9,896 research outputs found

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    Welding process modelling and control

    Get PDF
    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control

    Thermal control surfaces experiment: Initial flight data analysis

    Get PDF
    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed

    Growth and characterization of binary and pseudo-binary 3-5 compounds exhibiting non-linear optical behavior. Undergraduate research opportunities in microgravity science and technology

    Get PDF
    In line with the specified objectives, a Bridgman-type growth configuration in which unavoidable end effects - conventionally leading to growth interface relocation - are compensated by commensurate input-power changes is developed; the growth rate on a microscale is predictable and unaffected by changes in heat transfer conditions. To permit quantitative characterization of the growth furnace cavity (hot-zone), a 3-D thermal field mapping technique, based on the thermal image, is being tested for temperatures up to 1100 C. Computational NIR absorption analysis was modified to now permit characterization of semi-insulating single crystals. Work on growth and characterization of bismuth-silicate was initiated. Growth of BSO (B12SiO20) for seed material by the Czochralski technique is currently in progress. Undergraduate research currently in progress includes: ground based measurements of the wetting behavior (contact angles) of semiconductor melts on substrates consisting of potential confinement materials for solidification experiments in a reduced gravity environment. Hardware modifications required for execution of the wetting experiments in a KC-135 facility are developed

    Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    Get PDF
    Major effort during this reporting period was devoted to two tasks: improvement of the electrical measurement instrumentation through the design and construction of a microcomputer controlled short interval tester, and better understanding of second quadrant behavior by developing a mathematical model relating cell temperature to electrical characteristics. In addition, some preliminary work is reported on an investigation into color changes observed after stressing

    A novel laser ranging system for measurement of ground-to-satellite distances

    Get PDF
    A technique was developed for improving the precision of laser ranging measurements of ground-to-satellite distances. The method employs a mode-locked laser transmitter and utilizes an image converter tube equipped with deflection plates in measuring the time of flight of the laser pulse to a distant retroreflector and back. Samples of the outgoing and returning light pulses are focussed on the photocathode of the image converter tube, whose deflection plates are driven by a high-voltage 120 MHz sine wave derived from a very stable oscillator. From the relative positions of the images produced at the output phosphor by the two light pulses, it is possible to make a precise determination of the fractional amount by which the time of flight exceeds some large integral multiple of the period of the deflection sinusoid

    Continuous bunch-by-bunch spectroscopic investigation of the micro-bunching instability

    Get PDF
    Electron accelerators and synchrotrons can be operated to provide short emission pulses due to longitudinally compressed or sub-structured electron bunches. Above a threshold current, the high charge density leads to the micro-bunching instability and the formation of sub-structures on the bunch shape. These time-varying sub-structures on bunches of picoseconds-long duration lead to bursts of coherent synchrotron radiation in the terahertz frequency range. Therefore, the spectral information in this range contains valuable information about the bunch length, shape and sub-structures. Based on the KAPTURE readout system, a 4-channel single-shot THz spectrometer capable of recording 500 million spectra per second and streaming readout is presented. First measurements of time-resolved spectra are compared to simulation results of the Inovesa Vlasov-Fokker-Planck solver. The presented results lead to a better understanding of the bursting dynamics especially above the micro-bunching instability threshold.Comment: 12 pages, 11 figure

    Development of an experiment for visible radiation measurements from a satellite

    Get PDF
    The inversion problem, I.E., determining the atmospheric turbidity from polarimetry of radiation emerging from the earth's atmosphere, is presented. A major theoretical advance was made by finding a successful approximation for the forward peak scattering of aerosols together with a simplified characterization of particle size distributions. An engineering model of a multibarreled photopolarimeter suitable for operation from a satellite was evaluated in laboratory and high altitude jet aircraft tests. Comparison of the data from flights over the Mexican desert with theoretical curves for a Rayleigh atmosphere with negligible turbidity is in agreement
    corecore