真結果驗證了基於冋饋神經網路的非線性模型預測控制方法的效果。 

111 
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Chapter 

Introduction 

1.1 Model Predict ive Control 
III recent years, the requirements for the quality of industrial process control 
increased significantly, due to the increased complexity of the process plants 
and sharper specifications of product quality. Among various kinds of indus-
try process control techniques, model predictive control (MPC) is a promising 
one. Model predictive control (MPC), also known as receding horizon control 
(RIIC), is ail advanced control strategy for optimizing the performance of control 
systems, MPC generates control actions by optimizing an objective fiiiictioii re-
peatedly over a finite moving prediction horizon, within system constraints, and 
based on a model of the dynairiic system to be controlled. As the most offoctivo 
rnultivariable control technology, MPC has many desirable features suitable for 
industrial applications. One of the key advantages of MPC is its ability to deal 
with input arid output constraints; another is that MPC can be naturally applied 
for rnultivariable process control. Because of these advantages, MPC has been 
used in numerous industrial applications in the refining, petrochemical, chemical, 
pulp, paper, and food processing industries. The development and applications 
of MPC technology can be traced back 30 years to late seventies, when the first 

2 
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MPC strategy, which was based on quadratic prograininiiig (QP), was presented 
by Richalet [1|. Since then, the MPC research and development have grown sig-
nificantly. Recent survey and review of MPC algorithms and technologies were 
introduced in [2] [3]. 

Most control techniques do not consider the future implication of current con-
trol actions. MPC applies on-line optimization to a system model. By taking the 
current state as an initial state, a cost-minimization control strategy is computed 
at eacii sample time, and at the next computation time interval, the calculation 
repeated with a new state. The basic structure of MPC is shown in Fig. 1.1. As 
the process model of MPC is usually expressed with linear or quadratic criterion, 
MPC problems can be generally formulated as linear programming or quadratic 
prograrnrning problems. As a result, they can be solved using solution methods 
for linear and quadratic programming problems. A key issue for MPC synthesis 
lies in online optimization. The success of any MPC implementation depends on 
the effectiveness and efficiency of the solution method used. One possible and 
very promising approach to dynamic optimization is to apply recurrent neural 
networks (RNNs). 

1.2 Neural Networks 
In numerous of science arid engineering applications, such as robot control, riian-
ufacturiiig system design, signal arid image processing, and pattern recognition, 
the problems can be formulated as linear or nonlinear programming problems 
[4] [5]. Over years, a variety of numerical algorithms have been developed for 
solving linear and nonlinear prograrnrning problems [5]，such as the gradient pro-
jection method by Rosen in 1960 [6] and the penalty function method by Zangwill 
in 1967 [7]. However, in many engineering applications, real-time solutions are 
often needed. One promising approach for solving optimization problems on real 
time is to employ recurrent neural networks (RNNs) based on circuit implementa-
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Time=k 

Process Model Constraints 
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Solve optimization problem 
obtain optimal current and 

future inputs 

Figure 1.1: Basic structure of MPC algorithm. 
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tion. As the counterparts of biological neural systems, properly designed artificial 
iieural networks can serve as goal-seeking computational models for solving vari-
ous optimization problems in many applications [8]-[11]. 

Compared with traditional numerical methods for constrained optimization, 
neural network has several advantages: first, it can solve many optimization 
problems with time-varying parameters; second, it can handle large-scale prob-
lems with its parallelizablc ability; third, it can bo iriiploiiiciit(>(i effcctivoly using 
VLSI and optical technologies [12]. Therefore, neural network can solve optimal 
control problems in running times at the orders of magnitude iiiiicli faster than 
the most popular optimization algorithms executed on general-purpose digital 
coinputers. Application areas of neural networks include, but are not limited to, 
system inodeling, mathematical progTaiiiniing, associative memory, combinatorial 
optimization, pattern recognition and classification, robotic and process control, 
and design and planning. 

In IQdOs, the first conceptual elements of neural networks were introduced. 
Since then, iiiiinerous iieviral network models have l)eeii developed. In the past 
two decades, recurrent neural networks for optimization and their engineering 
applications have been widely investigated. Tank and Hopfield proposed the first 
working recurrent neural network implemented on analog circuits [13], their work 
inspired rnaiiy researchers to develop other neural networks for solving linear and 
nonlinear optimization problems. 

Keiiiiody and Chua [14] presented a neural network with a finite penalty ])a-
raineter for nonlinear programming which can converge to approximate optimal 
solutions. To avoid using the penalty parameter, many other methods ha.ve been 
iiitrodufcd to develop vaiioiis neural networks. Zhang and Coiistantiriides [15] 
proposed the Lagrarigiaii network based on the Lagraiigiaii method which ha,(l a, 
two-layers structure and this neural network was globally convergent to an opti-
mal solution if only the objective function was strictly convex [16]. Wang [17] [18] 
developed tiie deterministic annealing network for linear and iionlinear convex 
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prograraniing. Xia [19] proposed some primal neural networks for solving con-
vex quadratic programming problems. The primal-dual neural networks [20] [21] 
with two-layers architecture were proposed for solving linear and nonlinear pro-
gramming problems. The primal-dual neural networks based on the primal-dual 
method are globally convergent to the primal and dual solutions of the optimiza-
tion problems. The primal-dual neural networks have been widely utilized to 
the assignment problems [22] [23] and online resolving constrained kinematic re-
dundancy ill robot motion control [24]. In [25]-[27], the dual neural networks as 
simplified forms of the primal-dual neural networks were presented to solve convex 
quadratic programinirig problems utilizing only the dual variables. In order to 
simplify the architecture of the dual neural network, a simplified dual neural net-
work was proposed for solving quadratic programming problems [28]. Based on 
the projection method [29), the projection neural network was proposed for solv-
ing general convex programming problems [3()j-[36) which was globally convergent 
to exact optimal solutions. Recently, Forti, Nistri and Quiricampoix proposed a 
generalized neural network for solving non-smooth nonlinear programming prob-
lems based on the gradient and penalty parameter methods [37]. The delayed 
neural networks were proposed for solving convex quadratic programming prob-
lems [38] [39] [40]. Ill [41] [42], Liu and Wang proposed two one-layer recurrent 
neural networks for solving linear and quadratic programming problems. The 
one-layer recurrent neural networks, which number of neurons is equal to that 
of decision variables in the prograrnrnirig problems, have more simply architec-
ture complexity than the other neural networks such as Lagrangian network and 
projection network. 

1.3 Existing studies 
Several studies on linear MPC based on iieiirodynaniic optimization have been 
presented [43]-[50]. In [43]’ the Hopfield neural network was applied to linear 
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MPC. But the the control performance is compromised as the approximation 
strategy yields sub-optimal solutions. In [44], a discrete-time structured neural 
network was proposed to solve the QP problem involved in linear MPC exactly. 
However, it has a 3-layer structure which is complex for implementation. In [45], 
the dual neural network in [28] was adopted for multi-variable generalized pre-
dictive control. In [46], two RNNs with simple structure and global convergence 
property were applied in model predictive controller design. In [47], a robust 
MPC scheme based on a discrete-time RNN was proposed for linear systems with 
bounded uncertainties. These studies showed that neural networks have good per-
formance in solving optimization problem associated with linear MPC. In recent 
years, nonlinear MPC using RNNs were also investigated. In [48], two recurrent 
radial basis function networks were applied for system identification and control, 
respectively. In [49], an RNN was adopted for prediction modeling. In [50], non-
linear MPC synthesis problem was reforriiulated to a QP problem and an RNN 
was used for solving the QP problem. 

1.4 Thesis s t ruc tu re 
In this thesis, MPC schemes based on RNNs are developed for linear systems, 
nonlinear systems, and systems with uncertainties. The thesis is divided into 
seven chapters organized as follow: 

The first chapter gives a brief introduction to MPC and RNN, some existing 
related works are also introduced. 

Ill Chapter 2, linear MPC synthesis problem is formulated as both liiiea,r and 
quadratic programming problems, two RNNs with global convergence property 
arid low computational complexity are applied in controller design. A compariscm 
was made between the two neural network approaches. 

Chapter 3 presents a MPC scheme for nonlinear affine systems baaed on the 
simplified dual network. Simulation results show that the proposed approach is 
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effective and efficient compared with linear MPC. 
In Chapter 4, the RNN-based nonlinear MPC scheme is proposed and applied 

to mobile robot tracking. The simplified dual network and recursive learning 
algorithm are employed in MPC design. Compared with linear MPC, the RNN-
based approach gives better tracking result with less errors. 

Chapter 5 presents a MPC scheme for unknown dynamic systems based on 
RNNs. Two types of RNNs (e.g., echo state network and simplified dual network) 
are employed for system identification and optimization, respectively. A recursive 
algorithm for RNN learning is developed, the proof of convergence property is 
given. 

In Chapter 6, we formulate robust MPC as a quadratic minimax optimization 
problem. A discrete-time RNN for minimax optimization is developed and ap-
plied, whose global exponential convergence property is proved. Furthermore, a 
comparison is made bet,ween the proposed approach and linear matrix inequalities 
approach. 

Chapter 7 concludes this thesis, describes some unsolved problems, and points 
out future research in this area. 

• End of chapter. 



Chapter 2 

Two Recurrent Neural Networks 

Approaches to Linear Model 

Predictive Control 

2.1 Problem Formulation 
Consider the following linear discrete-time system: 

x{k + I) = Ax{k) + Bu{k), 

！m = Cx{k), 

"•min ^w(^) ^ f̂ rnaxi 
AUmin <Au{k) < Aanmx, 

Vmiu <y{k) < Ih随、 

(2.1) 

with the constraints 

(2.2) 

which rejHcseiits the dynamics of the plant under consideration. In (2.1)-(2.2), 
k > 0, x{k) e 況is the state vector, u(k) e 况爪 jg the input vector, and y{k) G 
is the output vector. Wmin < Wmax and ijmin < '"max are vectors of upper and lower 
bounds. 

9 
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Model predictive control is a step-by-step optimization technique: at each 
sampling time, measure of estimate the current state, obtain the optimal input 
vector by solving the following optimization problem is solved at each time k. 

2.1.1 Quadratic Programming Formulation 
With a quadratic criterion, MPC can be formulated as the following optimization 
problem: 

N 

mill 幻 r(A; + j\k) — y(k + j\k)\'Q[r{k + j\k)-

N„ 
y{k + j\k)] + [ Auik + j\kfRAu{k + j\k) 

(2.3) 
S.t. W丨油丨 < U{k + j\k) < Wrnax, j = ()’ ^u 一 1； 

A Wmin < Au(k + j\k) < A w , 舰， j = 0，..., N、, - 1； 

Vrnm < y(k + j\k) < ?y„,ax， j = 1，...，iV; 

where k is the cuiTei.it time step, yik+j\k) denotes the predicted output, r{k+j\k) 

denotes the reference trajectory of output signal (desired output) at sampling 
instant k, and Au{k + j\k') denote the input increment, where Aii{k: 4- j\k)= 

u{k + j\k) - u〔k - 1 + N is the predictive horizon, where 1 < A .̂ Ny denote 
the control horizon, where 0 < Nu < N. After N^ control moves, Au[k. + j\k) 

become zero. Q € and R G are appropriate weighting matrices. 
According to the process model (2.1): 

J 1 ’ • • *,八'. 

Define following vectors; 

y{k) = [y{k + l\k) •.. y{k + iV|/c)广 € 况 

u{k) = � f c ) . . • u(A; + Nu - € 况 

(2.1) 
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Ailik) 二 [Aw�A:) Aw(A: + iV„. — l|A’)]Te 况 

f{k) = [r{k + 1 | A ; ) • • • r(k + iV|A;)广(=况"?)’ 

where the reference trajectory r{k) is known in advance. The predicted output 
y{k) axe expressed in the following form: 

where 

y{k) 二 Sx{k) + Mil(k) 

=Sx{k) + MAu{k) + Vu{k —— 1 ) , 

S 二 [(M ••• CM 叩 , e 产 T 

CD 

C{A + I)B 

V = 

M = 

+ A+ I)B 

-1 + • •. + + / ) / ? 
CB 

C{A + I)D 

G况帅X� 

+ ...I)B 

+ ...I)D 

CB 

C{A + I)B 

M e炉‘以N，i 

CiA""-'+ ...I)B ... + j^B 

denotes the identity matrix. Define vectors: 

(2,5) 

AUrr̂ ax = [A'Unuxx . • • A ^ a x f € 况风, 
(石n��ri [«''rnin '̂ rninj � �^� ？ 

S^u rn 

î 'mny 二 Hr G 
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H = 

Thus, the optimization problem (2.3) can be expressed in the following form: 

mill [f(A;) — Sx(k) — MAu{k) — Vu{k — 1)严 

Sx{k) — MAu(k) — Vu(k - 1 ) ] + Au^(k)BAuik) 

s.t. < u(k} + IIAil.(k) < ?7n,ax (2.6) 
AWniin < Au(k) < AUmax 
f/min < fj⑷ + M{k)Au{k) < f"腿 

By defining the variable vector v = Au(k) E 况 t h e problem (2.3) can be 
rewritten as a. standard quadratic programming problem form: 

mill ^v^ Wv + (-TV 

S,t. înin ^ Gv ^ I mux 
where tlie coefficient matrices and vectors are 

(2.7) 

/min = ( - 0 0 AiiminjT € 况巩'-+2Np’ 

/ 職 - [ b Afl丨腿广G况巩‘-+ 2"p’ 

VF = 2{M^QM + /?) G 况 况 川 ， 

c = -2]Vf^Q{f{k) - Sx{k) 一 Vu{k 一 1)) 6 况队爪， 

E= l-H H 一 M Mf e SR(2^um+2Np)x./V,m^ 
G: = [ E 斤 

h u{k) 

'口'max — u{k) 
^ m+2Np 

—^min — “ m 
？/max m 
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The solution to the quadratic programming problem (2.7) gives the vector of 
control action Au{k), which is used to calculate the optimal input signal. Since 
the objective function in is strictly convex (due to W being positive definite), and 
the feasible region of linear constraints is a closed convex set, the solution to the 
quadratic programming problem is unique and satisfies the Karush-Kuhn-Tucker 
(KKT) optirnality conditions [51]. 

2.1.2 Linear Programming Formulation 
Although the quadratic criterion is popular and has been widely used in various 
MPC applications. Several MPC algorithms using linear programming have been 
presented. For example, Zadeh and Whalen [52] and Pi.opoi [53] introduce the 
approacties to solve MPC problem based on linear prograiiiiiiing in the early 
sixties. And some other authors published their investigation concerning the 
linear programming, based MPC [54]-[57]. 

Ill this section, we formulate MPC as a standard linear programming problem. 
With 11 critorion, MPC can be formulated other than (2.3) as follow: 

N Nu-\ 

m m [ Q[T[k + :j\k) — y(k + j\k)] + ^ RAu{k + j\k) 

s.t. ？v-,„i„ < u{k + j\k) < (./,„,ax, J = 0, ...,Nu 一 1; (2.8) 
A Uniin < Au{k + j\k) < AUmax, j = 0, N^ “ 1； 

Vrmu < y (k J \k) < Vur,^, j = 1,..., N. 
The optimization problem (2.8) can be further formulated as a standard linear 

programming problem using the standard method [58]. 
Define the following vectors: 
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that satisfies 

一(K/OS 士 沉 A ’ ) j ， 

-ip{k) < 士 ( 人 : ) ， 

(2.9) 

where 士 means that the constraints is duplicated for each sign. The problem 
(2.8) can be rewritten in as a standard linear programming problem: 

m i l l / s 

c t h • < f \ < h n.L. 'tniin _ _ ''max 

where the coefficient matrices and vectors are: 

Q{r{k) - Sx{k) - Vu{k - 1)) O - Oc] 

/̂ max = [/„>ax 00 Q{r{k) - Sx{k) - Vu{k - 1)) C f 

h . h • (= S»(3N„+27V)m+2Np 
'̂ rnuM '''inin ^ 八 ） 

/=[(:)’...，0，1，...，1广召况风,n+Np’ 

F = 

G 0 0 
QM I 0 

B 0 I 
QM —I 0 

R 0 —1 

(2.10) 

f g +2N)m+2.Np] x (27V„m+A'p) 

where O denotes the zero matrix. 
As linear programming problem (2.10) depends on the current state x{k) and 

past input, u{k - 1), we will introduce a neural network to solve the problem at 
each time interval in the next section. 
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2.2 Neural Network Approaches 
III this se(.:tiori, based on the linear and quadratic programming fonniilatioiis (2.7) 
and (2.10) in the previous section, we propose two neural network approaches to 
MPC. 

2.2.1 Neural Network Model 1 
Liu and Wang [28] developed a one-layer recurrent neural network called the siin-
plifiod dual neural network for solving quadratic programming problems, which 
has showed good performance and lower computational complexity. In this part 
of the section, we apply the neural network for MPC. 

Consider (2.7) as a primal problem, then its dual problem is: 

mill + - l l^^J 
s.t. + c — G^^a + GT0 = 0 

(2.11) 

where » e 况2"„”,.+2"", p ^ 妒N,,m+2Np are dual decision variables. 
By defining z = a — [3�the Karush-Kauhri-Tiicker condition of (2.7) are: 

Wv + c — G'^z = 0, 

(2.12) 

Gv = A(Gv-z), 

where A(-) is a piecewise linear function, defined as: 

n̂iim < n̂iiin 
入 ⑷ S i � /.nin < < m̂ax； (2.13) 

^max) �^niax-
Based Oil (2.12) and (2.13), the dyiiarnic equation of neural network for solving 

quadratic programming problem (2.7) ca,ri be described as: 
• state equation 

(鸟=-Gv + 从Gv - z)’ (2.14) 
LLC 
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• output equation 
(2.15) 

where z € 况2M‘m+2yv" is the state vector, f is a scaling parameter that control the 
convergence rate of the neural network. 

According to the convergence analysis in [28], we can ensure that the pro-
posed neural network is Lyapuiiov stable and globally convergent to the optimal 
solution. 

2.2.2 Neural Network Model 2 
It has been shown that linear programiniiig problems can also be solved using 
neural networks. Recently, a one-layer recurrent neural network with a discoii-
tiiiiioiis hard-limiting activation function for linear prograinriiiiig was developed 
[41]. Ill this paper, we present this neural network for solving (2.10). 

To apply the neural network model, let us further formulate (10) as: 

m i l l f i s 
‘ (2 .16) 

S.t, � l i i i ^ ^ înax 
where 

f̂ min — ^ "mm 亡 JL ? 
I) — pTfl G ("iriax — "TTiax ^ • 

According to the KKT conditions, s* is an optimal solution of (2.16), if and 
only if there exist a w* G 况 s u c h that satisfies the following 
optimality conditions: 

f + w = 0, 

(2.1/) 

U>i = 0’ ^min(i) < < 6max(i)； 

U)t < 0’ Si = b max(j) • 
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Based on the above conditions, the dynamic equation of the proposed recur-
rent neural network model is described as follows: 

r/s - = -e{ag{s) + f } , (2.18) 

where c is a, positive scaling constant, a is a rioniiegative gain paraineter. g{-) is 
a discontinuous activation function, defined as: 

/ 

1, ’ � > /W(t)； 

[0,1], Si = 6max(i)； 

= 0, 6min(i) < <�iax⑴； (2.19) 
[-1,0], = 6min(i)； 

一1, < ^̂ min(i) 5 
where i = 1,2,..., 2A;m + Np. 

It is proven in [11] that the neural network is globally convergent to the 
optimal solution. 

2.2.3 Control Scheme 
The control sdienie based on neural networks can be siirnriiarized as follows: 

1. Let A: = 1. Set terminal time T, sample time t, predictive horizon N�control 
horizon N^, weighting matrices Q and B. 

2. Calculate process model matrices S', V, M � n e u r a l network parameters W, 
(7’，/，m̂jix ？ ^min i ĥmw i ^min-

3. Solve tlie quadratic and linear prograrniiiiiig problems (7) and (10) using the 
proposed two neural networks, obtaining the optimal control action Au(A：). 

4. Calculate the optimal input vector u{k) = Au{k\k) + u(k — 1). 

5. If k < T, set k = k + 1，return to step 2; otherwise, end. 
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2.3 Simulation Results 
Consider a quadruple-tank process described in [27], the objective is to control 
the level of the two lower tanks yi and 7/2, using the two pumps ui and U2. The 
process model of the quadruple-tank system is 

i'l = — \/2«7.Ti + x/2(/X3 + ^^.“1’ Hi /l! A] 
. "2 I «4 [：、 , I2P2 

工3 二 - 丁>/2.9;r3 + (2.20) A3 A‘3 
. "4 I T � , (1 — 1\)P\ 
‘7:4 二 一 —^Jlgx^ + Wi, 

1 

yi =PcX\, jh = f)(.工 2’ . 
where Xi is the water level in tank i. Choose the cont roller parameters as follows: 
cross-section of tank A] = A^^ — 28, A2 = A4 二 32; cross-section of the outlet 
hole a.] = a'i = 0.071, = 0.4 = 0.057; acceleration due to gravity g = 981; gains 
Pc = 0.5; the fraction of water flowing to tank from pump 71 = 0.7’ = 0.6; 
prediction horizon N = 10; control horizon A'; = 2; sampling time t = l[.s]： 

weighting matrices Q = I, R = 10/. 
The process model is linearized around the operational points = 12.1, 

X20 = 12.7, Xso = 1-8, X40 = 1.4. Consider input constraints -Umin = 0, Wmax = 6; 
output constraints 'ymin = 0, ymax = 7.5. 

The simulation results are showed in Figs. 2.1 - 2.4. At time k = 20. a step 
reference change is commanded in y\. At the same time a step load disturhauco 
enters in y'2. Wo can see that both the proposed iieuial network appi.oadiefs arc 
effective, based on the advantages in parallel computation and hardware iinplc-
inentatioii of neural network, the proposed approaches can solve the problem in 
real time efficiently. 

The neural network controller based on linear programming (NN2) responds 
faster than the one based on quadratic programming (NNl). That is because NN2 
approach have less computational cost than NNl approach. We can conclude that 
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Output y1 

40 60 80 100 120 140 160 180 
Time [s] 

Figure 2.1: Output responses in tank 1 of NNl and NN2 approaches. 

Output y2 

40 60 80 100 120 140 160 180 200 
Time [s] 

Figure 2.2: Output responses in tank 2 of NNl and NN2 approaches 
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Input u1 

40 60 80 100 120 140 160 180 200 
Time [s] 

Figure 2.3: Input responses in tank 1 of NNl and NN2 approaches. 

Input u2 

40 60 80 100 120 140 160 180 200 
Time [s] 

Figure 2.4: Input responses in tank 2 of NNl and NN2 approaches. 
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the NiN2 approach is more suitable for solving control problems with large size 
and stringent real-time requirement. However, using approaches based on linear 
programming may result in a poor control performance, which depends on the 
the selection of the weighting matrices Q and R [59]. 

• End of chapter. 



Chapter 3 

Model Predictive Control for 

Nonlinear Affine Systems Based 

on the Simplified Dual Neural 

Network 

(3 .1 ) 

3.1 Problem Formulat ion 
Consider a discrete-time nonlinear affine system: 

x{k + l)=： f{x{k))+g{x{k))v{k), 
y{k) = Ax(k), 

where x(k) € 况” is the state vector; u(k} 6 况 i s the input vector; y(k) E 况''is 
the output vector; / (•) and g(-) are nonlinear functions; A e The system 
is subject to the following constraints: 

Umin < u{k) < Umax, \^u{k)\ < AWmax, Vmin < < "max, (3 .2) 

where Umin < '"'nmx，Vmin < 1/max, aiid Awmax > 0 are vectors of upper and lower 
bounds; Au[k. + j\k) = u(k + jjk) — u(k + j - l\k) denotes the input iiicienieiit. 

22 
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For the above process model, the following cost function can be formulated 
and used for calculation of the optimal input trajectory over the control horizon: 

N Nn-l 
J{k) = J2\\r{k + j\k)-y{k+j\k)\\l + Y^ \\Au{ki-j\k)\\% (3.3) 

j二1 j=o 
where r{k + j\k) denotes tlie reference trajectory of output signal (desired output) 
at sampling instant A;, y{k + j\k) denotes the predicted output, N is the predictive 
horizon (1 < N), N^ denotes the control horizon (0 < N^ < N), Q e 况 a n d 
R G 況爪xm are appropriate weighting matrices, and || • ||q and || • are weighted 
norms defined as \\z\\w = yWWz. 

In order to obtain the formulation of the predicted state vectors, the previous 
predicted state vectors are used, which can be computed as follows: 

x{k 4- l\k) = f{x{k)) + g{x{k)){u{k - 1) -I. Au{k\k)), 
x{k + 2|A:) = f{x{k + 1|A-- 1)) + g{x{k + 1|A:- l)){u{k - 1) 

+ Au{k\k) + Au{k -h Ilk)), 
(3.4) 

:iik + N\k) = fi'xik + N - IjA;- 1)) + g{x{k + N - 1|A; - 1)) 
{u{k — 1) + Aii{k\k) ••• + Au{k + N - 1|A’)). 

Define following vectors: 
:v(A-) = [7/(A: + 1|A:) . . . y{k + N\k)]''' e 
x{k) = [ 2 ; (人 : + 1|A;) . • • x{k + iV|A;)]T G 飛Nn, 

An{k) = [Au{k\k) ... Au{k + Nu — IjAOf G 况""爪 

The predicted output depends on the previous predicted states, past input, 
and assumed value of current state. It can be expressed in a more concise form: 

y{k) = Ax{k) = A{G{k - l)Au{k) + K{k — 1) + F{k - 1)) (3.5) 
where 

A … 0 

A = •：...丨 … 

D … /I 
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G{k - 1 ) = 

— 1 ) ) 

g(x(k-h N - Ilk - 1)) g(x(k + N - l\k - 1)) g{x(k + N - l\k - 1}) 

g{x{k))u{k - 1) 
y{x{k + l\k - l))u{k - 1) K{k - 1 ) = 

(j{x{k ^ N - l\k ~ l))u{k - I) 

fiAk)) 

Nn 

F{k-1)= f{x{k+l\k-l)) 
e况如• 

mm 

f{x{k + N - l \ k - l ) ) 
Thus, the optimization problem associated with MPC can be expressed as: 

\\r{k) - AF{k — 1) - AK{k - 1) 一 AG{k - 1)A{/(A-)||^ 

+ \\^n{ml 
-Az l n . ax < Aw(A:) < A i i _x , (3.6) 

u^in < u{k — 1) + HAu{k) < “max， 

Vunu < A{F{k - 1) + K{k - 1) + G{k — l ) A u ( A O ) < ？/max, 

where 

it{k) = [u(k)…u(k)j e 况〜"'"， 

f ( k ) = [r(A： + 1|A-) . . . r ( k + A^A;)]'^ € 况 

AUmax =[AWmax • • • A'u.i nax 广 G ^ 

^niin =[Uuun . . . u • r , 
“ 【 n i n J 

‘€ 况""'"， 

'“max = [ " ' n 磁 . • • ^^nuix] 
r G 

Prnin = b r n i n . • e 飛Np, 

'"max =b /max • • • ？/max] 
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H ^ 飛NumxNum 

By defining the variable vector v = Au{k) € 况"""'•，the optimization problem 
(3.6) can be rewritten as a QP problem: 

1m 
rriiri -v^ Wv + c^ 

2 (3.7) 
< Ev < 

E = 

wlicrc the coefficient matrices and vectors arc 

L i n = [ - 0 0 G 妒 一 聊 ’ 

ax ~ 八'…imx]' e ^ “ \ 

vr = 2{AG{k — l)'^QAG(k — 1) + /?,) G 况獻“丨'爪’ 

c = -2AG{k - l)'^g(f(A;) — K{k - 1) - F{k - 1)) € 况 

II H -AG{k-l) AG{k - 1) /广 G 况(:W„m+2/Vp)x/V,,,m’ 
-W-min + — 1) 

"max - U{k - 1) 

-Vmin + AF{k： - 1) + AK{k — 1) 
y n . . . - A F { k - l ) - A k { k - l ) 

The solution to the QP problem (3.7) gives the vector of incremental control 
action Au{k), which is used to calculate the optimal control input. Since the 
ohjective function is strictly convex (due to W being positive definite), and tlie 
feasible region of linear constraints is a convex set, the solution to the QP problem 
is unique�arid satisfies the Karush-Kiihii-Tucker (KKT) optiinality coiiclitioiis. 

b = ^ ^2Nam.+2Np 

3.2 A Neural Network Approach 
Based on the QP forriiulatioii (3.7) in the previous section, we employ the sim-
plified dual network [28] for controller design. 



mm 

where a G 轮讽‘^+2""，fj e 况 ; 扎 伐 dual decision vectors. 
By (iefiriirig z = a - 3, the Karusli-Kauhn-Tucker condition of (3.7) are: 

Wv + (• — F/z = 0’ 
(3.9) 

Ev = P{Ev - z), 

where P(-) is a piecewise linear function, defined as: 

'mini ^ < ^mini 

= e, /n.in < ^ < /max； (3 .10) 

(max，^〉^max-

Based on (3.9) and (3.10), the dynamic equation of the simplified dual network 
for solving QP problem (3.7) can be described as: 

• state equation 
'•！^ = X{-Gv + P{Ev - z)), (3.11) 

• output equation 
= W-'{E''z - c), (3.12) 

where z € 况.：讽“爪is the state vector, A is a scaling parameter that control the 
convergence rate of the neural network. The simplified dual network is composed 
of one layer of '^N^m + 2N'p neurons. Compared with other models, this RNN has 
a simpler structure. According to the convergence analysis in [28], we can ensure 
that tlie simplified dual network is Lyapiiiiov stable and globally convergerit to 
the optimal solution at each time interval. 
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3.2.1 The Simplified Dual Network 
Consider (3.7) as a primal problem, then its dual problem is: 

3.8 Ciax/^ ^v^^Vv + ir^a — 

VT̂ i; + c — + E'^'fi = 0 
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t 

Real-time RNN parameters 
calculation 

x(k+1)=f(x(k))+g(x(k))u(k) 
y(k)=Ax(k) 

MA') 

嗎 u{k) 

iik-\) 
Kk) 

Figure 3.1: Block diagram of the RNN-based MPC scheme 
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3.2.2 RNN-based MPC Scheme 
The MPC schomo for nonlinear affirm systems based on tho simplified dual not-
work (a block diagram is shown in Fig. 3.1, with 2—1 being the one-step backward 
shift operator) can be summarized as follows: 

1. Let k = 1. Set terminal time T, sample time t, predictive horizon N�control 
horizon N^�weighting matrices Q and R. 

2. Calculate process model matrices arid neural network parameters E � I V , G\ 
f I ,max， I ,mm . 

3. Solve the QP problem (5.7) using the proposed RNN, obtaining the optimal 
control action Au{k). 

4. Calculate the optimal control vector u{k) = Au{k\k) + u{k — 1). 

5. Set k = A: + 1, return to step 1. 

The proposed RNN-based MPC scheme operates in a massively parallel fash-
ion, which is suitable for large-scale system implementation. 

3.3 Simulation Results 
In this section, simulation results in three nviinerical examples are providwi to 
illustrate the performance of the proposed RNN-based MPC scheme. 

3.3.1 Example 1 
Consider a single-input single-output nonlinear system: 

+ 1 ) 〜 二 + 0 • • � + yik - 1)1 (3 1:” 

+ {1.2 + cos['i/(A;) + y{k — l)j}u � ’ 
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subject to 

0 < ^ < 2.1， 0.5 < u < 1.8. (3.14) 

Output 
2.5 

Proposed scheme 
Reference trajectory 

\ A / 

/ \ / \ 

p>/\y\ 

100 150 
Time 

200 250 300 

Figure 3.2: Output in Example 1 

The objective is to control the system to track a reference trajectory (a square 
wa-ve). The RNN-based controller parameters are: prediction horizon N = 15, 
control horizon Nu = 10, weighting matrices Q = R = 5/, sampling frequency is 
10Hz. Simulation results are shown in Figs. 3.2-3.3. From the output response in 
Fig. 3.2, we can see that the proposed approach gives a good tracking performance 
with stable and fast responses with no variable exceeding the given constrainty. 

3.3.2 Example 2 
Ball and pU),to is (xm.iiuorily created for control system modeling, design, iniplc-
iiientatioii, and verification as a training tool for science and eiigineeririg practice. 
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Input 

250 300 

Figure 3.3: Input in Example 

From the literature, the typical devices for the ball and plate system include a 
rigid plate with a ball rolling freely on the plate, several linear sensors for locating 
ball position and detecting plate deflection angle, torque generation facilities svich 
as stepping motor, servo motor, gearbox, belt, etc. 

Consider a ball arid plate system, which can be described as the following 
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MIMO nonlinear affine system: 

.7;i 
X2 

丄.4 

i s 
"Cfj 
2:7 

.r‘2 
0.714(’丄.1.'厂5 + X4X5XS 

Xi 
9.81 sin 

0 

0.714(.x-5,'rg + xiX4Xii — 9.81 sin xj) 

0 

0 0 0 ] L 0 0 0 0 
1 Ux 

0 0 0 ( )〔） 0 0 1 

+ 

'UT =工 I , ？/y 二：厂5， 

where :r] and x^ are the positions of the ball on X-axis and Y-axis, X2 and 工e are 
ball speeds 011 X-axis and Y-axis, 2'3 and X7 are the plate deflection angles, X4 
and xn are the angular velocities, control u：,： and Uy are the angular accelerations. 
The model is discretized using the Eiiler method. 

The objective is to place the ball at the desired position on the plate. The 
initial state is [0,0, 0,0, 0, 0, 0, 0], desired position is [0.1, 0.2]. The parameters of 
the RNN-based controller are chosen as same as those in Example 3.1. As shown 
ill Fig. 3.4, the proposed RNN-based controller is capable of moving the ball to 
the desired position. 



0.35 
Ball position 

0.25 

0.15 

0.05 

0.12 0.14 

Figure 3.4: Outputs of the ball and plate system in Example 2 

32 CHAPTER 5. RNN-BASED MPC FOR NONLINEAR AFFINE SYSTEMS 

S
!
x
e

—
A
 



CHAPTER 5. FINN-BASED MPC FOR NONLINEAR AFFINE SYSTEMS 33 

3.3.3 Example 3 
Consider a continuous stirred tank reactor (CSTR.), which is a single-input multi-
output nonlinear model in process industries [77]: 

g刚)= /⑷人：)） 

.Ti(A-) + T^-ax r { k ) + — .T] (/i;))e ’-:':2 ⑷/"] 

X2{k) + r,l-axi{k) + A , ( l - � / , — 

The RNN-based controller parameters are: A = I, a = = 0.3,7 = 
20, B — I, D = 0.072, T = 0.1. The system is subject to the following constraints: 

0 < yi < 0.31, 0 < 112 < 2 , l<u< 18. 

Ill this simulation, the initial outputs are [0，0], set points to be tracked 
(ck^sirecl outputs) are [0.30, 1.97], the prediction and control iiorizoris are N = 10 
and yV“ = 5, weighting matrices are Q = I, R. = 5/ , sampling frequency is lOHz. 

To cleiiioiistrate the superiority of the proposed RNN-based approach, both 
linear MPC (based 01.1 linearization) and iioiiliiiear MPC scheme in [50] were 
applied to the process model. Simulation results are shown in Figs. 3.5-3.7. As 
shown ill Figs. 3.5 and 3.6, the proposed approach gives a better perforniance 
than the other two approaches with fastest set-point tracking rate and no variable 
exceeding the constraints. 

• End of chapter. 
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18 

16 

14 

D 
12 

10 

Input 

Proposed scheme 
Linear MPC 
Scheme in [50] 

20 40 60 
Time 

80 

Figure 3.5: Output 1 in Example 3 
Output 1 

0.35 

0.3 

0.25 

0.2 

.15 

0.05 

20 

Proposed scheme 
Scheme in [50] 
Linear MPC 
Reference trajectory 

40 60 80 

Time 
100 

Figure 3.6: Output 2 in Example 
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Output 2 

Proposed scheme 
Scheme in [50] 
Linear MPC 
Reference trajectory 

40 60 
Time 

80 100 

Figure 3.7: Input in Example 3 



Chapter 4 

Nonlinear Model Predictive 

Control Using a Recurrent 

Neural Network 

4.1 Problem Formulation 
Consider the following nonlinear system: 

y{k + l) = f{y{k),u{k)), (4.1) 

where /(•) is a continuously differentiable nonlinear function; y{k) e 况“and 
u{k) e 况 a r e output and input vectors, respectively. By Taylor series, the 
above nonlinear system can be decomposed around reference point [;];,.(A'), ;/y,.(A')] 
into a linear system plus a unknown nonlinear term: 

y{k + 1) =f{yr{k).Ur{k)) + ̂ ！-^ Ij;’.�’u,.� _ - yr{k)) + 

IvAkUAk) {u{k) - Ur{k))+e{y{k)^u{k))^ 
where £{y{k),u{k)) is the unknown high-order tenn of the Taylor scries. Since 
the reference trajectory is: 

36 
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yr{k+l) = f{yr{k),Urik)) (4 .3) 

Then subtract (4.3) from (4.2) 

！八k + 1) — IJrik + 1) J l ^ I补⑷’叫⑷{y{k) - y,{k)) + 
‘ 内 (4.4) 

\yAk),u,ik) {u{k) - ur{k)) + e{y{k),u{k)) 
By defining y'{k) = y{k) — yr{k) arid u'{k) — w(/c) — Ur{k), (4.4) becomes 

y'ik + l) = ^ ^ ^ L . � , m a O y'ik) + ^ ^ ^ UuAk) u{k) + e{y{k),a{k)), 
(4.5) 

Denote e{k) — £{y{k),'a{k)) for brevity. The above equation can be rewritten 
as; 

y{k 4- 1) = Ay'{k) + Bu'{k) + e{k) (4.6) 
where 

, 明 丨 n 明 仏 ' “ ) I 

^ = ~丨~ \y.{k).Ur{k). B = ~ — ~ |y’.(A.),“,.�, 

The optimization problem associated with nonlinear MPC is 

N /V„--l 

mill ^[:'/(A： + mYQWik + :i\k)] + ^ Au{k + j\kfRAu{k + j\k) 
S.t. '(./.„,in < u{k + j\k) < Umax, j = 0,..., N^ — 1; (4.7) 

A "„,i„ < Au{k + .71 A;) < Aw„,ax’ j = 0,..., Nu 一 1; 
；Vmin < y ' { k + j \ k ) < y 崎 , j = 1 , N ; 

where k is the current time step. Au{k + j\k) denote the input increment, where 
Aw(A' + j\k) = u{k + j\k) — u{k - 1 4- j\k). N is the predictive horizon, where 
1 < N. Nu denote the control horizon, where 0 < Ny, < N. Q G 况""ar id 
R G 況爪 xrn are appropriate weighting matrices. 

Define following vectors: 

y{k) = ly{k + 1|A;) •.. y{k + 释 )「 € 况 
Nn 
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iL{k) = lu{k\k) ... u(k. + Nu — l|AOr € 況""川， 

Au{k) = lAu{k\k) •.. Au(k + K - l\k)f € 队爪’ 

s{k) = le{k + i|A；) ... 6{k + yv|A,)p’ e 
The predicted output p(k) are expressed in the following form: 

where 

M ( k ) = 

y{k) = S{k)y{k) + M{k)u{k) + s{k) 
=S{k)y{k) + M{k)Auik) + V{k)u{k - 1) + s{k), 

S{k) = [A{k) A{ky 

V{k)= 

m 
{A{k) + I)B{k) 

(雄产 - 1 + ... + • + /)雄) 

+ • • • + A{k) + I)D{k) 

e 

B { k ) 

{A{k) + I)D{k) 

+ ...I)B{k) 
+ ...I)D{k) 

+ ...I)Bik) 

0 

0 

m 

{A{k) + I)D{k) 

广-""+ .,j)B{k) where I denotes the identity matrix. Define 

(4.8) 

G况八爪 

AfZmax - [AWmax • • . A'U^ax]'̂  G 况风‘ 

' "mi l l = ['"min . . . '"'min]'^ € 况 八 U m a x = [ Wmin . • , 
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Vmin = [ymin " . • Vmin] € 况 "， f j卿 = f o m i n . • . ymax] G 况 
Nn 

H = 

Tims, the original optimization problem can be expressed in the following 
form: 

mil l [S{k)x{k) - M{k)Au{k) - V{k)u{k — 1) — 

M{k)Au{k) — V{k)u{k - 1) 一 辨 人 : ) ] + Aii:^\k)RAu{k) 
S.t. < n{k) + H/\u{k) < 7i„ax (4.9) 

Ailmin < ^ u { k ) < Afi腿X 
Vmin < y{k：) + M{k)Au{k) < ymax 

By defining the variable vector v = Au{k) G 5 f t t h e original optimization 
problem can be rewritten as a standard quadratic programming problem form: 

m i l l ^ v ^ W v + c ^ v 
2 

(4.10) 

< Ev < 
where the coefficient matrices and vectors are 

= 2[MTQM + R) e 况"”獻"《"'.， 

c = -2M'^Q{Sx{k) - Vu{k — 1) - i(k)) G 况"“川， 

E = l-H II — M Mf €�}pNum+2Nn�xN,im, 

Wrnin — u{k — 1) 
一 S{k)x{k) — M{k)Au{k) — V{k)u{k - 1) - s{k) 

Umax - U{k - 1) 
无max — S{k)x{k) — M{k)Au{k) — V{k)u{k — 1) 一 £(/；；) 
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If Q and R are positive definite, then W is positive definite, which means the 
objective function of (4.10) is strictly convex (due to W being positive definite), 
and the feasible region of linear constraints is a convex set, so the solution to 
the QP problem (4.10) is unique and satisfies the Karush-Kahn-Tiicker (KKT) 
optimality conditions. 

The solution to (4.10) gives the vector of control action Au{k), which is used 
to calculate the optimal input vector. It should be noticed that the vector 6{k) 
is unknown, thus, the vectors c, ImUu and I臓 are unknown. In the next section, 
we propose an RNN approach to solving this problem. 

4.2 A Recurrent Neural Network Approach 
4.2.1 Neural Network Model 
The simplified dual network [28] is applied in predictive controller design. The 
dynamic equation of the neural network is: 

• State equation 

— = � ' � + g{EW-^E'^w - EW 
cl'i 

• Output equation 

where A > 0 is a scaling constant, w 6 炉N„m+2/v” 
piecewise linear activation function, defined as: 

w) + EW-^c), (4.11) 

(4.12) 
is the state vector, y(-) is a 

'mini < 'mini 
= "’ Lin < < m̂ax； (4.13) 

,iiiax’ 〉 ,max . 

The above RNN model can be implemented with a single-layer structure of 
'2Num+2Nn neurons. According to the convergence analysis in [28], the simplified 
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dual network is Lyapunov stable and globally convergent to the optimal solution 
to (4.10). However, the nonlinear term of Taylor series e{k) is still unknown. 
Thus, the RNN parameters c, /min, and ！腿 that contain £{k) are unknown. As 
a result, the RNN (4.11) and (4.12) can not be applied in MPC design directly 
and a learning algorithm for estimating unknown parameters is necessary. 

4.2.2 Learning Algorithm 
Similar to (5.3.2), a recursive learning algorithm can be applied to estimate the 
unknown RNN parameters. 

1. Initialization: Set £(0) = 0, calculate c(0), /min(O)’ ^miix(O), W, and E. 

2. Calculate £{i + 1)) as: 

£-(?: + 1) = e{i) + d{i){x,,{i) - x,,{i)), (4.14) 

where S(i) is a positive and decreasing convergence factor S{i) < 1 (choose 
Sit) = 1/i ill tliis example), Xk is the state of the original mobile robot 
kinematic model. 

3. Update RNN parameters c{i + 1), Immii + 1), and Imaxii + 1) with e{i +. 1). 

4. Solve the QP problem (4.6) using the proposed neural network model (4.11) 
and (1.12) to obtain tho control action Afi“i + 1). 

5. If \s{i + 1) — e{i)\ < 7 for some small positive 7, stop; otherwise, i = i + 1’ 
return to Step 2 for another iteration. 

The convergence property of this algorithm will be proved in 5.3.3. 

4.2.3 Control Scheme 
The RNN-based nonlinear MPC scheme can be summarized as follow: 
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1. Let k == 1. Set terminal time T, sample time t, predictive horizon N, control 
horizon Nu, weighting matrices Q and R. 

2. Calculate process model matrices and neural network parameters (initial). 

3. Obtain a control action Ail(k) vising the simplified dual network and the 
proposed learning algorithm 4.2.2. 

4. Calculate and apply the control input ii(k) = Au(klk) + u(k - 1). 

5. Set k = k -h 1, return to step 3. 

4.3 Application to Mobile Robot Tracking 
In the past decade, mobile robots have been a active area of research and devel-
opment. Numerous practical applications can be uniquely addressed by mobile 
robots due to their ability to work in large domains. Specifically, mobile robot 
have been employed for applications such as room cleaning, disabled people assis-
tance, and factory automation. These applications require mobile robots to have 
the ability to track the patli stably. Based on the wide range of applications, mo-
bile robot research is multidisciplinary by nature, which requires accurate sensing 
of the eiiviroiiineiit, intelligent trajectory planning and high precision control. In 
this chapter, the object is to develop high precision control scheme for mobile 
robot tracking. In recent years, mobile robot tracking control has been widely 
investigated by many researchers [78]-[83]. 

Howovor, in realistic implemciitatioris it is difficult to obtain good prrfoi�-
rriance, due to the nonliriearity of the kinematic model and constraints on both 
input and output. In this chapter, the RNN-btised MPC scheme is applied for 
mobile robot controller design. A two-wheeled mobile robot is considered here. 

A mobile robot made up of a rigid body and rion deforming wheels is con-
sidered (see Fig. 4.1). It is assumed that the vehicle moves on a plane without 
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Figure 4.1: Coordinate system of the mobile robot 

.slipping, i.e., there is a pure rolling contact between the wheels and the ground. 
The kinematic model of the mobile robot is: 

Xr = V cos (), 
Vc. = V sin 0, 
e = w� 

(4.15) 

where [;r,., y,-] is the position of the robot center; 0 is the orientation of tlie 
robot; and w are the linear and the angular velocities, respectively. 

By (lefiiiing x— [xc y�. 0\ and u 二 '(/;], the above equations can be rewrit-
ten as: 

X = fix,u) (4.16) 

where x describe the position and orientation of the robot, u is the control input. 
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A discrete-time version of the system (4.16) can be obtained with a sampling 
period 0.1. The proposed RNN approach is applied to the mobile robot controller 
design. 

4.3.1 Example 1 
In this example, the initial position of the robot is 
are R = 51 and Q = I. Prediction horizon N = 
7 = [0.001,0.001’0.01]. The objective is to track 
robot system is subject to the following constraints 

[0.25,1]. weighting matrices 
10, control horizon N^ = 5. 
a straight line. The mobile 

—1 1 
- 1 

<u < 
1 

0 2.5 
0 <x < 5 
-2TT 2ti 

(4.1' 

As shown ill Fig. 4.2, the mobile robot can track the straight line precisely 
although its start point is outside the reference trajectory. The tracking mean 
square error (MSE) on X-axis and Y-axis are 0.0068 and 0.00731, respectively. 

4.3.2 Example 2 
In this example, the initial position of the robot is [0, -0.5]. weighting inatricos 
are R = I and Q = 0.1/. Prediction horizon N = 10’ control horizon 二 5. 
7 = [0.001,0.001,0.01]. The objective is to track a sciuare trajectory. The mobile 
robot system is subject to the following constraints: 



RNN-based NMPC 
Reference trajectory 

2,5 
X-axis 

Figure 4.2: Trajectory 

- 1 
- 1 

<u < 1 
1 

- 0 . 5 3 
0 <x < 3 

一 2n 27r 

(4.18) 

Sirriulatioii results are shown in Fig. 4.3, from which can be seen taiit the 
robot can track the reference square trajectory precisely. The tracking MSE on 
X-axis and Y-axis are 0.0185 and 0.0199, respectively. 
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Figure 4.3: Trajectory 

4.3.3 Example 3 
In this example, the initial position of the robot is [0, 0.15]. weighting matrices 

are l i = 
1 0 () 
0 1 0 

0 0 0.5 
I
-

0.1 0 

0 0.1 
Prediction horizon N — 10, control 

horizon Ny, = 5. 7 = [0.001,0.001,0.01]. The objective is to track a curve line. 
The mobile robot system is subject to the following constraints: 

一 0.4 0.4 <u < 
- 0 . 5 0.5 
- 0 . 8 1.1 

0 <x < 1 
~2n 2n 

(4.19) 
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In order to compare the effectiveness and efficiency of the proposed approach, 
linear MPC (discard the high-order term of Taylor series) is also applied to the 
system. The simulation results are compared in Fig. 4.4 and 4.5. The tracking 
mean square error (MSE) of the RNN-based scheme on X-axis and Y-axis are 
0.0241 and 0.0066, respectively. While the MSE of linear MPC on X-axis and 
Y-axis are 0.0603 and 0.0119, respectively. As a result, the proposed RNN-based 
scheme gives better performance with less tracking errors. 

4.3.4 Example 4 
In this example, the initial position of the mobile robot is [ -1 , 0], The weighting 

matrices are B = 
1 0 0 

0 1 0 

0 0 0.5 
-

0.1 0 

0 0.] 
Prediction horizon N = 10. 

control horizon Ny, = 5. 7 = [0.001, 0.001, 0.01], The mobile robot system is 
subject to the following constraints: 

•0.4 0.4 
< u < 

•0.5 
- 2 

0.5 
2 

- 1 

-27r 

< X < 1 

27r 

(4.20) 

The control performances of the proposed schoriie are also compared with 
linear MPC (discard the high-order term of Taylor series). The simulation results 
are shown in Fig. 4.6-4.7. Tlie tracking MSE of the RNN-based schoine on X-axis 
and Y-axis are 0.0555 and 0.024, respectively. While the MSE of linear MPC on 
X-axis and Y-axis are 0.1103 and 0.0333, respectively. It can be seen that the 
proposed RNN-based NMPC scheme gives better tracking result with less errors. 

• End of chapter. 
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Chapter 5 

Model Predictive Control of 

Unknown Nonlinear Dynamic 

Systems Based on Recurrent 

Neural Networks 

As many processes may be approximated locally using linear models within lim-
ited operating points, linear MPC was used in the majority of MPC applications 
with feedback compensation of prediction errors due to structural mismatch be-
tween the model and the process. As linear models are not sufficiently accurate 
because of process norilinearity, standard MPC schemes based on linearization 
would result in poor performance. More challenging tasks on nonlinear MPC 
has also been attempted for nonlinear systems. In general, nonlinear MPC de-
sign based on nonlinear models results in formulations of iionconvex optimization 
problems. However, there is no effective approach can give global optimal solu-
tions to such problems. Thus, further investigations on high-perforinarice MPC 
for nonlinear systems are absolutely necessary. 

Ill addition to online optimization, when the process model is mikriowii or uii-

50 
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available, system identification is necessary. Numerous studies on identification 
of unknown nonlinear systems have been performed based on neural networks 
[68]-(71]. For system identification, multilayer feedforward networks have been 
used as universal approximators (e.g., [68], [69]). As the limitations of multilayer 
feedforward networks have become more apparent, RNNs have been shown to 
posses better capabilities and have been successfully applied for modeling and 
control of nonlinear dynamic systems. In recent years, a novel RNN called the 
echo state network (ESN) was introduced [72], which has showed good perfor-
mance and require a very simple training. ESN has been successfully applied for 
system identification and control [73] [74]. 

5.1 M P C System Description 
Consider the following input-output representation of a general (iiscrote-tiiiie non-
linear system: 

y{k) = f { y { k — 1 ) , . . . , y{k — riy), (5.1) 
u{k - 1 ) , . . .,u{k - n,J)’ 

where /(•) is a unknown nonlinear function, u{-) G ^ ^ arid y{-) € ！ d e n o t e the 
process input and output, respectively, Uu and n." are respectively the time delays 
of input and output. 

5.1.1 Model Predictive Control 
For system (5.1), the following cost function can be formulated and used for 
calculation of the optimal input trajectory over the control horizon: 

N N„-l 

Ak) = J^\\r(k + j\k)-y{k + j\k)\\l-^ 乞 \\Au{k + j\k)\\l (5.2) 

whore r{k+j\k) denotes the reference trajectory of output signal (desired output) 
at sampling instant k(J > 0), y{k + j\k) denotes the predicted output, Au{k 4-
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Figure 5.1: Architecture of an ESN 
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j\k) 二 + — l|/c) denotes the input increment, N is the predictive 
horizon {N > 1)，Nu denotes the control horizon {N > TV,, > 0), Q € and 
R e 况爪 a r e appropriate weighting matrices, and | | . \\Q and | | . | |" are weighted 
norms defined as |丨2丨丨《/ = y W W z . 

The following bound constraints are considered: 

Wmin <u{k -\-j\k) < Umax, J. = 0’ 1 ’ ...，iV̂^ - 1 ’ 
—AWmaoc <A'«(A; + j\k) < Au丽，j = 0 , 1 , - 1’ (5.3) 
？/inin Sy�k + j\k) < y„,ax, j = 1 ,2, N. 

where Aiz-max > ()，"min < Winax’ aiid ；Vinin < ？/max are vectors of upper and lower 
bounds. .. 

5.1.2 Dynamical System Identification 
To identify the unknown system (5.1), we employ the echo state network. 

ts P 

v
v
 



where y{k) G 况” is the target sequence (output of the original system model 
(5.1))’ ki < k = ku . •. ,k2. 

During the training of an ESN, tlie target sequence y{k) and actual ESN ovit-
piii are compared and the errors are used to compute only the output weighting 
matrix (readout) W while all other weights in the ESN do not change. Thus, 
the training of the ESN reduces to the training of a feedforward network like an 
Adaliiie. As a result, the computational complexity for ESN training is low. In 
addi t ion ,� rhe convergence of ESN learning is guaranteed [75], and it does not 
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ESN Architecture 
The eclio state network (ESN), proposed by Jaeger [20], is a recurrent neural net-
work for dynamic system modeling. It is coniposed of a, hidden layer (dyiianiical 
reservoir) and an output layer (readout). Its structure is illustrated in Fig. 5.1. 
Here we consider an ESN with 'rn inputs, r neurons in the hidden layer (reservoir), 
and n neurons in the output layer: 

x{k + 1) = h{Wuu{k + 1) + + Wyvik)), (5.4) 
y{k + 1) = \Vx{k + 1), 

where /?(•) is a vector-valued sigmoid activation function; W；, € W,, 6 ！!R''̂'', 
\Vy G 况”xn，and W € 况"x” denote the input-internal, iiiternal-iiiternal, output-
internal, and internal-output connection weight matrices; x{-) G and y{-) G 况”. 
are the state and output vector of the ESN, respectively. 

ESN Training 

The training of an ESN is simple. The values of Wj；, and Wy can he randomly 
chosen and fixed during training, only W will be updated. To compute W, the 
mean squared training error (MSE) is minimized: 

5.5 m . MSE = 
fci 
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suffer from local minima. In this paper, ESNs are adopted to identify unknown 
dynamic systems off-line. In the next section, we give the foriiiulatioii of the 
MPC synthesis problem based on the ESN model (5.4). 

5.2 Problem Formulation 
Note that the optimization problem associated with MPC is nonconvex based on 
the ESN model (5.4), as Ii{-) is a, nonlinear function. In this paper, we choose 
h{s) = By using Taylor expansion, the ESN model can be decomposed 
into a known liiieax part plus an iiiikiiowii nonlinear part around s{k): 

x{k + l) =h{s) 
=h{s{k:)) + Vh{s{k)){s - s{k)) + e[s — s{k)) 
=Wh{s{k))s + h{s{k)) - Vh{s{k))s{k) + 0{s — s{k)) 
=Vh(s{k))Wun(k + 1) + Vh{s{k))W^x{k) + Vh{s{k)) 

Wyvik) + h{s{k)) - Wh{s{k))s{k) + d{e{k)), 
y{k + 1) =Wx{k + 1) 

=Au{k + 1) + Bx{k) + Cy{k) + c + 0{e{k)), 

where 

S{k) = WnU{k) + W,x{k - 1) + Wyfjik — 1 )， 

A = WVh{s{k))Wu € 况"•’ 
B = WVh{s{k))W:r e 况"xr’ 
C = WVh{s{k))Wy e 况"X� 

c h{s{k)) - \/h{s{k))s{k), 

Vh{s{k))= 
(1+c \ ⑷ 0 
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Vh{s{k)) is the Jacobiari matrix of h{-) at s(k), 6{e{k)) is the unknown nonlinear 
term of the Taylor series where e(Jc) = s — s{k). 

The predicted output increment vector can be computed as follows; 

Ay{k + 1|A;) =y{k 4- 1|A;) — f)剛 

=AAu{k + 1|A：) + BAx{k\k) + CAy{k\k) 
+ Ad{£{k ^ l\k)), 

Ay{k + 2|A：) =y{k + 2\k) — y{k + 1|A:) 
=AAu{k + 21 A;) + BAx{k + 1|A:) + 

A0{s{k + 2\k)) 
=AAu{k + 21 A;) + AAu{k + 1|A;) + 

BAx{k\k) + BAx{k + 1|A：) + CAy{k\k) + 
C^Ay{k\k) + AO{s{k -i- l\k))+ 
A9{s{k-^2\k)), 

Ay{k + N\k) =y{k + N\k) - y{k — 1 + 
=A^u{k + N\k) + CAl\u{k + N 一 1|A;) + 

B^x{k + N — l\k) + CBAx{k + N — 2\k) 
+ ••• + C^-^b/\x{k\k) + ( C + C^ + • • • 

+ C'^)Ay{k\k) + Ae{e{k + 1|A;)) 
-f A"(£(A: + 2|A:)) + - - . + 

Ae{s{k +N\k)). 
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Define following vectors: 

y{k) = m + l\kf 
A 綱 = [A?/(A’ + 1丨A�): 

x{k) = \:i:{k\kf .. 

• m + N \ k f f e 况Nn, 
. . . A " ( A , + iV|/c)叩’e 况胸’ 

x(k + N-l\k)Y € 
Au(k) = . •. Au(k + 一 e 况 

f(k) = lr(k + 广.• • r(k + Nlk)Y € 况"”’ 

AO(£(k)) 二 + 广 . . . A O ( ^ e [ k + N\k)f] e 况"".， 

where AO{e{k)) is an unknown vector, j~{k) is a given reference trajectory. Then 
the predicted output y{k) can be expressed as follows: 

m =y{k 一 1) + A m 
=y{k - 1) + AAu{k) + BAx{k) + CAy{k\k) (5.6) 

where 

A = 

B 

A 
CA 

0 

A 

B 
CB 

0 

D 

C = [C C"' 

0 

0 

A 

0 

0 

B 

^ ^NnxNj' 

C T €況 
N'/jxn 

The original optimization problem (5.2) and (5.3) associated with MPC can be 



CHAPTER 4. MPC FOR UNKNOWN SYSTEMS BASED ON R.NN 57 

rewritten as follows: 

mill \ \ m - f m h + \\^im\\l 
S-t. — Aftmax < ^ u { k ) < AWniax, 

Umin < u{k — 1) + HAu{k) < ?i, 
Vmin < y{k) < ;ymax! 

\
l
l
/
 

r
—
 

where 

A =[Avi； 

/mill ~ 
/max ~ 

H = 

《⑴r €况 

� J € 况一’ 

€、广 

The quadratic optimization problem (5.7) can be rewritten in the following 
concise form: 

mm -\\ATi{k)\\l,^p^Au{k) 
S.t. Qmin < EAu{k) < r/max, 

(5.8) 

where 
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p =2A^Q{y{k — 1) + BAx{k) + CAy{k\k) + AO{e{k)) 
一 7̂(A：)) € 价Num， 

—八 “max 

^/iriin ~ 

QnvAX 

公mill - - 1) 

ijuun - y{k — 1) - BAx{k) 一 CAy{k\k) - Ae{s{k)) 
A f w 

Umax - U { k - 1 ) • 
？/max — y{k — 1) — BAx{k) — CAy{k\k) — AO{e{k)) 

If Q and R are positive definite, then W is positive definite, which means the 
objective function of (5.8) is strictly convex (due to W being positive definite), 
and the feasible region of linear constraints is a convex set, so the solution to 
the QP problem (5.8) is unique and satisfies the Kaiush-Kahn-Tucker (KKT) 
optiinality conditions. 

Tlui solution to (5.8) gives the vcctor of control action Au{k), which is used 
to calculate the optimal input vector. It should be noticed that the vector 0{e{k)) 
is uiikiiowii, thus, the vectors f/min, and f/n.ax are iinkiiowii. In the next section, 
we propose an RNN approach to solving this problem. 

5.3 Dynamic Optimizat ion 

III this section, wc employ the simplified dual neural network [28] for controller 
design. 
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5.3.1 The Simplified Dual Neural Network 
By considering (4.8) as the primal problem, its dual problem is: 

max — i||Aft(A;)||5v + " 
(5.9) 

s.t. WAu{k) + 'p- E^ g丨丨丨in + El fy„,ax = 0 
where u e • 饥 ^ ！ 丄 ] ^ ^ 况2A/“m+yv" dual decision variables. Define the 
variable vector v 二 Afl(k)’ u! = v - uj. According to the KKT coriditioiis, the 
following equations have the same solution as the primal problem (5.8) and its 
dual (5.9): 

f 1 
/ ^ f 、 I 

f � , 
/ � r 

i ••• 
个……, 

i . 

Figure 5.； Figure 5.2: Architecture of the simplified dual neural network 

Wv + p — ETw = 0, 
Ev = g{Ev — w), 

(5.10) 



69 CHAPTER. 4. MPC FOR UNKNOWN SYSTEMS BASED ON RNN 

where g{-) is a piecewise linear activation function, defined as: 
• 

Qm'in 1 < Qm'in] 
={ "， Qmin < < (/max； (5 .11) 

Qmdx) "‘〉(/max-

Based on (5.10) and (5.11), the dynamic equation of the simplified dual neural 
network for solving (5.8) can be designed as [9]: 

• State equation 

宇 = \ { - E W - ' E ' ' ' w + g{EW-'E'^\v - EW'p — w] 
(xt 

+ EW-'p), 
Output equation 

(5.12) 

v = (5.13) 

where A > 0 is a scaling constant, w G 况2Ar„m+;v,i jg the state vector. 
The above RNN model can be iinploiiicnted with a single-layer striicturo of 

2Nurri 十 Nn neurons. Its structure is shown iii Fig. 5.2. According to the 
corivorgeiico analysis in [9], the simplified dual network is Lyapuiiov stable and 
globally convergent to the optimal solution to (5.8). However, the iioiiliiiear tonii 
of Taylor series ^0{e{k)) is still iiiikiiowii. Thus, the RNN parameters p�仏 

aiid "max that contain AO{£{k)) are imkiiowii. As a result, the RNN (5.12) and 
(5.13) can not be applied in MPC design directly and a leaniiiig algoi.ithm for 
estimating inikriown parameters is necessary. 

5.3.2 A Recursive Learning Algorithm 
In this subsection, we propose a recursive learning algorithm to estimate the 
viiikiiowri parameters. For brevity, denote a{k) = ak： 

1. Initialization: Set = 0, calciilatc p(0),仏nin(O)’ ^ ( 0 ) , U； and 
E, 
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2. Calculate A9{£k{i + 1)) as: 

AO{s,{t + 1)) = AO{£k{i)) + S{t){y,{i)—纖, (5.14) 

where is a positive and decreasing convergence factor 5{i) < 1 (choose 
(̂"(？‘) = l/i in this pap or),仏丨 is the output of ESN (5.4). 

3. Update RNN parameters p{i +1)’（?,.,“„(?； + !), and Qmixx+1) with AO{£k(?: + 

1 Solve the QP problem (4.8) using the proposed neural network model (5.12) 
and (5.13) to obtain tlie control action Awfc(/ + 1). 

5. If \Ad{£i,{i+ 1)) - A6{tk{i))\ < 7 for some small positive 7, stop; otherwise, 
i = + 1, return to Step 2 for another iteration. 

The basic; idea, of this learning algorithm is to estimate tlie unknown nonlinear 
tcriri of Taylor series by recursive calculation. By properly dioosirig S{i) and 
the lea,riling algorithm will enable the RNN to give near-optimal solutions to tlie 
optimization problem (5.8). 

5.3.3 Convergence Analysis 
Now we prove the convergence property of the proposed RNN optimization ap-
proach. 

Lemma 1 {28j: The output trajectory of the simplified dual neural network is 
globally convergent to a unique optimal solution of (5.8), if Q and R are symmetric 
and positive definite matrices for fixed p{i), (？口山！⑷’ and ( / m a x � ( i = 0 , 1 , 2 . . , ) . 

Lernrna 2 [SS]: Consider the following equations: 

i^i'i) = i^a — 1) + —1),((.'’〈川’ 
(5.15) 

a ' ' ' ) = 聊 - — 1 . 3 ) + � 0 { t — i ) )cco 



71 CHAPTER. 4. MPC FOR UNKNOWN SYSTEMS BASED ON RNN 

where p{i) is the variable to be updated. Let D={i3\'d{p) has all eigenvalues 
inside the unit circle}, D is a connected open subset of D, In D, the functions 
ill (5.15) satisfy Conditions C\-Cq： 

C\\ The function «•,(/；, /j, is Lipschitz continuous in (3 and ^ in any neighbor-
hood of ( / H ) ’ where p E D and i is arbitrary; is a continuous 
differentiable fuiictioii of (3 and 

C'2: The functions and ；(,") are Lipschitz continuous in / j for 3 ^ D. 

C-y. is defined as: 

沙，/}) = d { m i - 1 ’ 勿+、(广 ) ) c⑴，m h = 0 � 

For all p e l ) where Q{i,j) = 6{：)) n$[ l — S{j + 1)], 
i 
朴’ I 认j�勿）—(IS i — oo. 

6̂ 4: For all p € t) we have, for some C*{d) (assume that there is a constant 
C* < oo), 

i 
Y . Q{i,m + "u, . A'(/i, 勿,,)(勿,u(j, wc-n) 
.7 = 1 

一 C*{/3) < oo as i 一 00, where A* is the maximum eigenvalue of d{3), 
A*’ c*) is defined by: 

I 
K U V，） = ('*;^A*(H)|C(j)|， 

and K is a Lipschitz constant. 

C5： E S i 明 二 ⑷ . 

C'e： — 0 as i — oo. 
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The corresponding differential equation of (5.15) is 

^P{r) = r{P{T)) 

where r = ⑷，and f* = lim,;_oo 外)• 

If a Lyapunov function of (5.16) V{,d) exists, with 
d 

(It V{P) < 0, V/? G D, 

then 
0{z)-.{P\f3eD,-V{p) = O} as 0C-, 

(5.16) 

(5.17) 

if (i* is an asymptotically stable equilibrium point, I:从i) — /.广 as —> oo. 

Theorem. 1: At each time interval A：, the output of the simplified dual network 
is globally convergent when i —> oo, if S{i) = \/i. 

Proof: For brevity, at k, donoto Af^e.{k)) with AO. According to (5.6) and 
(5.14), AO{i + 1) can be expressed as: 

where 

A 召(t + 1) + 6(1職-卵)) 
+ S{i){yk - fjk-i — AAukii) + BAxk 

—CAT/,,, 一 A即0) 
+ B, 

1 — 5{i) 0 . . . 0 
0 1 - 6(i) . . . 0 

0 

A = 

0 … 1 - (HO 
B =S(狐—Vk-i — /lAnfc(z) + BAxk — CAi絲 V 

Define D={A\ A has all eigenvalues inside the miit circle}. As 

(5.18) 

(5.19) 

X{A) = 1 - 6{i) < 1, (5.20) 
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then D =况.Conditions C\ and C2 are satisfied. 
For C3, we find that if 5{'j) — 1 / j , then 

J 
1 i i - 1 (5 .21) 

J J + 1 i i + 

？: + l 
As 

= h - Vk-i - AMkU) + BAxk 一 CAy 叫.一 AO, 
C3 is satisfied. 

To verify Q , we note that as 形）=0， i ts maximum eigenvalue A* is also 0. 
Then "(7:’ A V , ) = 0, by dioosing K — 1, condition C4 bccoiiies: 

[ 啦 J) — C as 1, 0 0 . 

As 
X i £»(?:，j) = X as I — 0 0 ’ + 1 

then C4 is satisfied with C* = 1. 
Both condition C\ and C^ are satisfied for S{i) = l / i . 
The corresponding differential equation of (5.18) is 

(竿=r_ 
(IT 

= — Vk-i - AAu{i)k + BAxk 一 CAy^, 
M—⑴） 

二八 ^ - AO, 

where AO is the true value of A冷. 

(5 .22) 
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Define AO* as the equilibrium point of (5.22), then 

AO* = AO. 

Consider a Lyapunov function of (5.22) 

then 

V'(A^) = -WAe-AOW^ > 0, 

4-Vi^O) = {AO - 一 AO) dr CLT 

(5.23) 

= - - M) 
< 0, VA0, 

(5.24) 

where 
— V(Ae) = 0, AO = AO* = Al 
CIT 

(5.25) 
According to Lemma 2, A6' —> AO as i —> oc. According to Lemma 1�the 

output of the simplified dual network is globally convergent at each time interval 

5.4 RNN-based M P C Scheme 
The RNN-based nonlinear MPC scheme (a block diagram is shown in Fig. 5.3’ 
with being the one-step backward shift operator) can be summarized as fol-
lows: 

1. Let A： = 1. Set terminal time T, sample time t, predictive horizon N, control 
horizon iV„’ weighting matrices Q and R. 

2. Identify the unknown system off-line using an echo state network. 

3. Calculate process model matrices and neural network parameters (initial). 

4. Obtain a control action Au{k) using the simplified dual network and the 
proposed learning algorithm in Section IV-B. 
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uik-W 

Figure 5.3: Block diagram of the RNN-based MPC scheme 
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5. Calculate and apply the control input u{k) = Au{k\k) + u{k - 1). 

6. Set A" = A; + 1, return to step 3. 

The proposed RNN-based MPC scheme operates in a massively parallel fash-
ion, which is suitable for large-scale system implementation. 

5.5 Simulation Results 
111 this section, simulation results in three numerical examples are provided to 
illustrate the performance of the proposed RNN-based nonlinear MPC scheme. 

5.5.1 Example 1 
Consider the following nonlinear system with delay: 

y{k) ={).2mi{{).b{y{k — 1) + y{k — 2))) + 0.2 siri(0.5("(A: — 2) 
+ y�k - 3)) + 2u{k 一 1) + u{k - 2)) (5.26) 

Au{k - l) + u{k-2) 
+ 1 + 0.2cos(0.2(2y(A- - l) + y{k-2))' 

subject to input and output bound constraints: 

-1 .01 <y < 2.02, -l<u< 1.5. 
The objective is to control the system to track a step change by applying tlie 

proj)()se(l RNN-based MPC scheme. Fbr system identification, an ESN with 100 
iiit:�mal units is employed. The training results of ESN are shown in Fig. 5.4. 
The RNN-based controller i)a,raiiiotcrs are chosen as: prediction horizon N = 15, 
control horizon N^ = 10, weighting matrices Q = R = 5/ , 7 = 0.01, sampling 
frequency is lOHz. 

In order to compare the effectiveness and efficiency of the proposed approach, 
linear MPC (based on linearization of the original model (5.26) without system 
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Figure 5.4: ESN training and testing errors in Example 

5.5.2 Example 2 

Consider a, control system for a, jjolyinerizatioii reactor described in [76], which 
has a strong iionliiiear process model: 
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identification) is applied to the system. The simulation results are illustrated in 
Figs. 5.5 and 5.6. We can see that the proposed scheme gives a much better 
performance with more accurate set-point tracking. 

Training error 

u
l
、
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Figure 5.5: Output in Example 
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Figure 5.6: Control signal in Exaiiipk 
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i.i =10(6 — .x'l) — 2.4568xiv/^, 
X2 =80M — 10.102 2工2, 
±3 二0.002412.7:1 v ^ + 0.112191x2 — 10.7:3, 
X4 =245.978x1 v ^ - 103:4, 

• 7 : 4 y =—, 

(5.27) 

subject to 

0 < y < 36000, 0.004 < u < 0.017, 

wh(、r(、.7；1 is the iiioiiorner concentration, X2 is tlie initiator concentration, y 二 

：1：4/x's is the iiiiiiil)er-average molecular weight. The control problem is to regulate 
t:h(�luiiiibcr a,vorag(? iiiolcciilar weight y by manipulating the initiator flow rate u. 
All ESN with 300 internal units is used for system identification. The trainiug 
results are shown in Fig. 5.7. We notice that the identification precision in 
Example 2 is higher than Example 1 in teniis of less errors. This is because the 
internal units of the ESN adopted in Example 2 is larger. Generally, a. larger 
ESN would have a more precise learning result. 

Tlie RNN controller parameters are chosen as: prediction horizon N = 10, 
control horizon A'̂  = 5, sampling period 2s, weighting matrices Q = I, R = 
500/, 7 = 10. The system is discretized using zero-order holder. To compare 
tho tracking {)erformaiice, linear MPC (based 011 the linearized model of (5.27) 
without： system identification) and RNN-based MPC scheme in [50] are both 
applied to the process model. Simulation results are shown in Figs. 5.8-5.10. As 
shown ill Figs. 5.8 arid 5.9, the proposed scheme gives the best performance with 
fastest and most stable tracking compared with the other two approaches. Fig. 
5.10 shows the convergence behaviors of uiikiiowii nonlinear terms in different k. 
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Figure 5.8: Output in Example 2 
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k=5 

� 

20 

Figure 5.10: Convergence of the estimated unknown iioiilinear terms in Example 
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5.5.3 Example 3 
Consider the following multi-input multi-output, (MIMO) nonlinear system: 

一 1) 

X4{k) 

yiik) 

subject to: 

务 ] . ) + l 微 1 ) 

x̂ ĵk - 1) 

xl{k-l) 

+ 0.5U2(/>- - 1) 
xlik 一 1) + xl{k — 1) + xlik - 1) 

{k) + d{k), y2{k) = + d{k) 

—1.3 <'(；] < 0.7, -1.5 < S 1.5, 
(5.29) 

-0.9 <y2 < 0.9, -1.5 < U2 < 1.5. 

where d{k) is a disturbance. The objective is to control the system to track the 
following reference trajectories: 

n =0.75 s i l l (字 ) + 0.5cos(—), 

r 2 =0.5 cos( — ) + 0.5 cos(丁）. o 4 

An ESN with 300 internal units is adopted for system identification. The 
training results are shown in Fig. 5.11. The system starts from initial states 

[工 1(0)’工2(())”'C3(0)’‘T4(0)] = [ 0 , 0 , 0 , 0 ] . The parameters of the RNN-based con-
troller are: prediction horizon N = 15, control horizon A;, = 5，sampling period 
t = Is, weighting matrices Q = /?,= /, 7 = 1 x 10^ The control per form arices of 

the proposed scheme are also compared with linear MPC (based on the linearized 
model of (5.28) without system identification). A step disturbance 

f -0.5’ 100 < k < 130; 
d(k) = < (5.31) 

0, 0 < k < 100 or 130 < k < 200, 
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is introduced to the system. Simulation results are shown in Figs. 5.12-5.14. As 
shown in Fig. 5.13, the proposed RNN-based controller gives better performances 
with less tracking errors. 

10 Training errors 
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0 200 400 600 800 1000 1200 

Testing errors 

0.01 

-0.01 

Figure 5.11: ESN training and testing errors in Example 3 
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Outputs 

200 

Figure 5.12: Outputs in Example 3 
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Figure 5.13: Tracking errors in Example 3 
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Control inputs 
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Figure 5.14: Control inputs in Example 3 



Chapter 6 

Model Predictive Control for 

Systems Wi th Bounded 

Uncertainties Using a 

Discrete-Time Recurrent Neural 

Network 

MPC that take consideration of uncertainties in the process model is called robust 
MPC. One way to deal with uncertainties in MPC is the worst case approach, 
which ol)tains a soqvierice of feedback control laws that minimizes the worst case 
cost. In industrial processes, it required the real-time solution to a iniiiiinax 
optimization problem. Although the robustness of MPC has been studied and is 
now well understood, the research outcomes are conceptual controllers that can 
work in principle but not suitable for hardware iinplerneiitatioii [60]. As a, result, 
further investigations on a, more iiripleineritable controller are needed. 

81 
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6.1 Problem Formulation 
6.1.1 Process Model 
Consider the following discrete-time linear system with global bounded uncer-
tainties: 

x{k + l) = Ax{k) + Bu{k), 
(6.1) 

y{k) = Cx{k) + Dw{k), 
with the constraints 

^̂ niin < "f̂ max> 
AWmin <^u{k) < 八Wrnax， • 

(6.2) 

^min <w{k) < W'nuxx, 
Vmin <y{k) < l/nuvx, 

where k > 0, x{k) € is the state vector, u{k) e�)?…is the input vector, 
and y{k) 6 W is the output vector. u){k) e 况"denotes the vector of bounded 
uncertainties. Um\n < '"max，？i'min < '�nmx’ :'/min < "max are vectors of upper and 
lower bounds. 

6.1.2 Robust MPC Design 
MPC is a step-by-step optimization technique: at each sampling time k, mea-
sure of estimate the current state, obtain the optimal input vector by solving 
a optimization problem. When bounded uncertainties are considered explicitly, 
a robust MPC law can be derived by minimizing the maximum cost within the 
model described by the uncertainty set. The optimal control action is obtained 
by solving a miriimax optimization problem: 

ii�iiimax J{Au,w), (G.3) 
An 川 ' \ , 

subjected to the constraints in (6.2). 
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The objective function J {An, w) can be with an infinite or finite, linear or 
quadratic norm criterion. In this paper, we consider an objective function with 
a finite horizon quadratic criterion: 

N 

’n � w ) = + M - y{k + j\k)f<mk + j\k) 一 y{k + + 
.7=1 (6.4) 

i-o 
where k is the current time step, y{k+j\k) denotes the predicted output, r{k-{-j\k) 
deiiote« the reference trajectory of output signal (desired output), and Aw(A:+j|/>:) 
denotes the input increment, where Au{k + j\k) = u{k + j\k) - u{k - I + j\k). (I) G 

况"xp,中 G、况m.xrr? “re appropriate weighting matrices. N denotes the predictive 
horizon (1 < N). A',, denotes the control horizon (0 < N^ < N). After Ny, 
control moves, Au{k + j\k) becomes zero. 

According to the process model (6.1): 

y{k + j ) 二 CA^x(k) + C ^ A ' B u ( k + j - z - l ) + D w ( k + j ) , j = 
1=0 

Define following vectors: 

N (6.5) 

y{k) = lyik + l\k) 
u{k) = [u{k\k) • • 

Au{k) = [Au{k\k) 
r{k) = [r(A; + 1|A;) 

(6.6) 

•• y{k + N\k)f 
u{k + K — l\k)f £�RNum, 

A u { k + N ^ - 1|A：)]'̂  e 况""爪.’ 

•• r(A; + iV|A;)p’ € 况"、 

vvlierc the reference trajectory f{k) is known in advance. The predicted output 
y{k) is expressed in the following form: 

y{k) = Sx{k) + Mu{k) + Ew{k) 
’ (6.7) 

=Sx{k) + MAu{k) + Vu{k — 1) + Ew{k), 
where 

S = [CA CA^ ... CA'']^ € 况仰xn. 
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E = ID D . . . Z；严 e 况“尸xc 

CB 
C{A + I)B 

+ + + I)B 

1 + … + + 

M = 

CD 
C{A + I)B 

" + …I)B 

I denotes the identity matrix. Define 

0 

0 

CB 
CiA + I)B 

(八AN-Nu + . . . 

vectors; 

€ ^NpxNn 

Afimin 二 [A'<lmi,�..• Au,,,^ € 况""爪,A公随=[Au„.ax . . • € 況:〜“'" 

Wnm. = [Winin . • , Wrninr�’ ^ iTKix 二 乂 n m x . . • " ' r n a x 

Vimn k丨 i n • . • " m h / € 況 “ 丨 ： 仏 職 = b 丨 舰 . • . y 丨 脆 r e 况 " ” 

Thus, the original minima,x optimization can be expressed in the following 
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form: 
m m m a x [Sx{k) — MAu{k) — Vu(k 一 1) - Ew;⑷广(I�[S;r(A:) Au IV 

—MAu{k) - Vu{k - 1) - Ew{k)] + d.u{k) 
S.t. -Uniin < u{k) + f A'n[k) < 'Umax �� (f).8) 

< Au{k) < 
'�min < U!{k) < tOniax 
Vrnin < 綱 + M{k)Au{k) < f j max 

By defining the variable vectors u = Au{k) 6 况风w = w{k) G 况 B y 
neglecting the constraints on u{k) and y{k), the problem (6.8) can be rewritten 
as a niiniinax quadratic programming problem: 

1 ' y r p 1 rj-t rj-] mill m a x -u Qu + c u — u Hw w Rw — h w “ ‘ “ 2 2 (6.9) 
s.t. u € hi, w £W 

where U and W are two box set defined as ^ = {u G < u < AiZmax}， 

W 二 •[礼’ G 况 < .w < ax} • Tho cocfficiciit matricos and vectors aro 

Q = 2(M^<^A/ + vi/) e 况""则""爪，c = -2Af^'^y(f(k)-Sx(k)-Vu(k-l)) € 况""爪， 

/? = 2E'^'<PE e 况 t ) = (p(f(k) 一 Sx(k) 一 Vu(k — 1)) G K"’ 
H = 2MT(I)丑 e 飛Nu似(I 

The solution to the miriimax quadratic programming problem (9) gives the 
vector of control action Au{k). The control law is given by u{k) = f{/S.u{k) + 

u{k — 1)), where /(•) is defined a.s 

/ � = { (()-io) 
[k�{CE)i > k. 

and G and I are defined as 

G = [-/ i — M Mf € 爪+2/Vp)x""m’ 
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^ 况2yV„m+2/Vp 

-Umm + 
W„iax 一 U{k) 

-1/min + y{k ) 

^iiiax - fj{k) 
The first element u{k\k) is used as the control signal. 

Ill industrial control processes, to solve large-scale rninimax optimization prob-
lems ill real-time is a major obstacle for robust MPC. In the next section, we will 
propose a recurrent neural network for solving (6.9). 

6.2 Recurrent Neural Network Approach 
6.2.1 Neural Network Model 
Coritinuous-tirrie neural networks for solving minirnax problems has been investi-
gated in [61]-[63]. However, in view of the availability of the digital hardware and 
the compatibility to the digital computers, discrete-time neural network is more 
desirable iii practical implemeiitation. In this section, we proposed a discrete-time 
recurrent neural network for rninimax problem (6.9). 

By the saddle point condition [64], (6.9) can be forrmilated as a linear varia-
tional inequality (LVI): 

{s-s*f{Ms''+q)>0, 6 Q, 

where 
M Q -H n 一 

C 
IF i? h rt = u xw. 

(G.ri) 

(6.12) 

According to the well-known saddle point theorem [?], s* = {u\w*) is a saddle 
point of J{u, w) if satisfying 

J{u\w) < 广)< J{u,w*), V(u’w) G n. (6.13) 
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We define the saddle point set Q* = {{u*,w*) € satisfy (3.13)} and 
asauiiie iT is not empty. It is obvious that if {IL*,W*) € (�*, then (U*,W*) is the 
optimal solution to the niinirnax problem (3.9). 

According to inequalities (6.13), we can get that v* is a global rninirnizer of 
the objective function J(v, w*) with respect to U, while w* is the global rninirnizer 
of J{v* with respect to W. As a result, the following LVIs hold: 

{u - u*f{Qu* + c - Hw*) > 0’ V'u € U, (6.14) 

{w — w*f{Rw* + b + H^'u*) > 0, Vw e W. (6.15) 

According to the basic property of the projection mapping on a, closed convex 
set: 

- Pn{z)]'^[Pn{z) — v] > 0, V2 G 况 ’ 6 Q. (6.16) 

Based on (6.14)-(6.16) and lemma 1 in [65], 
only if the, following equations hold: 

u = Pu[u — a{Qa* 

w* = Py\}[w* — a{Bw 

where cv > 0 is a scaling constant, Pu{-) 
functions defined as: 

we can get that (",’?„*) € Q* if and 

+ c —/A"*)] (6.17) 

+ 6 + (6.18) 
and Pvv(-) are piecewise activation 

八'“mini < A“iiiin， '�iiiin， < 切min; 
Pu{€,)= < < < A Umax； n v � 二 < ^̂ miii — — '“',max 

^'^maxi � 八'“max. '�max, Si�"^'max-
(6.19) 

Based on the equations (6.17) and (G.18), we propose a recurrent neural net-
work for solving (6.9) as follow: 

u{t + 1) = Pulu{t) — ry(Qu(t) + c - //w,�）1 
(6.20) 

w{f + 1)=尸w卜⑴⑴-cx{Riu{t) + h -f H^u{t))] 
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The proposed recurrent neural network has a simple structure, and can be 
easily implemented using digital hardware. In the next section, we will prove 
that the proposed neural network has global exponential convergence property 
under some mild conditions. 

6.2.2 Convergence Analysis 
Definition: Neural network (6.20) is said to be globally exponentially convergent 
to the equilibrium point (w。，w产)if both u^ and lu^ satisfy 

\\u{t) - < co\\u{i)) - Vt > 1; 
(6.21) 

仏IMO)-斗乂 Vf > 1 ； . 

where 77 is a positive constant independent of the initial point, co and bo are 
positive constant dependent on the initial point. 

Lemma 1: The neural network (6.20) has a iiniqiie equilibrium point, which 
is the saddle point of J[u, w). 

Proof: Similar to the proof in [65], we can establish that the neural network 
(6.20) has a unique equilibrium point (w?"产). 

Define a equilibrium point set = € Q|(?/’w，c) satisfy (6.17)and(6.18))}. 
According to the above derivation, it is obvious that the equations (6.17) and 
(6.18) is equivalent to (6.13) for all {u,w) G from the definition of we can 
get that iT = Q*, which means the equilibrium point of (6.20) is the saddle point 
of J{u,w). 

Lemma 2: For all z G , 
\\Pu{y) — < lb - :l|2， \\Pyv{v) — Pw{z)r < lit- — .Hp. 
Proof: From the inequality (6.16) we can easily prove that 

\\Pu{v) — Pu{z)f ^ f l M v ) 一 Puiz)] < Ih； — .HP, 
\\PMv) - Pw{z)f < (V — zflPw(v) — Py,{z)] < 111. 一 2||2， \h�z € U". 

(6.22) 
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D e f i n e > = 1,..., Num), Xf > 0{j = 1,,..’ Nq) as the eigenvalues of Q, R 
respectively, let ^ S a x ， b e the smallest and largest eigenvalues of Q 
arid B. Define two functions 

^Jj'Hcy.)= _ ASii/ 
A^ a -"max" 

0 + XlJ 
+ AS^) < Q < +00 

(6.23) 

''Viiin^' 
\ K ^max 

0 < ^ < + \ l x ) 

2 / ( A L + O < ( � < +00 
(6.24) 

Then we give the following lernrria: 

Lemma 3: < 1 and < 1 if and only if 

0 < a < mill{2/A^^, 2/A R ， 
m a x J (6.25) 

Proof: From the Theorem 2 iii [66], we can get that i/jQ(a) < 1 if and only 
if a € (()’2/;\？】ax)’ s i m i l a r l y ， < 1 if and only if a € (0,2/Aj似) .We can 
easily vtirify that the sufficient and necessary condition for both 炉{(:Y�< 1 and 
V广⑷ < 1 is 0 < a < min{2/Ag,,,2/Al,, 

Theorem. 1: With any a that satisfies (6.25), the neural network (6.20) is 
globally exponentially convergent to the saddle point of J (n , w). 

Proof: From (6.23) ami (6.24), we can obtain that ‘山口�a) = ma,x{(l -
« A ? ) 2，(1 — 作)=max{(l - a A f ”， ( 1 -
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By Lemma 2: 

\\u{k) — u*f =\\Pulu{t — 1) — cy.{CMt — 1) + C — IIw{t - 1))1-

<Ul-aQ){u{t-l)-in\\' 
< max{(l — «A?)2’ ( 1 - «aX’,爪)2}||,u(t — 1 ) — 

(6.26) 
二 (力一 1)—'<广||2 

< 條)'.l…(0)-‘‘广 II 
vQ(")”|«(o)-1^丨丨 

Similarly, \\w{t) — < e — 0 ) — From Lemma. 3； rf(a) > 0 
('(/’G(a') < 1) and if (a) > 0 尺(a) < 1) for all a that satisfy (6.25). 

From the above proof and lemma 1, we can obtain that for any a that satis-
fies (6.25), the neural network (6.20) is globally exponentially convergent to the 
unique eqiiilibriuiii point {u\iu*), which is the saddle point of J{u,w). 

6.2.3 Control Scheme 
The control scheme based on proposed recurrent neural network can be surnina-
rizocl as follows: 

1. Let k = 1. Set terminal time T, sample time t, predictive horizon N, control 
horizon N,,,, weighting matrices <I) and 少. 

2. Calculate process model matrices S, E, V, M�neural network parameters 
Q, R, H, c, b. 

3. Solve the quadratic miniinax problems (3.9) using the proposed reciuTent 
neural network, obtaining the optimal control action Au{k). 

4. Calculate the optimal input vector u{k) = f{Au{k) + a[k — 1))，the first 
element u{k\k) is sent to the process. 
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5. If k < 7\ set A: = A- + 1, return to step 2; otherwise, end. 

6.3 Simulation Results 
Consider a two-tank system described in [67], which is a two-input, two-output 
system, with the flow rates of the two inlet streams as the two inputs, and the 
liquid level in each tank as the two output variables. 

By sarripling at 0.2 miii using a zero-order holder, the following discrete-time 
state-space model can be obtained: 

0.5 0.2 ' i 0 ' x{k + 1 ) = —3 3 
0.5 0.5 
~ — 了 

x{k) + 3 u 
0 i 

—3 3 
0.5 0.5 
~ — 了 

3 u 
0 i 

u{k) 

lAk)= 
0 

x{k) + 
(6.27) 

iu{k) 

The set-point for the liquid levels (output) of tanks 1 and 2 are 0.8 and 
0.7, respectively: the prediction and control horizons are N = 10 and Nu = 4; 
weighting matrices (I) = I,中 二 51; scaling constant « = 0.2; an uncertainty 
-0 .02 < w < 0.02 is considered to affect, both liquid levels of tanks 1 and 2; 
moreover, the following constraints are considered: 

(6.28) 

0 0.5 0 0.6 <u{k) < < y{k) < 
0.6 

0 0.5 0 0.7 
-0.05 
-0.05 

< Au{k) < 0.05 
0.05 

一0 . 0 2 < w < 0 . 0 2 

111 order to coiiiparc the ctfoctiveiicss and efficiency of the proposed appioacli, 
a, linear matrix inequalities (LMI) approach [5] is also applied to the process. The 
siriiulatioii results are showed in Figs. 6.1 - 6.4. We can see that the proposed 



92 CHAPTER 3. ROBUST MPC USING A RNN 

Input u1 

80 90 100 

Figure 6.1: Input signals of tanks 1 using the proposed RNN approach and LMI 
approach 

Input u2 

80 90 100 

Figure 6.2: Input signals of tanks 2 using the proposed RNN approach and LMI 
approach 
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Output y1 

80 90 100 

Figure 6.3: Output responses of tanks 1 using the proposed RNN approach and 
LMI approach 

Output y2 

80 90 100 

Figure 6.4: Output responses of tanks 2 using the proposed RNN approach and 
LMI approach 
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neural network approach gives a better set-point tracking performance with faster 
stable output responses. 

• End of chapter. 



Chapter 

Conclusions and Future Works 

The preceding chapters addressed the synthesis, analysis, and applications of 
model predictive control (MPC) based on recurrent neural networks (RNNs). In 
this concluding chapter, we will summarize what has been accomplished in this 
research arid describe some potential future works to extend the present results 
for the discussed problems. 

7.1 Concluding Remarks 
III this thesis, we have introduced the RNN approaches to MPC for linear systems, 
nonlinear systems, and systems with uncertainties. 

The desirable features of RNN, such as global convergence and low complex-
ity, have been utilized for MPC design. In Chapter 2 and 3, RNNs have been 
applied for solving the quadratic programming (QP) or linear programming (LP) 
problems associated with MPC at each sample time. Compared with existing 
related works [43] [44], the proposed RNN-based approaches have simpler striic-
tviros and do not suffer from local minima. Simulation results have shown that 
the RNN-based MPC schemes are effective and efficient. 

More challenging works have been done for nonlinear MPC using RNNs in 
Chapter 4 and 5. By means of decomposition, the original optimization problem 

95 
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associated with nonlinear MPC has been reformulated as a QP problem with a 
unknown nonlinear term. A recursive algorithm is developed for RNN learning, 
which guarantees the convergence of the solution to the original optimization 
problem. For unknown dynamic systems, the echo state network (ESN) has 
been used for system identification. The proposed RNN-based nonlinear MPC 
schemes have shown better performances than linear MPC in reference tracking 
and disturbance rejection. 

Ill Chapter 6, the MPC synthesis problem for linear systems with bounded 
uncertainties has been foniiulated as a quadratic rniiiimax problem, we have de-
veloped a discrete-time RNN for iriiiiirnax optimization and proved its expoiieiithil 
convergence property. Compared with the linear matrix inequalities (LMI) ap-
proach, the proposed RNN-based robust MPC has shown superior perforinarice. 

Due to RNN's desirable features, the proposed schemes are efficient, ami suit-
able for real-time MPC implementation in industrial applications. The RNN-
based MPC operates in a massively parallel fashion, which can be applied to 
large-scale multi-variable systems. 

7.2 Future works 
There are also many unsolved problems related to the analysis arid synthesis of 
RNN-based MPC schemes. For future researches, the following possible works 
require further investigations. 

1. For iioiiliiiear systems with uncertainties, it is highly desirable to design 
robust nonlinear MPC systems based on RNNs to withstand possible pa-
rameter perturbation and random input disturbance. 

2. As time delays may introduce detrimental effects in dynamic systems. To 
reduce or remove the effects, it is necessary to develop the design proce-
dures for RNN-based MPC systems with time delays based on the results 
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of neurodynamic analysis. 

3. In terms of applications, the RNN-based MPC schemes may be applied 
to large-scale iriultivariable systems, further applications include industrial 
process control, spacecraft attitude control, etc. 

• End of chapter. 



Bibliography 

[1] J. Richalet, A. Testud, L. J., and J. Papon, "Model predictive heuristic 
control: Applications to industrial processes," Automatica, vol. 14，pp. 413-
428，1978. 

[2j S. J. Qiii and Thomas A. Badgwell, "A survey of iri(iiistrial model predictive 
control technology," Control Engineering Practice, vol. 11，pp. 733-764, 
2003. 

[3] E. F. Cainacho and C. Bordoiis, Model Predictive Control, Springer, Lon-
don, U.K., 2004. 

[4] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, 
New York: Academic, 1982. 

[5] M. Bazaraa, H. Slierali, and C. Shetty, Nonlinear Progmmming: TheoTy 
and Algorithms (2nd Ed.), New York: John Wiley, 1993. 

[6] J. Rosen, "The gradient projection method for nonlinear programming, 
part i. linear constraints," Journal of the Society for Industrial and Applied 
Mathematics�vol. 8，no. 1, pp. 181-217, 1960. 

[7] W. Zaiigwill, "Non-linear progmmmiiig via penalty functions；' Manage-
ment Science, vol. 13, no. 5, pp. 344-358, 1967. 

98 



BIBLIOGRAPHY M 

[8] M. Rybashov, "The gradient method of solving convex programming prob-
lems on electronic analog computers," Automation Remote Control, vol. 26， 

110. 11, pp. 1886-1898, 1965. 

[9] J. Ilopfield, "Neural networks and physical systems with emergent collec-
tive computational properties," Proc. National Academy of Science, USA, 
Biophysics, vol. 79，pp. 2554-2588, 1982. 

[10] J. Hopfield, "Neurons with graded response have collective computational 
properties like those of two-state neurons," Proc. National Academy of Sci-
ence, USA, vol. 81, no. 10，pp. 3088-3092, 1984. 

[11] J. Ilopfield arid D. Tank, "Neural computation of decisions in optimization 
problems," Biological Cybernetics, vol. 52, no. 3, pp. 141-152, 1985. 

[12] A. Cichocki and R. Uribehaueii, Neural Networks for Optimization and Sig-
nal Processing, London, U.K. Wiley, 1993. 

[13] D. W. Tank and J. J. Ilopfield, "Simple neural optimization networks: An 
A/D converter, signal decision circuit, and a linear programming circuit," 
IEEE Trans. Circuits Syst, vol. CAS-33, pp. 533-541, May 1986. 

[14] M. Kennedy and L. Clma, "Neural networks for nonlinear programming," 
IEEE Transactions on Circuits and Systems, vol. 35，no. 5, pp. 554-562, 
1988. 

[15] S. Zhang and A. Coiistaritiriides, "Lagrange programming neural networks," 
IEEE Tr( ins actions on. Circuits a,ml System..s-II, vol. 39, no. 7, pp. 441-452, 
1992. 

[16] Y. Xia, "Global convergence analysis of lagrangiari networks," IEEE Trans-
actions on Circuits and Systems-I, vol. 50，no. 6, pp. 818-822, 2003. 



100 BIBLIOGRAPHY 

[17] J. Wang, "Analysis and design of a recurrent neural network for linear 
programming," IEEE Transactions on Circuits and Systems-1’ vol. 40, no. 
9, pp. 613-618，1993. 

[18] J. Wang, "A deterministic annealing neural network for convex program-
ming," Neural Networks, vol. 7, no. 4，pp. 629-641, 1994. 

[19] Y. Xia and J. Wang, "Primal neural networks for solving convex quadratic 
programs," International Joint Conference on Neural Networks 1999, vol. 
1， p p . 582-587, 1999. 

[20] Y. Xia, "A new neural network for solving linear and quadratic prograin-
iriing problems," IEEE Transactions on Neural Networks, vol； 7, no. 6, pp. 
1544-1548，1996. 

[21] Y. Xia, "A new neural network for solving linear program mi rig and 
quadratic programming problems," Neural Networks, vol. 9，no. 6，pp. 1544-
1547, 1996. 

[22] J. Wang, "Primal and dual assignment networks," IEEE Transactions on 
Neural Networks, vol. 8, no. 3, pp. 784-790, 1997. 

[23] J. Wang and Y. Xia, "Analysis and design of primal-dual assignment net-
works," IEEE Transactions on Neural Networks, vol. 9’ no. 1, pp. 183-194, 
1998. 

[24] Y. Xia, G. Feng, and J. Wang, "A primal-dual neural network for online 
resolving constrained kinematic redundancy in robot motion control," IEEE 
Transactions on Systems, Man and Cybernetics-B, vol. 35，no. 1, pp. 54-64’ 
2005. 

[25] Y, Xia and J. Wang, "A dual neural network for kinematic control of re-
dundant robot manipulators," IEEE Trans actions on Systems, Man and 
Cybernetics-B, vol. 31, no. 1’ pp. 147-154, 2001. 



BIBLIOGRAPHY M 

[26] Y. Zhang and J. Wang, "A dual neural network for convex quadratic pro-
grainming subject to linear equality and inequality constraints," Physics 
Letters 成 vol. 298, no. 4, pp. 271-278, 2002. 

[27] Y. Zhang, J. Wang, and Y. Xia, "A dual neural network for redundancy 
resolution of kiriematically redundant manipulators subject to joint limits 
and joint velocity limits," IEEE Transactions on Neural Networks, vol. 14, 
110. 3, pp. 658-667, 2003. 

[28] S. Lin and J. Wang, “A simplified dual neural network for quadratic pro-
gramming with its KWTA application," IEEE Trans. Neural Netw., vol. 
17, 110. 6，pp. 1500-1510, Nov. 2006. 

[29] T. Friesz, D. Bernstein, N. Mehta, R. Tobiii, and S. Ganjalizadeh, "Day-to-
day dynamic network diseqiiilibria and idealized traveler information sys-
tems," Operations Research, vol. 42，no. 6, pp. 1120-1136，1994. 

[30] Y. Xia arid J. Wang, "On the stability of globally projected dynamical 
systems," Journal of Optimization Theory and Applications, vol. 106, no. 
1, pp. 129-150, 2000. 

[31] Y. Xia and J. Wang, "Global asymptotic arid exponential stability of a dy-
namic neural system with asymmetric connection weights," IEEE Transac-
tions on Automatic Control, vol. 46, no. 4, pp. 635-638, 2001. 

[32] Y. Xia, H. Leung, and J. Wang, "A projection neural network and its appli-
cation to constrained optimization problems," IEEE Transactions Gvrcuits 
and Systems-1, vol. 49, no. 4, pp. 447-458, 2002. 

[33] Y. Xia and J. Wang, “A recurrent neural network for iionliiiear convex op-
timization subject to nonlinear inequality constraiiits,，’ IEEE Transactions 
on Circuits and Systems /，vol. 51, no. 7，pp. 1385-1394, 2004. 



102 BIBLIOGRAPHY 

[34] Y. Xia, G. Feng, and J. Wang, "A recurrent neural network with exponen-
tial convergence for solving convex quadratic program and related linear 
piecewise equations," Neural Networks, vol. 17，no. 7, pp. 1003-1015, 2004. 

[35] Y. Xia, "Further results on global convergence and stability of globally 
projected dynamical systems," Journal of Optimization Theory and Appli-
cations, vol. 122，no. 3，pp. 627-649, 2004. 

[36] Y. Xia, "An extended projection neural network for constrained optimiza-
tion," Neural Cornputoiion, vol. 16, pp. 863-883, 2004. 

[37] M. Forti, P. Nistri, and M. Quiiicaiiipoix, "Generalized neural network 
for nonsrnooth nonlinear programming problems,” IEEE Tiunscicfwns on 
Circuits and Systerns-I, vol. 51, no. 9, pp. 1741-1754, 2004. 

[38] Q. Liu, J. Cao, and Y. Xia, "A delayed neural network for solving lin-
ear projection equations and its analysis," IEEE Transactions on Neural 
Networks, vol. 16, no. 4，pp. 834-843，2005. 

[39] Y. Yang and J. Cao, “Solving quadratic programming problems by delayed 
projection neural network," IEEE Transactions on Neural Networks, vol. 
17，no. 6, pp. 1630-1634, 2006. 

[40] Q. Liu, J. Wang, and J. Cao, "A delayed lagrangiari network for solv- ing 
quadratic programming problems with equality constraints," Lecture Notes 
In Computer Science, vol. 3971, pp. 369-378, Springer, 2006. ISNN2006. 

[41] Q. Liu and J. Wang, "A one-layer recurrent neural network with a discoii-
tinuous activation function for linear progmmmiiig,,’ Nmral Computation, 
vol, 20，110. 5，pp. 1366-1383, 2008. 

[42] Q. Liu and J. Wang, "A one-layer recurrent neural network with a dis-
contiiiuoii8 hard-liraitiiig activation function for quadratic progmmmiiig’” 
IEEE Transactions on Neural Networks, vol. 19, no. 4, pp. 558-570, 2008. 



BIBLIOGRAPHY M 

[43] J. M. Quero and E. F. Carnacho, "Neural network for constrained predictive 
control," IEEE Trans. Circuits Syst. /•，vol. 40, no. 9, pp. 621-626, May, 
1993. 

[•4,1] L. Wang and F. Wan, ''Structured neural networks for constrained model 
predictive control," Automatica, vol. 37, pp. 1235-1243, 2001. 

[45] L. Cheng, Z. Hon, and M. Tan, "Constrained multi-variable generalized 
predictive control using a dual neural network," Neural Cornput. & Apphc., 
vol. 16, pp. 505-512’ 2007. 

[46] Y. Pan arid J.Wang, "Two neural network approaches to model predictive 
control," Proceedings of the American Control Conferejica, Seattle, Wa,sli-
iiigtoii, USA, pp. 1685-1690, 2008. 

[47] Y. Pan and J. Wang, "Robust mo del predictive control using a, discrete-
time recurrent neural network," Advances in Neural Networks - ISNN2008, 
Springer-Verlag, vol, 5263, pp. 883-892, 2008. 

[48] C. Verikateswarlii and K. Rao, "Dynamic recurrent radial basis function 
network model predictive control of unstable nonlinear processes," Chemical 
Engineering Science, vol. 60，pp. 6718-6732, 2005. 

[49] U. Yiizgec, Y. Becerikli, and M. Turker, "Dynamic neural-iietwork-based 
model-predictive control of an industrial baker's yeast drying process," 
IEEE Trans Neural Netw., vol. 19，pp. 1231-1242, 2008. 

[50] Y. Pan and J.Wang, "Nonlinear model predictive control using a recurrent 
neural network," Proceedings of the 2008 International Joint Conference on 
Neural Networks, Hong Kong, pp. 2297-2302, June 2008. 

[51] S. Boyd and L. Vaiidenbeghe, Convex Optimization^ Cambridge，U.K., 
Cambridge Univ. Press, 2004. 



113 BIBLIOGRAPHY 

[52] L. A. Zadeh and L. II. Whalen, “On optimal control and linear prograin-
ming," IEEE Trans. Automat. Contr” vol. AC-7, pp. 45-46, Jan. 1962. 

[53] A.I, Propoi, "Use of linear prograininiiig methods for synthesizing saniplecl-
data automatic systems," Automat. Rem. Control., vol. 21, no. 7, pp. 837-
844’ 1963. 

[54] T. S. Chang and D. E. Seborg, "A linear prograniiiiiiig approach for multi-
variable feedback control with inequality constraints," Int. J. Control, vol. 
37, no. 3，pp. 583-597, 1983. 

[55] H. Gericeli and M. Nikolaoii, "Robust stability analysis of constrained ‘ -
norm model predictive control," AIChE J., vol. 39, no. 12, pp. 1954-1965, 
1993. 

[56] C. V. Rao and J. B. Rawlings, “Linear programming and model predictive 
control", ,/. Process Control, vol. 10, pp. 283-289, 2000. 

[57] A. Bemporad, F. Borrelli, and M. Morari, "Model predictive control based 
oil linear prograiiiiiiiiig - the explicit solution," IEEE Trans. Automatic 
Control�vol. 47，pp. 1974-1985, 2002. 

[58] P. J. Carnpo and M. Morari, “Model predictive optimal averaging level 
control," AIChE J., vol. 35’ no. 4’ pp. 579-591, 1989. 

[59] C. V. Rao and J. B. Rawlings, "Linear programming and model predictive 
control", J. Process Control, vol. 10，pp. 283-289’ 2000. 

[60] D. Mayne, J. Rawlings, C. Rao, P. Scokaert, "Constrained model predictive 
control: Stability and optiinality". Autornatica, vol. 36, pp. 789-814, 2000. 

[61] Q. Tao and T. Fang, "The neural network model for solving iiiiniinax prob-
lems with coiistrairits". Control Theory Applicat., vol. 17, pp. 82-84, 2000. 



BIBLIOGRAPHY M 

[62] X. Gao and L. Liao, "A neural network for a class of convex quadratic 
minimax problems with constraints," IEEE Trans. Neural Netw., vol. 16, 
pp. 622-628, 2004. 

[63] X. Gao and L. Liao, "A novel neural network for a class of convex quadratic 
rninirnax problems," Neural Computation, vol. 18, pp. 1818-1846, 2006. 

f)1] M. Bazaraa, II. Shcrali, and C. Slietty, Nonlinear programming: theory and 
algorithms, New York: Wiley, 1993. 

[65] M. Perez-Ilzarbe,, "Convergence analysis of a discrete-time recurrent neural 
network toperforiii quadratic; real optimization with boiirid constraints," 
IEEE Trans. Neural Netw., vol. 9，pp. 1344-1351, 1998. 

[66] K. Tail, H. Tang and Z. Yi, "Global exponential stability of discrete-time 
neural networks for constrained quadratic optimization," Neurocomputing, 
vol. 56, pp. 399-506, 2004. 

•67] T. Alamo, D. llainirez and E. Caiiiaclio, "Efficient iiiiploiiiciitation of con-
strained rnin-inax model predictive control with bounded uncertainties: a 
vertex rejection approach," Journal of Process Control, vol. 15, pp. 149-158, 
2005. 

[f)8] K. Horriik, "Multilayer feedforward networks are universal approximators," 
Neural Netw., vol. 2, no. 5, pp. 359-366, 1989. 

[09] M. Leshno, V. Y. Lin, A. Piiikiis, and S. schocken, "Multilayer feedforward 
networks with a iioiipolyiiornial activation function can approximate any 
function," Neural Net/iu., vol. 6, no. 6, pp. 861-867, 1993. 

[70] D. R. Hush and B. Home, "Efficient algorithms for function approximation 
with piecewise linear sigmoid networks," IEEE Trans. Ne/imil Netw., vol. 9, 
no. 6, pp. 1129-1141, 1998. 



115 BIBLIOGRAPHY 

[71] II. Li and li. Deng, "An approximate internal model-based neural control 
for unknown nonlinear discrete processes," IEEE Trans. Neural Netw., vol. 
17, pp. 659-670, 2006. 

[72] H. Jaeger, "The 'echo' state approach to analyzing and training recurrent 
neural networks," Technical report GMD, report 148, 2001. 

[73] II. Jaeger and H. Haas，"Harnessing riorilinearity: predicting chaotic sys-
tems and saving energy in wireless communication," Science, pp. 78-80, 
April 2, 2004. 

[74] D. Xu, J. Lari arid J. C. Principe, "Direct adaptive control: An echo state 
network and genetic algorithm approach," Proceedings of the 2005 Intc.T-
national Joint Conference on Neural Networks, Montreal, pp. 1483-1486, 
2005. 

[75] M. D. Skowroiiski and J. G. Harris, "Automatic speech recognition using 
a predictive echo state network classifier," Neural Networks, vol. 20, pp. 
414-423, 2007. 

[76] F. J. Doyle III, B. A. Oguiinaike, and R. K. Pearson, "Nonlinear model-
based control using second-order volterra. models," Autoniatica, vol. 31, no. 
5, pp. 697-714, 1995. 

[77] F. Wu, "LMI-based robust model predictive control and its applkatioiis 
to an industrial CSTR problem," Journal of Process Control�vol. 11, pp. 
649-659, 2001. 

[78] D. Cliwa, “Sliding-mode tracking control of nonholonomic wheeled mobile 
robots in polar coordinates," IEEE Trans. Control Syst. TechnoL, vol. 12， 

no. 4’ pp. 637-644, Apr. 2004. 



BIBLIOGRAPHY M 

[79] C. D. Sousa, E. M. Hernerly, and R. K. II. Galvao, "adaptive control for 
mobile robot using wavelet networks," IEEE Trans. Syst., Man, Cybern., 
vol. 32, no. 4，pp. 493-504, Apr. 2002. 

[80] D. Gil and H. Hu, "Neural predictive control for a car-like mobile robot," 
Robot. Autonorn. Syst., vol. 39, no. 2, pp. 73-86, 2002. 

[81] J. S. Oh, J. B, Park, and Y. H. Choi, "Stable path tracking control of a 
mobile robot using a. wavelet-based fuzzy neural network," Int. J. Cuntr., 
Autoni. Syst. , vol. 3, no. 4，pp. 552-563, 2005. 

[82] S. Kim, J. Park, and J. Lee, “Implementation of tracking and capturing a 
moving object using a mobile robot," Int. J. Contr., Autorn. Syst. , vol. 3, 
110. 3, pp. 444-452, 2005. 

[83] J. S. Yoo, Y. H. Choi, and J. B. Park, "Generalized predictive control based 
on self-recurrent wavelet neural network for stable path tracking of mobile 
robots: adaptive learning rates approach," IEEE Trans. Circ. Syst. /, vol. 
53, no. 6’ pp. 1381-1394, June 2006. 





CUHK L i b r a r i e s 

0 0 4 6 6 0 0 9 5 


