250,191 research outputs found

    Knowledge-based Transfer Learning Explanation

    Get PDF
    Machine learning explanation can significantly boost machine learning's application in decision making, but the usability of current methods is limited in human-centric explanation, especially for transfer learning, an important machine learning branch that aims at utilizing knowledge from one learning domain (i.e., a pair of dataset and prediction task) to enhance prediction model training in another learning domain. In this paper, we propose an ontology-based approach for human-centric explanation of transfer learning. Three kinds of knowledge-based explanatory evidence, with different granularities, including general factors, particular narrators and core contexts are first proposed and then inferred with both local ontologies and external knowledge bases. The evaluation with US flight data and DBpedia has presented their confidence and availability in explaining the transferability of feature representation in flight departure delay forecasting.Comment: Accepted by International Conference on Principles of Knowledge Representation and Reasoning, 201

    Using Kernel Perceptrons to Learn Action Effects for Planning

    Get PDF
    Abstract — We investigate the problem of learning action effects in STRIPS and ADL planning domains. Our approach is based on a kernel perceptron learning model, where action and state information is encoded in a compact vector representation as input to the learning mechanism, and resulting state changes are produced as output. Empirical results of our approach indicate efficient training and prediction times, with low average error rates (< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario. This work is part of a project to integrate machine learning techniques with a planning system, as part of a larger cognitive architecture linking a highlevel reasoning component with a low-level robot/vision system. I

    Evidence-Based Detection of Pancreatic Canc

    Get PDF
    This study is an effort to develop a tool for early detection of pancreatic cancer using evidential reasoning. An evidential reasoning model predicts the likelihood of an individual developing pancreatic cancer by processing the outputs of a Support Vector Classifier, and other input factors such as smoking history, drinking history, sequencing reads, biopsy location, family and personal health history. Certain features of the genomic data along with the mutated gene sequence of pancreatic cancer patients was obtained from the National Cancer Institute (NIH) Genomic Data Commons (GDC). This data was used to train the SVC. A prediction accuracy of ~85% with a ROC AUC of 83.4% was achieved. Synthetic data was assembled in different combinations to evaluate the working of evidential reasoning model. Using this, variations in the belief interval of developing pancreatic cancer are observed. When the model is provided with an input of high smoking history and family history of cancer, an increase in the evidential reasoning interval in belief of pancreatic cancer and support in the machine learning model prediction is observed. Likewise, decrease in the quantity of genetic material and an irregularity in the cellular structure near the pancreas increases support in the machine learning classifier’s prediction of having pancreatic cancer. This evidence-based approach is an attempt to diagnose the pancreatic cancer at a premalignant stage. Future work includes using the real sequencing reads as well as accurate habits and real medical and family history of individuals to increase the efficiency of the evidential reasoning model. Next steps also involve trying out different machine learning models to observe their performance on the dataset considered in this study

    ProCAVIAR: Hybrid Data-Driven and Probabilistic Knowledge-Based Activity Recognition

    Get PDF
    The recognition of physical activities using sensors on mobile devices has been mainly addressed with supervised and semi-supervised learning. The state-of-the-art methods are mainly based on the analysis of the user\u2019s movement patterns that emerge from inertial sensors data. While the literature on this topic is quite mature, existing approaches are still not adequate to discriminate activities characterized by similar physical movements. The context that surrounds the user (e.g., semantic location) could be used as additional information to significantly extend the set of recognizable activities. Since collecting a comprehensive training set with activities performed in every possible context condition is too costly, if possible at all, existing works proposed knowledge-based reasoning over ontological representation of context data to refine the predictions obtained from machine learning. A problem with this approach is the rigidity of the underlying logic formalism that cannot capture the intrinsic uncertainty of the relationships between activities and context. In this work, we propose a novel activity recognition method that combines semisupervised learning and probabilistic ontological reasoning. We model the relationships between activities and context as a combination of soft and hard ontological axioms. For each activity, we use a probabilistic ontology to compute its compatibility with the current context conditions. The output of probabilistic semantic reasoning is combined with the output of a machine learning classifier based on inertial sensor data to obtain the most likely activity performed by the user. The evaluation of our system on a dataset with 13 types of activities performed by 26 subjects shows that our probabilistic framework outperforms both a pure machine learning approach and previous hybrid approaches based on classic ontological reasoning
    corecore