567 research outputs found

    Multi-level Visual Exploration of High-dimensional Spaces

    Get PDF
    The increasing size and dimensionality of datasets in the humanities pose new challenges to scholars working with them, including establishing an overview over the dataset, connecting concepts, developing new hypotheses, and testing them. Material, pattern, and texture aesthetics in moving images is an attractive example of such multi-dimensional datasets in film studies, as an almost infinite number of combinations thereof are possible. Clustering techniques such as t-SNE are popular automated methods to organize these complex datasets, but they bring little or no-semantic meaning to their grouping strategies. We pro- pose a novel interactive visualization technique for multi-level hierarchical exploration of clustered features, named Sankey- Bridges. Our technique allows the users to (1) abstract local and global semantics from the automated methods, (2) extract relevant relationships, and (3) quantify them. Our technique is embedded in a system with other interactive visual components combined with exhaustive computational methods. The proposed solution is able to convey the global and local structure of high-dimensional clustered data sets and the relationship between different groups of features. The resulting visualization tool is embedded in the well-established VIAN [HBRFP19] research framework. We illustrate the benefits of our approach in the context of typical film researchers’ investigation of relationships in high-dimensional spaces, and a wide range of qualitative analysis labels, with examples from an extensive film database

    MetNetGE: interactive views of biological networks and ontologies

    Get PDF
    Background Linking high-throughput experimental data with biological networks is a key step for understanding complex biological systems. Currently, visualization tools for large metabolic networks often result in a dense web of connections that is difficult to interpret biologically. The MetNetGE application organizes and visualizes biological networks in a meaningful way to improve performance and biological interpretability. Results MetNetGE is an interactive visualization tool based on the Google Earth platform. MetNetGE features novel visualization techniques for pathway and ontology information display. Instead of simply showing hundreds of pathways in a complex graph, MetNetGE gives an overview of the network using the hierarchical pathway ontology using a novel layout, called the Enhanced Radial Space-Filling (ERSF) approach that allows the network to be summarized compactly. The non-tree edges in the pathway or gene ontology, which represent pathways or genes that belong to multiple categories, are linked using orbital connections in a third dimension. Biologists can easily identify highly activated pathways or gene ontology categories by mapping of summary experiment statistics such as coefficient of variation and overrepresentation values onto the visualization. After identifying such pathways, biologists can focus on the corresponding region to explore detailed pathway structure and experimental data in an aligned 3D tiered layout. In this paper, the use of MetNetGE is illustrated with pathway diagrams and data from E. coli and Arabidopsis. Conclusions MetNetGE is a visualization tool that organizes biological networks according to a hierarchical ontology structure. The ERSF technique assigns attributes in 3D space, such as color, height, and transparency, to any ontological structure. For hierarchical data, the novel ERSF layout enables the user to identify pathways or categories that are differentially regulated in particular experiments. MetNetGE also displays complex biological pathway in an aligned 3D tiered layout for exploration

    Visualization of graphs and trees for software analysis

    Get PDF
    A software architecture is an abstraction of a software system, which is indispensable for many software engineering tasks. Unfortunately, in many cases information pertaining to the software architecture is not available, outdated, or inappropriate for the task at hand. The RECONSTRUCTOR project focuses on software architecture reconstruction, i.e., obtaining architectural information from an existing system. Our research, which is part of RECONSTRUCTOR, focuses on interactive visualization and tries to answer the following question: How can users be enabled to understand the large amounts of information relevant for program understanding using visual representations? To answer this question, we have iteratively developed a number of techniques for visualizing software systems. A large number of these cases consists of hierarchically organized data, combined with adjacency relations. Examples are function calls within a hierarchically organized software system and correspondence relations between two different versions of a hierarchically organized software system. Hierarchical Edge Bundles (HEBs) are used to visualize adjacency relations in hierarchically organized data, such as the aforementioned function calls within a software system. HEBs significantly reduce visual clutter by visually bundling relations together. Massive Sequence Views (MSVs) are used in conjunction with HEBs to enable analysis of sequences of relations, such as function-call traces. HEBs are furthermore used to visually compare hierarchically organized data, e.g., two different versions of a software system. HEBs visually emphasize splits, joins, and relocations of subhierarchies and provide for interactive selection of sets of relations. Since HEBs require a hierarchy to perform the bundling, we present Force-Directed Edge Bundles (FDEBs) as an alternative to visually bundle relations together in the absence of a hierarchical component. FDEBs use a self-organizing approach to bundling in which edges are modeled as flexible springs that can attract each other. As a result, visual clutter is reduced and high-level edge patterns are better visible. Finally, in all these methods, a clear depiction of the direction of edges is important. We have therefore performed a separate study in which we evaluated ten representations (including the standard arrow) for depicting directed edges in a controlled user study

    Foundry: Hierarchical Material Design for Multi-Material Fabrication

    Get PDF
    We demonstrate a new approach for designing functional material definitions for multi-material fabrication using our system called Foundry. Foundry provides an interactive and visual process for hierarchically designing spatially-varying material properties (e.g., appearance, mechanical, optical). The resulting meta-materials exhibit structure at the micro and macro level and can surpass the qualities of traditional composites. The material definitions are created by composing a set of operators into an operator graph. Each operator performs a volume decomposition operation, remaps space, or constructs and assigns a material composition. The operators are implemented using a domain-specific language for multi-material fabrication; users can easily extend the library by writing their own operators. Foundry can be used to build operator graphs that describe complex, parameterized, resolution-independent, and reusable material definitions. We also describe how to stage the evaluation of the final material definition which in conjunction with progressive refinement, allows for interactive material evaluation even for complex designs. We show sophisticated and functional parts designed with our system.National Science Foundation (U.S.) (1138967)National Science Foundation (U.S.) (1409310)National Science Foundation (U.S.) (1547088)National Science Foundation (U.S.). Graduate Research Fellowship ProgramMassachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Hyperbolic tree visualization on mobile devices

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Magnetic Resonance Imaging of the Paediatric Respiratory Tract

    Get PDF

    Magnetic Resonance Imaging of the Paediatric Respiratory Tract

    Get PDF

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions
    corecore