1,958 research outputs found

    An Energy-based Approach to Ensure the Stability of Learned Dynamical Systems

    Full text link
    Non-linear dynamical systems represent a compact, flexible, and robust tool for reactive motion generation. The effectiveness of dynamical systems relies on their ability to accurately represent stable motions. Several approaches have been proposed to learn stable and accurate motions from demonstration. Some approaches work by separating accuracy and stability into two learning problems, which increases the number of open parameters and the overall training time. Alternative solutions exploit single-step learning but restrict the applicability to one regression technique. This paper presents a single-step approach to learn stable and accurate motions that work with any regression technique. The approach makes energy considerations on the learned dynamics to stabilize the system at run-time while introducing small deviations from the demonstrated motion. Since the initial value of the energy injected into the system affects the reproduction accuracy, it is estimated from training data using an efficient procedure. Experiments on a real robot and a comparison on a public benchmark shows the effectiveness of the proposed approach.Comment: Accepted at the International Conference on Robotics and Automation 202

    SiteWit Corporation: SQL or NoSQL that is the Question

    Get PDF
    This teaching case focuses on a start-up company in the Web analytics and online advertising space, which faces a database scaling challenge. The case covers the rapidly emerging NoSQL database products that can be used to implement very large distributed databases. These are exciting times in the database marketplace, with a flock of new companies offering scalable database systems for the cloud. These products challenge the existing relational database vendors that have come to dominate the market. The case outlines four potential solutions and asks students to make a choice or suggest a different alternative

    Stable Motion Primitives via Imitation and Contrastive Learning

    Full text link
    Learning from humans allows non-experts to program robots with ease, lowering the resources required to build complex robotic solutions. Nevertheless, such data-driven approaches often lack the ability to provide guarantees regarding their learned behaviors, which is critical for avoiding failures and/or accidents. In this work, we focus on reaching/point-to-point motions, where robots must always reach their goal, independently of their initial state. This can be achieved by modeling motions as dynamical systems and ensuring that they are globally asymptotically stable. Hence, we introduce a novel Contrastive Learning loss for training Deep Neural Networks (DNN) that, when used together with an Imitation Learning loss, enforces the aforementioned stability in the learned motions. Differently from previous work, our method does not restrict the structure of its function approximator, enabling its use with arbitrary DNNs and allowing it to learn complex motions with high accuracy. We validate it using datasets and a real robot. In the former case, motions are 2 and 4 dimensional, modeled as first- and second-order dynamical systems. In the latter, motions are 3, 4, and 6 dimensional, of first and second order, and are used to control a 7DoF robot manipulator in its end effector space and joint space. More details regarding the real-world experiments are presented in: \url{https://youtu.be/OM-2edHBRfc}

    Learning Riemannian Stable Dynamical Systems via Diffeomorphisms

    Get PDF
    Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.Comment: To appear at CoRL 202

    A Fast Sensitivity-Based Preventive Control Selection Method for Online Voltage Stability Assessment

    Get PDF

    Deep Metric Imitation Learning for Stable Motion Primitives

    Full text link
    Imitation Learning (IL) is a powerful technique for intuitive robotic programming. However, ensuring the reliability of learned behaviors remains a challenge. In the context of reaching motions, a robot should consistently reach its goal, regardless of its initial conditions. To meet this requirement, IL methods often employ specialized function approximators that guarantee this property by construction. Although effective, these approaches come with a set of limitations: 1) they are unable to fully exploit the capabilities of modern Deep Neural Network (DNN) architectures, 2) some are restricted in the family of motions they can model, resulting in suboptimal IL capabilities, and 3) they require explicit extensions to account for the geometry of motions that consider orientations. To address these challenges, we introduce a novel stability loss function, drawing inspiration from the triplet loss used in the deep metric learning literature. This loss does not constrain the DNN's architecture and enables learning policies that yield accurate results. Furthermore, it is easily adaptable to the geometry of the robot's state space. We provide a proof of the stability properties induced by this loss and empirically validate our method in various settings. These settings include Euclidean and non-Euclidean state spaces, as well as first-order and second-order motions, both in simulation and with real robots. More details about the experimental results can be found at: https://youtu.be/ZWKLGntCI6w.Comment: 21 pages, 15 figures, 4 table

    East Midlands Research into Ageing Network (EMRAN) Discussion Paper Series

    Get PDF
    Academic geriatric medicine in Leicester . There has never been a better time to consider joining us. We have recently appointed a Professor in Geriatric Medicine, alongside Tom Robinson in stroke and Victoria Haunton, who has just joined as a Senior Lecturer in Geriatric Medicine. We have fantastic opportunities to support students in their academic pursuits through a well-established intercalated BSc programme, and routes on through such as ACF posts, and a successful track-record in delivering higher degrees leading to ACL post. We collaborate strongly with Health Sciences, including academic primary care. See below for more detail on our existing academic set-up. Leicester Academy for the Study of Ageing We are also collaborating on a grander scale, through a joint academic venture focusing on ageing, the ‘Leicester Academy for the Study of Ageing’ (LASA), which involves the local health service providers (acute and community), De Montfort University; University of Leicester; Leicester City Council; Leicestershire County Council and Leicester Age UK. Professors Jayne Brown and Simon Conroy jointly Chair LASA and have recently been joined by two further Chairs, Professors Kay de Vries and Bertha Ochieng. Karen Harrison Dening has also recently been appointed an Honorary Chair. LASA aims to improve outcomes for older people and those that care for them that takes a person-centred, whole system perspective. Our research will take a global perspective, but will seek to maximise benefits for the people of Leicester, Leicestershire and Rutland, including building capacity. We are undertaking applied, translational, interdisciplinary research, focused on older people, which will deliver research outcomes that address domains from: physical/medical; functional ability, cognitive/psychological; social or environmental factors. LASA also seeks to support commissioners and providers alike for advice on how to improve care for older people, whether by research, education or service delivery. Examples of recent research projects include: ‘Local History Café’ project specifically undertaking an evaluation on loneliness and social isolation; ‘Better Visits’ project focused on improving visiting for family members of people with dementia resident in care homes; and a study on health issues for older LGBT people in Leicester. Clinical Geriatric Medicine in Leicester We have developed a service which recognises the complexity of managing frail older people at the interface (acute care, emergency care and links with community services). There are presently 17 consultant geriatricians supported by existing multidisciplinary teams, including the largest complement of Advance Nurse Practitioners in the country. Together we deliver Comprehensive Geriatric Assessment to frail older people with urgent care needs in acute and community settings. The acute and emergency frailty units – Leicester Royal Infirmary This development aims at delivering Comprehensive Geriatric Assessment to frail older people in the acute setting. Patients are screened for frailty in the Emergency Department and then undergo a multidisciplinary assessment including a consultant geriatrician, before being triaged to the most appropriate setting. This might include admission to in-patient care in the acute or community setting, intermediate care (residential or home based), or occasionally other specialist care (e.g. cardiorespiratory). Our new emergency department is the county’s first frail friendly build and includes fantastic facilities aimed at promoting early recovering and reducing the risk of hospital associated harms. There is also a daily liaison service jointly run with the psychogeriatricians (FOPAL); we have been examining geriatric outreach to oncology and surgery as part of an NIHR funded study. We are home to the Acute Frailty Network, and those interested in service developments at the national scale would be welcome to get involved. Orthogeriatrics There are now dedicated hip fracture wards and joint care with anaesthetists, orthopaedic surgeons and geriatricians. There are also consultants in metabolic bone disease that run clinics. Community work Community work will consist of reviewing patients in clinic who have been triaged to return to the community setting following an acute assessment described above. Additionally, primary care colleagues refer to outpatients for sub-acute reviews. You will work closely with local GPs with support from consultants to deliver post-acute, subacute, intermediate and rehabilitation care services. Stroke Medicine 24/7 thrombolysis and TIA services. The latter is considered one of the best in the UK and along with the high standard of vascular surgery locally means one of the best performances regarding carotid intervention
    • …
    corecore