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ABSTRACT

The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, one of three core

programs of the fourth-generation Sloan Digital Sky Survey (SDSS-IV), is producing a massive, high-

dimensional integral field spectroscopic data set. However, leveraging the MaNGA data set to address

key questions about galaxy formation presents serious data-related challenges due to the combination

of its spatially inter-connected measurements and sheer volume. For each galaxy, the MaNGA pipelines

produce relatively large data files to preserve the spatial correlations of the spectra and measurements,

but this comes at the expense of storing the data set in a coarsely-chunked manner. The coarse

chunking and total volume of the data make it time-consuming to download and curate locally-stored

data. Thus, accessing, querying, visually exploring, and performing statistical analyses across the

whole data set at a fine-grained scale is extremely challenging using just FITS files. To overcome

these challenges, we have developed Marvin: a toolkit consisting of a Python package, Application

Programming Interface (API), and web application utilizing a remote database. Marvin’s robust and

sustainable design minimizes maintenance, while facilitating user-contributed extensions such as high

level analysis code. Finally, we are in the process of abstracting out Marvin’s core functionality into

a separate product so that it can serve as a foundation for others to develop Marvin-like systems for

new science applications.

1. INTRODUCTION

Large astronomy collaborations with dedicated facili-

ties pursuing multi-year surveys are producing massive

data sets at furious rates. The data sets from the cur-

rent generation of surveys, such as the Sloan Digital Sky

Survey (hereafter SDSS; York et al. 2000; Strauss et al.

bcherinka@stsci.edu

2002), require more disk space than is available on per-

sonal computers and some moderate-sized institution-

level servers. However, the next generation of surveys,

such as the Large Synoptic Sky Survey (Ivezić et al.

2008) and the Square Kilometer Array (Braun et al.

2015), will create data sets that will be far too large for

all but a few dedicated national-level facilities. The real

power of these immense data sets comes from simultane-
ously leveraging multiple sources of information (e.g., at

mailto:bcherinka@stsci.edu
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different wavelengths) about each object, so connecting

the relevant data sources for a comprehensive analysis

is critical. Since individual users cannot store the data

locally and need to access portions of the data remotely,

bandwidth is often the primary bottleneck. Speed in-

creases in Internet bandwidth have lagged behind those

in computer processors (i.e., Moore’s law; Moore 1965)

by 10% (Nielsen 1998); the effect of this lag has com-

pounded over decades, up to the present, to exacerbate

the gap. Consequently, only a subset of the data can

be transferred. However, selecting this subset often re-

quires access to the whole data set, which requires re-

mote operations, especially queries.

SDSS was one of the earliest and remains one of the

strongest driving forces in astronomy pushing the phi-

losophy of public data releases that make astronomy a

leader in open science. Crucially, these data releases are

served with robust data distribution systems and come

thoroughly documented. These two often-overlooked as-

pects have lowered the entry barrier and enabled thou-

sands of professional astronomers and many times more

public users to take advantage of this powerful data set.

Marvin extends this mission by providing code to facil-

itate data use by professional astronomers, scientists in

other fields (e.g., physics, computer science, and statis-

tics), data scientists, citizen scientists, educators, and

students.

The current phase (2014–2020) of SDSS, SDSS-IV

(Blanton et al. 2017), consists of three simultaneous sur-

veys, including the Mapping Nearby Galaxies at Apache

Point Observatory (MaNGA; Bundy et al. 2015) survey.

Legacy SDSS (York et al. 2000) took spectra of only the

central regions of galaxies (Strauss et al. 2002), whereas

MaNGA takes hundreds of spectra per galaxy arranged

in a hexagonal grid across the face of the galaxy (Drory

et al. 2015), using the SDSS/BOSS spectrographs (Smee

et al. 2013) on the SDSS telescope (Gunn et al. 2006).

Typically, there are 3 dithered sets of 3 individual expo-

sures offset from each other which are combined into a

data cube (Law et al. 2016; Yan et al. 2016; Yan et al.

2016). Thus, each object is not represented by just a

single central spectrum, but rather a well-sampled grid

of spectra.

Figure 1 illustrates the format of the MaNGA dataset.

Each data cube consists of two spatial dimensions and

one wavelength dimension. The one-dimensional spec-

trum at each spatial location can be interpreted in terms

of measurements and physical parameters, yielding over

150 two-dimensional maps for each galaxy (Westfall et

al. in prep.), including: gas emission lines, stellar ab-

sorption features, stellar surface density, star formation

rate surface density, stellar velocities, and gas veloci-

ties. These maps can then be interpreted in terms of

global properties of each galaxy: its mass in stars, its

mass in dark matter, its total star formation rate, and

other quantities. Marvin and the MaNGA maps for 4824

galaxies will be publicly released as part of Data Release

15 (Aguado et al. 2018).

In addition to its complexity, MaNGA’s data volume

is significant. MaNGA will observe over 10,000 galax-

ies (Law et al. 2015; Wake et al. 2017), more than an

order of magnitude larger than previous IFU surveys,

such as the Atlas3D (Cappellari et al. 2011), DiskMass

(Bershady et al. 2010), and CALIFA (Calar Alto Large

Integral Field Area; Sánchez et al. 2012) surveys. All

told, the final MaNGA data release will be 10 terabytes

or about 1 gigabyte per galaxy in final summary data

products, containing: data cubes and row-stacked spec-

tra in log and linear wavelength sampling, derived anal-

ysis maps, and model template data cubes. Individual

data releases contain multiple analyses of each galaxy,

each optimized for different science goals, resulting in

multiple versions, e.g different binning schemes, of the

data cube and maps. The total volume for all of the

MaNGA public data releases will be 35 terabytes due

to re-analyses of the same galaxies as the data pipelines

improve. Because of these re-analyses, if a given scien-

tific paper is to be replicable, easy access to previous

data releases must also be provided.

Further complicating analysis of MaNGA data is its

coarsely-chunked storage across separate files for the

spectra and derived property maps for each galaxy. Tra-

ditionally data are stored this way to optimize for an

object-by-object catalog of files. This coarsely-chunked

data makes querying on MaNGA’s spatially-resolved

data quite difficult without extensive manual prepara-

tion of all files and tracking of correct cross-matches,

so queries can only easily be done on global properties.

Exploratory analysis and visualization are cumbersome

with coarsely-chunked data, which is compounded by

the disconnected packaging of the spectra and maps. Fi-

nally, coarsely-chunked data unnecessarily strains band-

width and disk space resources because superfluous data

need to be transferred and stored. These challenges en-

courage traditional object-by-object analyses instead of

innovative ones that leverage the statistically significant

sample size of MaNGA.

This paper presents software to address these chal-

lenges. Section 2 describes the initial prototype and

its inherent limitations, the core design philosophy of

Marvin and the components involved. Section 3 de-

scribes the variety of client-based programmatic tools

available in Marvin. Section 4 describes the front-facing

web portion of Marvin which serves as the exploratory

portal of entry for new users. The server-side features

and back-end capabilities are discussed in Section 5.

Section 6 describes a typical science use case for MaNGA

and how Marvin streamlines its implementation. In Sec-
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Figure 1. Left : gri image of MaNGA 1-596678 with the IFU field of view shown in purple. Middle: IFU observations produce
three-dimensional datacubes, with two spatial and one spectral dimensions (credit: Stephen Todd and Douglas Pierce-Price; IFS
Wiki; http://ifs.wikidot.com). Right : Spectral analysis of individual spaxels produces hundreds of two-dimensional maps for
each galaxy spanning a wide range of physical properties. The four example maps shown for 1-596678 are Hα flux (top left),
log([N ii] λ6585 / Hα) flux (top right), stellar velocity (bottom left), and stellar velocity dispersion corrected for instrumental
broadening (bottom right). The map plots were made using the Marvin code provided in the A.2.

tion 7, we discuss our current implementation strategy

for engaging the long-term sustainability of Marvin. We

summarize and discuss the future potential of Marvin in

Section 8. Finally, a series of example code and tutorials

are provided in the Appendix.

2. CORE DESIGN

2.1. The Marvin Prototype

To address the challenge of visually exploring MaNGA

data, we developed a prototype version of Marvin that

existed as a pure web-application. The prototype dis-

played optical images, spectra, and property maps for

individual galaxies. These visual displays, in conjunc-

tion with a basic annotation system, proved useful for
quality assessment of an early version of the MaNGA

pipelines. The prototype also featured a simple query

system and provided links to download the FITS data

files.

The design choices for the prototype enabled rapid de-

velopment, but ultimately limited its utility and sustain-

ability. The images, spectra, and maps were static PNG

files, which could not provide the interactive experience

required for a complete visual exploration of the com-

plex suite of available parameters. Queries could only

be performed on global properties not local (spatially-

resolved) ones. Data could only be accessed via large

files that contained all of the spectra or property maps

for a galaxy, making it impossible to retrieve just the

spectrum or a single property of an individual spaxel.

Because expanding the feature set of the prototype re-

quired creating new static files, the prototype was diffi-

cult to extend and time-consuming to maintain.

Furthermore, none of the components in the proto-

type web-application were usable in a command line

form. Users were forced to reinvent the same visual

and search tools if they wanted to use them program-

matically. Such tools could serve as the basis for and be

related to advanced programmatic analysis tools. Every

user would end up developing similar tools but within

different frameworks, such that each individual’s analy-

sis code would not be interoperable with that of other

users.

These limitations of the prototype design failed to ad-

dress any of the inherent challenges of the MaNGA data

set. Thus, a complete redesign and refactor was required

to fix these shortcomings, which led to a new design phi-

losophy of Marvin.

2.2. Design Philosophy and Core Components

Marvin’s design philosophy focuses on eliminat-

ing the overhead costs and limitations of accessing

the large, coarsely-chunked, and incompletely-linked

MaNGA data set. Solving these issues enables on-

demand data access, interactive visual exploration, min-

imal downloads, spatially-resolved queries, and statisti-

cal analyses at a spaxel-level. Marvin provides a feature-

rich framework that serves as the building blocks for

user-developed analysis tools that can be contributed

back into Marvin to maximize code reuse and accelerate

scientific progress.

Marvin is a complete toolkit designed for overcoming

the challenges of searching, accessing, and visualizing

the MaNGA data. The core design is centered around a

few main components:

http://ifs.wikidot.com
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• A Multi-Modal Access (MMA) system that han-

dles all data flow paths.

• An Application Programming Interface (API)

based on the Representational State Transfer

(REST) architectural style that handles all com-

munication between the client and server.

• A Brain, a common core package that han-

dles generic functionalities and abstracts common

methods needed during data gathering.

• A programmatic DataModel, that simplifies han-

dling of a large suite of parameters that may differ

between data releases and formats.

Marvin combines and builds on top of these core pieces

to provide the following additional tools:

• A suite of interconnected Python tools, all based

off a core Python tool with the MMA system built-

in, with two main tool types:

– Data Product Tool: wraps your data prod-

ucts and retrieves specific chunks of data.

(e.g., Cube or Maps in §3.1)

– Query Tool: performs SQL queries against

the remote data, with a pseudo-natural lan-

guage syntax parser to simplify the user in-

put.

• A Python Interaction class providing a uniform

interface to the API, integrated into all the Tools.

• A web application, built on top of the Tools, for

quick data visualization and exploration.

These tools work with each other, allowing for multi-

ple entry points into the data, making it easy for users

of various domain expertise (i.e from students to power-

users), to access the data using the same suite of tools.

2.3. Multi-Modal Access

In the case of MaNGA, the amount of data produced

(the final data release will be of order 10 TB) sits on the

boundary of what a user can store and analyze locally

with normal computing resources. Future surveys (e.g.,

the Large Synoptic Survey Telescope) will produce data

sets many orders of magnitude larger than MaNGA’s,

thus requiring the development of new ways to access

data.

One of Marvin’s core design choices is that data ac-

cess should be abstracted in a way that makes the origin

of the data irrelevant to the final user. Marvin accom-

plishes this goal with a Multi-Modal Access system with

a decision tree that defines what access mode to use and

the code implementation that executes it. Below we de-

scribe the data access modes: opening local files, search-

ing local databases, or making API calls to a remote web

server. Each of these data formats carries a series of ad-

vantages and disadvantages, but Marvin’s MMA allows

users to leverage the advantages while minimizing the

disadvantages.

Files (e.g. FITS) provide portable data that can be

heavily compressed, and they are the current standard

for astronomical data distribution. However, data ac-

cess can be slow (especially from compressed files), and

the data are usually stored in a way that requires a de-

gree of familiarity with the data model. Moreover, do-

ing searches and cross-analyses between multiple targets

usually demands accessing a large number of files and

keeping a significant amount of data in memory.

Relational databases solve some of these problems by

storing the whole data set in an optimized and well-

indexed way, which enables running complex queries ef-

ficiently, and provides quicker data access in most situa-

tions. In this case, the main disadvantages are the large

size of a monolithic database (comparable to download-

ing all of the uncompressed files that compose the data

set) and the difficulty of learning how to access data,

especially compared to access via files.

Finally, data can be stored in servers (either as files

or in databases) and accessed remotely via an API call

that returns only the subset of data requested in the

call. APIs are convenient for the user since they obviate

the need to download data files to a local computer and

can be used to abstract the data model. Their main

downsides are that the internet is required to access the

data and that applications that require access to large

amounts of data can be slow to run.

Marvin Tools (see Section 3) include implementations

that allow loading data from files, from a database, or

via a series of API calls. However, once the data has

been loaded, the Tools behave the same and produce

the same results regardless of the data origin.

Figure 2 shows the decision tree followed by each tool

to decide from where to load data. If the MMA is being

run in “local” mode and a target identifier is provided (a

plate-IFU or mangaid, which define a unique observation

or a single target, respectively; see Yan et al. 2016), the

code checks if a database is available and, if so, loads the

data using it. If a database cannot be found, the default

path file corresponding to that identifier and data release

(generated as described in Section 2.3.1) is used, if the

file exists locally. Alternatively, a file path can be passed

to the MMA, in which case that file will be used.

In “remote” mode, an API call is done to a remote

server with the target identifier and the data release as

inputs; the remote server uses the same MMA in “lo-

cal” mode to access the necessary data from a database
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containing the complete MaNGA data set and returns

them.

The default mode for Marvin is “auto” mode, which

tries to access the data in “local” mode first and will try

in “remote” mode upon failure. This order prioritizes

local over remote data access because the former is usu-

ally faster, while seamlessly transitioning to the latter

if the data is not available locally. See Appendix A.1

for an illustration of accessing an object with the MMA

under different inputs and data origins.

In principle, it would also be possible to set up a sys-

tem with a complete MaNGA database and use Marvin

to access it locally. While setting up such a system

would be non-trivial from a technical standpoint, there

are situations in which it could be advantageous (e.g., in

the case of an institution that wants to provide a local

mirror of the MaNGA data set).

Figure 3 shows a high level overview of the user inter-

face in Marvin. The user has two main access points:

the local Marvin client or the web browser interface.

While the browser interface communicates directly with

the Marvin server, the MMA operating on the client-

side decides whether to access data locally or remotely

via API calls to the Marvin server. The Marvin server

(following the MMA decision tree) first attempts to ac-

cess data from a local database and will fall back to files

when needed.

2.3.1. Abstract Path Generation

A machine-aware approach to file locations requires

generalizing the ability to generate full paths to these

files and removing all traces of the base filesystem root

directory. In this way, Marvin can be agnostic to

whether it is installed on a user’s laptop or an SDSS host

server. This layer of functionality is provided by the

publicly available sdss-access (Cherinka et al. 2018)

and sdss-tree (Cherinka & Brownstein 2018) software

packages. sdss-tree provides the local system environ-

ment variable setup, allowing tools to understand the

relative locations of data, while sdss-access provides a

convenient way of navigating local and remote file paths.

Paths to files are defined in a template format, specified

with a shortcut name, plus a series of keyword argu-

ments that specify variables within the filenames. This

enables users to specify a robust path to any file simply

by adjusting the input variable parameters. These pack-

ages are designed around relative path definitions, allow-

ing a user to replicate a full environment by changing the

definition of the base path. With a single root environ-

ment variable set by the user, these packages automati-

cally create a local filesystem structure that mimics the

filesystem of the SDSS Science Archive Server hosted at

the University of Utah on which the full MaNGA data

archive is stored.

For a given file, sdss-access has the ability to look up

the full system path, generate the corresponding HTTP

URL, and generate a remote access path for use with

rsync. This flexibility allows Marvin to know precisely

where to look for a given file locally and also quickly

switch to a remote host when needed. sdss-access has

the ability to download files from an SDSS server us-

ing multi-stream rsync, a technology derived from the

SDSS Transfer Product (Weaver et al. 2015). This en-

ables fast and robust file transfers, which are particu-

larly helpful for speeding up downloads of many files.

The hierarchy of files is created identically at the desti-

nation. As paths are added to the service, sdss-access

eliminates redundant downloading by first checking for

the existence of the file locally and only downloads files

that do not currently exist.

2.4. Marvin’s Brain

Marvin’s Brain is a core product that Marvin relies on

and contains the management and overhead needed for

regular tasks. There are many skills, tasks, and func-

tionalities that have become more common, and are

often required, to interact with modern astronomical

data interfaces. Examples include items such as con-

stant management of local paths to data files, learning

how to write HTTP requests for accessing data served

remotely, learning SQL to access data from databases,

or even learning how to write web applications to serve

data to others. These kinds of tasks often end up as lo-

gistical overheads that can be frustrating for end users,

as they take repeated time to learn or implement and

become barriers. These barriers can impede users’ abil-

ity to do their science, which, at best, delays scientific

discovery and, at worst, prevents accessing the necessary

data altogether.
The primary design goal with the development of

Marvin was to abstract away these overheads, and pro-

vide a framework that automatically handles much of

this management. While Marvin is software specific to

the MaNGA data set, many of these overheads are of-

ten independent of the type of data being served or ac-

cessed. To facilitate easier access and potential reusabil-

ity of these features for other projects, we have placed

these kinds of features into an additional core prod-

uct, called the Brain, which Marvin depends on. Fig-

ure 4 shows the relationship between Marvin and its

Brain. Marvin’s Brain (shown in blue) exists as base

classes that sit underneath all of the components within

Marvin. These classes act as templates that can be

reused and customized for different applications. Our

aim is to continue to migrate existing common Marvin

features into the Brain so others can utilize the same

tools.



6

Figure 2. The decision tree for the Multi-Modal Access System. The Multi-Modal Access system operates in three possible
modes: local, remote, and auto. See text for a detailed explanation.

2.5. DataModel

Marvin programmatically implements the unique

MaNGA data model for each data release to abstract

the Data Products for the MMA system and users. The

MMA system relies on the DataModel to produce the

same Data Product (e.g., Cube or Maps) from the cor-

rect data release regardless of whether it was instanti-

ated from a FITS file, a database, or via the API. This

abstraction makes scientific reproducibility much easier.

It also enables users to programmatically navigate the

Data Products without having to refer to the documen-

tation. Marvin simplifies the data model for users by uti-

lizing FuzzyWuzzy, a fuzzy string matching algorithm,

to fix incorrect but unambiguous user input (e.g., “gflux

ha” maps to “emline gflux ha 6564”). The DataModel

is available as a standalone navigable object allowing

access to the content and format of all MaNGA deliv-

erables from a single location. Additionally, individual

data models are attached to every relevant Marvin Tool,

providing an internal lookup that all Tools use for self-

consistency, making them robust against any changes to

the underlying data files. As the format of the FITS files

changes periodically between data releases, the structure

of the Tools remains the same as the data model provides

that intermediate go-between. Finally, the documenta-

tion for the data model is automatically generated (see

Section 7.3) for reference.

3. PROGRAMMATIC TOOLS
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Figure 3. A high level user interface of Marvin and the Multi-Model Access system, depicting the two major paths of user flow
through the system. Namely, via the browser which communicates directly to the Marvin server or via the Marvin client, which
uses the MMA to decide on local or remote access.

Figure 4. Marvin data flow and the relationship between Marvin and the Brain. Base classes in the Brain are subclassed into
customized Marvin classes. All data flows via the Multi-Modal Access system. Client-side data flows through the Tools, and
server-side data flows through the API or Web (through the Tools, Interaction class, or the browser).
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Marvin provides a programmatic interaction with the

MaNGA data to enable rigorous and repeatable science-

grade analyses beyond simply visualizing the data.

These tools come in the form of a Python package that

provides convenience classes and functions that simplify

the processes of searching, accessing, downloading, and

interacting with MaNGA data, selecting a sample, run-

ning user-defined analysis code, and producing publica-

tion quality figures. Marvin Tools are separated into

two main categories: Data Product Tools and Query

Tools. The Data Product Tools are object-based and

are constructed around classes that correspond to dif-

ferent levels of MaNGA data organization. The Query

Tools are search-based and are designed to provide the

user the ability to remotely query the MaNGA galaxy

data set and retrieve only the data they want. Marvin

also provides a built-in data model, which describes the

science deliverables for every data release of Marvin.

Overall, these tools allow for easier access to the data

without knowing much about the data model, by seam-

lessly connecting all the MaNGA data products, elim-

inating the need to micromanage a multitude of files.

Figure 5 shows a visual guide to all our tools, and high-

lights the interconnectivity between them.

3.1. Galaxy Tools

These tools cover four main classes, Cube, RSS, Maps,

and ModelCube, that are associated with the analogous

Data Reduction Pipeline (DRP; Law et al. 2016) and

Data Analysis Pipeline (DAP; Westfall et al. in prep.)

data products—namely, multi-dimensional data cubes,

row-stacked spectra, derived analysis maps, and model

cubes. The four main tools all inherit from a common

core object, thus sharing much of their functionality and

logic, such as the MMA. These tools are designed to do

more than simply wrap and serve the underlying data

and metadata contained in FITS files. Their goal is

to streamline the users’ interaction with that data and

simplify common but often non-trivial tasks associated

with handling the data. Via these tools, all data is de-

livered as Astropy Quantitys, with attached variance,

mask, and any associated available properties. With

Quantity variance and mask tracking, this enables ro-

bust and consistent arithmetic between any of the DAP

Maps. Each tool has a built-in data model describing

the format and content of the data it delivers. This

data model also provides convenient top-level access to

all properties available, with autocomplete navigation.

Any given tool has convenient access to associated data

products, as well as easy download capability for any

data accessed remotely.

Features or functionalities that are common to multi-

ple tools are designed as Python Mixin objects. These

objects are designed as isolated pieces of code that can

be “mixed in” with any other tool, giving that tool ac-

cess to its parameters. Access to the NASA-Sloan Atlas

(NSA) catalog (Blanton et al. 2011)1 and the DAP sum-

mary file for instance are implemented in this manner.

Extracting spaxels within a specified aperture is a com-

mon functionality delivered to all tools as a Mixin.

There are additional tools that are not associated with

a particular MaNGA data file but instead map to ob-

jects related to the MaNGA data. These tools behave in

much the same way as the core tools. They utilize the

MMA, allow for remote file downloading, and are seam-

lessly integrated with each other. The Plate tool corre-

sponds to an observed SDSS plate used during MaNGA

observations. This object provides a list of all of the

Cubes observed on a given plate, along with additional

metadata associated with the plate, e.g., exposure num-

bers, observation date, etc. The Image tool provides

interaction with the MaNGA IFU image cutout from

SDSS multi-band imaging. It allows for quick display of

the IFU image, over-plotting of the IFU hexagon, over-

plotting of the individual IFU bundle or sky fibers, or

generating an entirely new image at a custom pixel scale.

Additionally a list of Image objects can be quickly gen-

erated and downloaded to the local client system. Image

utilities also exist to quickly download a list of images

in bulk using the streaming capability of sdss-access.

3.2. Sub-Region Tools

Marvin provides sub-region galaxy tools, which are

designed to access individual components within the

main MaNGA data products. RSSFiber, Spaxel, and

Bin provide access to the row-stacked spectra from in-

dividual fibers, datacube spaxels, or bins (for binned

DAP data), respectively. These tools come with con-

venient plotting functions, as well as access to all the

DRP and DAP properties associated with a given ele-

ment. The DAP produces data products with different

spectral binning schemes for different science cases: un-

binned spectra (SPX), spectra binned to S/N∼10 us-

ing the Voronoi binning algorithm (VOR10), and a hy-

brid binning scheme (HYB10), with spectra binned to

S/N∼10 for the stellar kinematics, but emission-line

measurements are performed on the individual spax-

els. The “HYB10” binning type for DAP products has

complicated the underlying binning scheme of spaxels.

The Spaxel and Bin tools make the binning much more

straightforward. Each Spaxel property contains infor-

mation about whether it is binned or not, hooking into

the Bin tool when appropriate. The Bin tool displays

only the relevant information for the underlying prop-

1 https://www.sdss.org/dr15/manga/
manga-target-selection/nsa/

https://www.sdss.org/dr15/manga/manga-target-selection/nsa/
https://www.sdss.org/dr15/manga/manga-target-selection/nsa/
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Figure 5. A visual guide of the programmatic Tools, highlighting the complex interconnectivity between the tools. Green icons
represent core tool classes, with orange ovals showing the connections between them. Pink icons are helper tools, and purple
icons are endpoints for visually displaying data.

erty and binning type, clearing up most of the obfusca-

tion with accessing the “HYB10” binned files directly.

From Bin, one can access all spaxels belonging to that

bin, as well as generate masks for that bin.

3.3. Query Tools

Marvin provides tools for searching the MaNGA data

set through an SQL-like interface, either via a web-form

or a Python class. The Marvin Query system uses a sim-

plified SQL syntax (see Section 3.3.1) that focuses only

on a filter condition using boolean logic operators and a

list of parameters to return. Not only does this simplify

the syntax, but it automatically performs the incredi-

bly complex table joins required to extract data from

the MaNGA database. Users can query the MaNGA

sample on global galaxy properties, similar to search-

ing through the DRP and DAP summary files. In the

near future, users will be able to perform intra-galaxy

queries on individual spaxel measurements—a task that

requires a database or loading all of the MaNGA spaxel

data into RAM. Tutorials for querying with Marvin are

available in the online documentation2.

3.3.1. Pseudo-natural Language Syntax

Figure 6 shows an example of a MaNGA query in (1)

natural language, (2) full SQL syntax, and (3) simplified

pseudo-natural language syntax. While the query is rel-

atively easy to describe in natural language, the full SQL

2 https://sdss-marvin.readthedocs.io/en/stable/query.
html

syntax (red panel in Figure 6) is immensely complicated

to construct, even if the user already knows how to write

SQL queries. SQL queries consist of three main parts:

a select clause, a join clause, and a where clause.

Constructing the select and join clauses require de-

tailed knowledge of the MaNGA database schema, ta-

ble design, available columns, and the keys needed to

join the tables. With the Marvin Query tool, rather

than submitting the full SQL query, the user submits

only a simplified where clause and an optional list of

properties to return. The remainder of the query (the

select and join clauses) is built dynamically behind

the scenes, converted to raw SQL, and then submitted

to the database. This allows the user to focus on the

properties and their values in the selection criteria.

Marvin uses SQLAlchemy to map Python “model”

classes onto each of our database tables and columns.

This provides the base ability to dynamically build and

submit SQL queries in Python. With these model

classes, Marvin constructs a singular look-up dictio-

nary containing a mapping between a string parameter

name, in the form of schema.table.column name, and

its Python counterpart. This provides an automatic way

of looking up the database location for a given parameter

name, effectively removing the select clause. Marvin

uses networkx to map those model classes onto a net-

work tree, which allows the construction of a proper SQL

join clause given any two input parameters across all ta-

bles in all schema in the database. Finally, Marvin uses

a customized version of sqlalchemy-boolean-search

to simplify the where clause to a simple input string.

https://sdss-marvin.readthedocs.io/en/stable/query.html
https://sdss-marvin.readthedocs.io/en/stable/query.html
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This is a boolean parser which takes a string boolean

filter condition, parses it, and converts to the proper

SQLAlchemy filter object. The green panel in Figure 6

shows the pseudo-natural language equivalent of the de-

sired query.

3.4. Utilities

Maskbit: MaNGA uses masks as a compact way

to simultaneously convey information about the sta-

tus of an object under many boolean conditions. The

MaNGA pipelines produce quality masks at each pro-

cessing stage, which allow users to filter out specific

types of undesirable data when performing science anal-

yses. During target selection, MaNGA likewise creates

targeting masks that encode the sample or program un-

der which an object was selected to be targeted.

The Maskbit class is a general purpose utility used by

other Data Product Tools. It automatically loads the

schema for a mask, which can be easily displayed for

the user. It can then convert between the native integer

value (e.g., 1025) to the list of bits set (e.g., [0, 10]) to the

corresponding list of labels (e.g., [“NOCOV”, “DONO-

TUSE”] for the MANGA DRP3PIXMASK mask, which indi-

cates that the spaxel has no coverage in the cube and

should not be used for science). Users can create a mask

by providing a list of labels instead of filtering bits. This

class also enables searching on bits, which is particularly

useful for target selection using the targeting masks.

Plotting Utilities: Marvin’s plotting utilities enable

users to quickly display images, spectra, and maps of

individual MaNGA galaxies or galaxy sub-regions. The

plotting utilities also can put galaxies or sub-regions

in context via scatter and histogram plots of query re-

sults. Beyond the image utilities, which have been de-

scribed previously, and the spectrum plotting, which is

a straightforward line plot, we will describe the map,
scatter, and histogram plotting in more detail below. As

a general philosophy, Marvin’s plotting utilities are de-

signed to have smart defaults for quickly making useful

visualizations while allowing for significant customiza-

tion via standard Matplotlib methods.

One of the most difficult aspects of generalized map

plotting is automatically setting the range of the color

bar without being overly sensitive to poor measurements

or outlier values. Map plotting automatically masks

spaxels with poor measurements as flagged by the DAP

or due to low signal-to-noise ratios. Users can tailor

the masking by specifying flags, creating new masks,

or changing the minimum signal-to-noise ratio. These

masked regions are differentiated from areas outside of

the IFU footprint to distinguish between regions with

poor measurements and regions without data. To handle

good but outlying measurements, Marvin’s map plotting

does percentile clipping by default but allows for sigma

clipping or a user-defined range. There also is a loga-

rithmic option to help display properties with large dy-

namic ranges. It automatically uses a symmetric color

bar for velocity maps since there is a natural zero point.

Marvin also has an option for creating discrete color

maps to show, for instance, spatial regions whose neb-

ular line ratios are consistent with photoionization via

star formation or a central AGN.

Querying is one of Marvin’s most powerful features.

Yet it is difficult, if not impossible, to discover trends

in large tables of text produced from a query. To that

end, Marvin includes utilities to make scatter and his-

togram plots of query results. Queries in Marvin can

return results with anywhere from a few to millions of

data points, so Marvin’s scatter plot changes the under-

lying display technique depending on the number of data

points (see Figure 7). Fewer than 1,000 data points are

shown individually (7a), 1,000–500,000 data points are

shown as a hex binned density distribution (7b), and

more than 500,000 data points are shown as a scatter

density map (7c) that is responsive even with millions of

data points. By default, scatter plots show marginal his-

tograms with the mean and standard deviation. Users

can also create histograms separately from a scatter plot

and extract the data points in each bin.

Analysis Tools: At the time of publication, we have

prioritized development of aspects of Marvin required

for interfacing with the MaNGA data over providing

downstream analysis tools. However, Marvin is ideally

suited to serve as a foundation for analysis tools that

extend its functionality to additional processing steps.

One such analysis tool that has already been developed

is a tool to classify different regions of a galaxy according

to classical emission line ratios.

As discussed by, e.g. Baldwin et al. (1981) (BPT

hereafter), the nebular permitted (Hα, Hβ) and forbid-

den emission line transitions (e.g., [O ii] λ3727, [O iii]

λ5008, [N ii] λ6585) are commonly strong and easy to de-

tect in galaxies that contain significant quantities of gas.

Since these transitions have different ionization poten-

tials, their relative strengths encode information about

both the metallicity of the gas and the hardness of the

radiation field emitted by the source of ionizing photons.

As such, easily-measured line ratios such as [O iii]/Hβ

and [N ii]/Hα can be used to discriminate between H ii

regions produced by thermal (i.e., star formation) and

non-thermal processes (e.g., shocks and active galactic

nuclei).

Marvin’s BPT tool returns masks in which individual

spaxels have been classified as “star-forming”, “Seyfert”

or “LINER-like” line ratios, such that a user can then

plot diagnostic diagrams, categorial maps of the clas-

sifications, or maps filtered by these classifications (for

instance, plotting the Hα flux for star-forming regions).
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Figure 6. An example query on the MaNGA data set. The top describes the query in natural language syntax, i.e., how a user
would describe it. The red panel shows the full SQL syntax needed to perform the same query on the MaNGA database. The
green panel shows the corresponding pseudo-natural language syntax, and its use in Marvin.

Such analyses have revealed significant clues as to the

physical origins of the ionizing photons, indicating for

example that in many sources observed to have LINER-

like line ratios in SDSS single-fiber spectroscopy the gas

is spatially extended and likely ionized by hot evolved

stars rather than a central AGN (Belfiore et al. 2016).

3.5. Contributed Code

While the core of SDSS data releases centers around

its base projects’ science deliverables, smaller teams

frequently contribute added value to its core deliver-

ables with additional science products. These value-

added data products or catalogs (VACS) are derived

data products based on the core deliverables that are

vetted, hosted, and released by SDSS in order to max-

imize the impact of SDSS data sets. To increase the

visibility of MaNGA VACs, Marvin has hooks to allow

users to contribute small pieces of code that plug their

VACs into the overall system, immediately connecting

their VAC into the larger suite of Marvin Tools and

MaNGA Data Products. Each contributed code piece

is well-documented, adheres to the overall standards set

by SDSS, and contains the proper software credit for the

user.

The core design principles of Marvin are to perform

most of the legwork for the users, making access as easy

as possible, while allowing users to contribute their own

code to help expand Marvin’s functionalities. For VACs,

contributors create a new class defining their VAC based

on a pre-defined base class which provides unique target

identifiers and automatic file retrieval methods needed

to extract specific data from files. Contributors sim-

ply define the name of their VAC, the unique file path

parameters, and a single method returning the data con-

tent. Contributors do not need to implement access

to the core data products, which is already handled by

Marvin.

More generally, the Marvin code is structured to ease
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(a) Matplotlib scatter plot for results with less than 1000 points.

(b) Matplotlib hexbin plot for results with between 1000-500,000
points.

(c) Matplotlib scatter density plot using https://github.com/
astrofrog/mpl-scatter-density for results with more than
500,000 points.

Figure 7. Scatter plotting capability from the Marvin
Results Tool. Depending on the number of results, Marvin
plots using a straight scatter plot, a hex-binned density dis-
tribution, or a scatter density map. Note: this figure uses
the same scatter plot in each subfigure to illustrate the differ-
ences in plotting styles rather than separate plots with more
accurate result counts.

contributions of drop-in utility or analysis methods that

add functionality to Marvin. These functions can ma-

nipulate or extract data from existing Marvin Tools, per-

form some analysis, or return a plot or data. The BPT

tool from the previous section serves as an example of

such a drop-in function that easily wraps the existing

Tools. Users are encouraged to contribute Marvin-based

analysis code back into the project so that others can

take advantage of their efforts.

4. MARVIN WEB

The web, or browser-based information gathering, is

often the first entry point for any user new to a field.

Poor web design (e.g. cluttered content, complex in-

terfaces) can quickly discourage users from interacting

with the delivered content. Marvin provides a web front-

end that aims to be as intuitive and streamlined as pos-

sible, with a focus on quick visual exploration of the

MaNGA data set, leaving more rigorous analysis to the

programmatic Marvin Tools or the user’s own scripts.

This minimal but interactive interface encourages users

to quickly engage with MaNGA data and, when ready,

seamlessly transition into more advanced environments.

Our web component is built using Flask, a Python-

based, lightweight, micro web-framework. Flask allows

for quick deployment of a web application with minimal

effort. It contains its own built-in web server for small

scale deployment, or can easily be integrated into more

advanced web-servers for production deployment. It has

built-in hooks for modularity and extensibility, and em-

ploys a templating system for writing front-end code like

HTML or Javascript in a modular way.

Marvin Web currently provides the following features:

• a Galaxy page, for detailed information and inter-

action with individual galaxies in MaNGA

• a Query page, for searching the MaNGA data set

using the simplified SQL pseudo-natural language

syntax described in Section 3.3.1

• a Plate page, containing all MaNGA galaxies ob-

served on a given SDSS plate

• an Image Roulette page that randomly samples

images of MaNGA galaxies, useful for browsing

the wealth of variety in the 10,000 galaxy sample

The Galaxy page (see Figure 8) provides dynamic, in-

teractive, point-and-click views of individual galaxies to

explore the output from the MaNGA DRP and DAP,

namely, spectra and map properties, along with galaxy

information from the NSA catalog. In contrast to the

prototype, this page is completely interactive, with more

galaxy metadata. These interactive features are de-

ployed using a variety of third-party Javascript libraries:

https://github.com/astrofrog/mpl-scatter-density
https://github.com/astrofrog/mpl-scatter-density
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Dygraphs for the spectral viewer, Highcharts for the

map and scatter plot viewers, OpenLayers for the in-

teractive optical image display, and D3 for the box-and-

whisker plots.

The Query page (Figure 9) provides the entry point

for quickly searching through the MaNGA dataset. In

contrast to the prototype, this page provides search ca-

pability for all properties in the DRP and DAP summary

files, with minimal impact on the design interface of the

page. The search capability will soon be extended to

the entire suite of MaNGA parameters. It is built on

top of the Marvin Query tool, providing a single simple

interface, for both the web and tool, that one needs to

become familiar with. In addition, the query system can

be easily extended for both web and client users at the

same time. Performing a query produces a navigable

table of results, with each row linking to the individual

galaxy. One can optionally switch to a postage stamp

view of all galaxies returned in the query subset.

While the input structure to the Marvin Query tool

is simplified greatly from the underlying full SQL state-

ment, the syntax can still be complicated to learn. Some

users may find it cumbersome, delivering confusion in-

stead of intuition. The Query page also includes an in-

terface for dynamically constructing a SQL statement in

a guided manner (see Figure 10). This interface provides

a series of parameter drop-downs which, in conjunction

with operators and values, can be used to build condi-

tions, and combined together with boolean operands. A

web video tutorial3 is available highlighting general us-

age, with more information available in the online doc-

umentation.

Because the web components are built on top of the

Tools, all the galaxy and query features can be mapped

to an underlying equivalent Marvin tool command. This

allows users to recreate what they experience in the Web

with the Marvin Tools locally on their system. On each

page we provide feature-specific code snippets that indi-

cate the equivalent commands for viewing galaxy maps

or spaxels, or querying the dataset. These snippets can

be copied and pasted directly into the local iPython ter-

minal.

For the back-end, Flask provides the basis for the

framework as well. It can be run in a “debug” mode

for rapid development or be served in a production en-

vironment. For production deployment, Marvin is run

using the NGINX web-server, with uWSGI acting as the

gateway interface between the Flask web-app and NG-

INX. Flask provides the basic framework on which the

Marvin API and the web-facing front-end is built. Our

3 https://www.sdss.org/dr15/manga/manga-tutorials/
marvin-tutorial/marvin-web/

back-end Flask routes are built using the same suite of

Marvin Tools available to the user on the client side.

In this manner, we can build a single tool for the user

while also using it to provide the same content directly

over the API or integrated into the front-end as a web

features. The server-side Marvin uses the same MMA

system to determine data location, pulling first from a

local database hosted at Utah, then from the files lo-

cated on the Science Archive Server (SAS) filesystem.

5. MARVIN BACK-END

5.1. REST-like API

To provide remote data access, Marvin employs a

REST-like web API, which defines a set of rules for

remote data acquisition through HTTP request meth-

ods (i.e., GET and POST). The API handles all requests

and responses between the user and server. There are

three ways to interface with the Marvin API: directly

through HTTP (low level), with a Python helper class

(mid level), or via Marvin Tools (high level) (see Fig-

ure 11).

The lowest access level provides direct HTTP access

to the API routes. Our API routes use the underlying

Marvin Tools and provide remote access to the most

commonly desired features of the MaNGA data set. A

list of the available routes, and what data they provide,

can be found in the online documentation4.

While an experienced user can directly use the HTTP

routes to retrieve data, not everyone is familiar with

how to handle HTTP requests and responses. The

middle layer wraps the direct API calls into a Python

Interaction class. The Interaction class utilizes the

requests package to handle GET/POST exception han-

dling, set default request parameters, check the re-

sponse, and provide convenience methods for parsing

return data into Python data-types.

At the highest level, the Interaction class is built

into the core Marvin Tools (and any Tools customized

from them), providing remote access ability to all Tools.

Marvin contains a lookup dictionary for resolving API

URL shortcuts into their full route names. This dic-

tionary allows each Tool to understand its required re-

mote call and provides robustness against server-side

API route changes. In this access level, the user takes

a hands-off approach to API requests. The Tool de-

termines when to access data locally or remotely. If

remote data access is required, it performs the API re-

quest without user input and shapes the data properly

upon receiving the response. When using the API, the

Tools employ a lazy-loading approach to remote data to

4 https://sdss-marvin.readthedocs.io/en/stable/api/web.
html

https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/marvin-web/
https://sdss-marvin.readthedocs.io/en/stable/api/web.html
https://sdss-marvin.readthedocs.io/en/stable/api/web.html
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Figure 8. The Marvin web Galaxy page, highlighting the interactive point-and-click feature. Users can dynamically interact
with individual galaxy spaxels and maps. Clicking anywhere within the optical image, or the DAP maps, retrieves the spectrum
at that spaxel location. The interactive spectrum displays both the flux (green) and model fit (blue) for the selected spaxel.
Marvin displays three maps by default: the Hα emission line flux, the stellar velocity and D4000 spectral index. Dropdown
menus provide additional maps to display or maps of different binning schemes.

minimize server load. The API returns the minimum

amount of information needed to satisfy the user’s re-

quest. Additional information requested through the

Tools is acquired through additional API calls.

5.2. Database

All MaNGA data is stored in a PostgreSQL relational

database. The database is the bedrock data storage

component of Marvin. It provides the basis for interac-

tive visualization in the web, spatially-resolved queries,

and selective data retrieval. For each release of MaNGA,

we store the metadata and raw spectral output from the

DRP and DAP pipelines. We currently store data from

MaNGA internal data releases, referred to as MaNGA

Product Launches, MPLs, 4-7, and the public data re-

lease DR15. The current size of the MaNGA database is

9 TB for 20153 galaxies across MPLs 4-7. The database

contains three main schema: mangadatadb which con-
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Figure 9. The Marvin web Query page, highlighting an example query using the simplified Query tool syntax, presents the
results in a navigable table. The basic Query page components consist of a simple text box for inputting a search filter, and a
drop-down menu of a subset of available parameters to return in the query. Additionally there is a button to construct a search
filter in a guided fashion.

Figure 10. A guided SQL builder for constructing complex queries on the Marvin web Query page. This query maps to the
search “return all galaxies with a redshift less than 0.1, a stellar mass greater than 109 solar masses, and at least one spaxel
with Hα flux greater than 25 10−17erg/cm2 s spaxel”.
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Figure 11. The three layers of the Marvin API highlighting the process of a remote Tool call. The top level (left) sits the
Marvin Tools and is the main entry point for users. The middle layer (middle) provides a wrapper class for handling request
logistics. The low layer (right) performs the standard HTTP requests. Users naturally start at the top-most layer, but may use
any layer for performing remote requests.
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tains the DRP output; mangadapdb which contains the

DAP output; and mangasampledb which contains infor-

mation on MaNGA targets and the NSA catalog. In

addition, there is an auxiliary schema for miscellaneous

data and a history schema which stores user and query

metrics. The main schema designs can be found in the

online documentation5.

5.3. SAS Filesystem

The SAS filesystem is the data warehouse for SDSS.

Hosted at the University of Utah and mirrored at the

National Energy Research Scientific Computing Center,

the SAS includes all of the raw and reduced SDSS data,

including the intermediate and final data products from

each survey’s data reduction or analysis pipelines and

value-added catalogs (∼1000 TB). The SAS serves both

the collaboration (through a private gateway) and the

public. The filesystem structure is organized hierarchi-

cally by survey to facilitate easy navigation. Both the

software and data products are under version control,

and the versions are explicitly included in the file paths.

The explicit versioning in the file paths allows for consis-

tent access and rapid deployment for internal and public

data releases. All software and data products are frozen

on a schedule set by the SDSS collaboration and tagged

to maintain a self-consistent, reliable, and robust data

system. These immutable tags and frozen reduction ver-

sions ensure the reproducibility of high-quality products.

By developing Marvin to work on top of this structure,

we can consistently deliver an archive-quality data prod-

uct to the community, mitigating concerns about under-

lying intermittent data changes.

5.4. Authentication and Access

Marvin provides access to MaNGA data for both the

SDSS collaboration and the public astronomy commu-

nity. The SDSS collaboration provides data access rights

for a proprietary period, so Marvin has collaboration-

only and public access modes. The collaboration-only

access mode provide access to the private gateway for

both internal data releases and public data releases.

In contrast, the public access mode provides access to

the public gateway for only the public data releases.

Approved SDSS collaboration members must authen-

ticate with Marvin before access is granted to the pri-

vate gateway. For the Web, Marvin uses the Flask ex-

tension Flask-Login, which uses session-based cookies

to handle all login and authentication. For the API,

Marvin uses Flask-JWT-Extended, which authenticates

via JSON Web Tokens. After supplying their credentials

5 https://sdss-marvin.readthedocs.io/en/stable/api/db.
html

in a Unix standard netrc file, the user is allowed to lo-

gin and receive a valid token. The token is inserted into

every API request and authenticated on the back-end.

6. WORKFLOW

Figure 12 highlights an example workflow going

through the stages of Sample Selection, Data Access,

Data Interaction, Data Linkage, and Interpretation.

Prior to Marvin, the workflow for an analysis of MaNGA

data, as indicated in the middle panel, would typi-

cally consist of a user selecting galaxies based on global

galaxy parameters, downloading all the data files for

those galaxies locally, then using existing tools (e.g., As-

tropy) to load the data into generic (i.e., not MaNGA-

specific) FITS objects in a programming environment.

To retrieve all relevant information for a target, the user

must load, access, and construct the spatial links be-

tween data in separate files. Finally, users must write

their own custom, often reinvented, analysis tools to vi-

sualize and interpret the data for their science.

The Marvin framework streamlines the existing work-

flow as shown in the rightmost panel of Figure 12.

Marvin enhances existing workflow steps (shown as red

text) and obviates workflow steps that require logisti-

cal overhead effort for data handling (shown in gray

dashed boxes). While the methods involved in the exist-

ing workflow are functional, they contain the following

problems, which Marvin redresses:

• The first four tasks in the workflow, i.e. selecting

a target sample, downloading and linking FITS

files, are easy to describe but require moderate

effort to implement, which is compounded when

iterating over selection criteria during exploratory

analyses. In contrast, Marvin provides functional-

ity to handle these ubiquitous tasks. In particu-

lar, Marvin’s front-end web interface enables rapid

preliminary visual exploration without download-

ing data or writing code.

• The selection of galaxies to analyze can only

be done on global quantities, not the maps nor

the spectra. In contrast, search capabilities in

Marvin are far more powerful, flexible, and de-

tailed. Marvin can perform complex queries on the

maps and spectra (e.g., search for galaxies with a

high star formation rate surface density near the

center).

• Unnecessary data is inevitably downloaded, since

only entire files (containing the entire data cube

or hundreds of maps) are available for download,

increasing bandwidth and disk resources. In con-

trast, Marvin adds substructure to the data that

downloads only the explicitly requested data (i.e.,

https://sdss-marvin.readthedocs.io/en/stable/api/db.html
https://sdss-marvin.readthedocs.io/en/stable/api/db.html
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a single map or spectrum), minimizing bandwidth

and local disk use, if desired.

• Individuals must build their own tools to manage

the download of data to the local server, which

can be complicated to manage efficiently without

substantial effort. Additionally individuals must

define a different set of tools for accessing remote

data versus local files. These logistical issues pose

a significant barrier to new users. In contrast,

Marvin comes with such tools that automatically

avoid multiple downloads of the same data. The

same set of Marvin tools can be used in differ-

ent hardware locations (i.e., with either local or

remote access to the data) with only a single con-

figuration change.

• To compare map quantities and spectra, individu-

als must build their own tools to link spatial loca-

tions in the maps to spectra. In contrast, most

of the detailed data access tools are built into

Marvin, and internally perform all necessary link-

age in a standardized fashion.

• Visualizing the data is cumbersome and time-

consuming as it requires all data be local, and re-

lies on manual plotting scripts or the repetitive use

of third-party tools. In contrast, Marvin’s web in-

terface and Python package provide visualization

tools for fast iteration and exploratory analyses.

• Individuals’ analysis code remains siloed and is not

reused. In contrast, Marvin includes some analysis

code and serves as a foundation and repository for

shared analysis code, which minimizes code dupli-

cation across researchers and projects.

Marvin is structured as a complete ecosystem such

that the entire workflow can be performed in a single

Python environment or program, but its modular design

allows many aspects of Marvin to be used independently

of each other. Data can be accessed either through

Marvin’s provided Tools, or downloaded using Marvin

but imported and analyzed with other tools. This flex-

ibility makes Marvin a useful tool to a broad range of

astronomers. See Appendix A.3 for an example Marvin

workflow that examines the metallicities of star-forming

spaxels in MaNGA galaxies.

7. SUSTAINABILITY

Sustainability is an important part of any software’s

longevity and usefulness within the community. Good

software is well-documented, easy to maintain, and

guided by productive interactions between its users and

developers. Software development is often critically mis-

understood to occur in an isolated environment and

in static snapshots with little input from the commu-

nity of users. Successful software adoption and devel-

opment depends on easy installation, well-understood

code, an open and eager community, quick identifica-

tion of breaking changes through continuous testing, and

rapid patch updates through continuous deployment.

Below we highlight steps that we have taken to make

Marvin more sustainable in the long term.

7.1. Deployment

To streamline installation and reach as wide an audi-

ence as possible, we tag and deploy versions of Marvin

using the Python Package Index (PyPI)6. Packages on

PyPI are installed with the pip package, which simplifies

installation by handling the package dependencies. A

pip-installable package simplifies user installation han-

dling all software dependencies automatically. Installing

software packages with a large number of dependencies

can interfere with a users’ local environment. To resolve

this issue, we also provide full conda environment in-

stallations7. For users with the Anaconda distribution

of Python, these environments will install Marvin in a

self-contained virtual environment that does not affect

a users’ default environment.

7.2. Open Source Code

SDSS supports and encourages open source software

development for all its projects and advocates for a fully

transparent software cycle from development to release.

We have adopted the BSD 3-Clause open source soft-

ware license as it allows for the most complete freedom

of use. The Marvin code and its SDSS dependencies are

versioned using git and hosted in public Github repos-

itories. To promote consistency among the SDSS soft-

ware projects, SDSS encourages all members to adhere

to a common set of coding standards and practices8,

which we have adopted in the development of Marvin.

We additionally tag all versions of our software with a

trackable DOI and host it on Zenodo9.

7.3. Documentation

Software is only helpful if users understand how

to use it, which means providing thorough and well-

organized documentation. Marvin’s documentation is

structured hierarchically so that it completely covers all

of the public-facing code and yet remains easily search-

able. The documentation also contains worked exam-

6 https://pypi.org/

7 https://anaconda.org/sdss/sdss-marvin

8 https://sdss-python-template.readthedocs.io/en/
stable/standards.html

9 https://doi.org/10.5281/zenodo.596700

https://pypi.org/
https://anaconda.org/sdss/sdss-marvin
https://sdss-python-template.readthedocs.io/en/stable/standards.html
https://sdss-python-template.readthedocs.io/en/stable/standards.html
https://doi.org/10.5281/zenodo.596700
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Figure 12. Typical MaNGA workflow stages from sample selection through interpretation (left column) performed with existing
tools (middle column) and Marvin (right column). At each stage, Marvin either enhances the existing capabilities (highlighted
in red) or automatically handles tasks (gray boxes).

ples that highlight commonly used workflows to asso-

ciate scientifically-related functionality within the code

base.

Marvin’s documentation starts with the docstrings in

the code, which are included in all of the public-facing

code. Users can access the docstrings on Github to un-

derstand the documentation in the context of the code or

just simply and quickly view the docstrings while work-

ing in an interactive python terminal. The docstrings

also serve as the input for the API reference created by

the Sphinx package, which is the basis for web-based

documentation pages.

Marvin’s web-based documentation10 is hosted on

Read the Docs, which automatically generates the doc-

umentation web pages (using Sphinx) every time the

code in the “master” branch changes on Github. Using

Sphinx with Read the Docs ensures that the documenta-

tion is consistent between the code base and the online

documentation. This workflow also enables versioned

documentation that corresponds to the versions (tags)

of the code, including the data model. Versioned doc-

umentation is critical for understanding how the code

base has changed over time and its potential effects on

out-dated user code.

An important aspect of the usability of documentation

10 https://sdss-marvin.readthedocs.io

is how quickly users can find answers to their questions.

Read the Docs features a search bar that can be used

to find keywords within all of the online documenta-

tion. We also have written documentation pages to help

guide users through the code and provide paths for dig-

ging deeper into the documentation in useful directions.

The documentation contains use-oriented pages for the

major classes and other key aspects, such as installa-

tion. At a higher level, there are various tutorials on

topics like first steps, querying, and plotting. For more

complete science examples, there are Jupyter notebooks

that are centered around addressing actual science ques-

tions. Finally, there is a cheat sheet that is a one-page

quick reference guide to help users remember syntax and

function names.

The documentation has benefited tremendously from

user feedback within the SDSS community received dur-

ing in-person workshops, in remote tutorial sessions, and

via submitted Github Issues. Actual user feedback is in-

valuable, since the developers have a very different per-

spective that sometimes blinds them to gaps in the doc-

umentation.

7.4. Error Logging

To better track when errors occur as users utilize

Marvin in their scientific workflows, all errors are cat-

aloged using Sentry, an error-logging client. Rather

than solely relying on users to report errors, Sentry is

an open-source error tracking client that helps develop-

https://sdss-marvin.readthedocs.io
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ers monitor and fix crashes in real time. The Sentry

client easily integrates into many existing frameworks,

including Python and Javascript. Upon an error within

Marvin, Sentry will catalog the error and full traceback

along with the relevant software, user, and system infor-

mation. Sentry allows us to track when and how often

errors occur, automatically create Github Issues, and

generally boost the efficiency at which Marvin failure

modes are identified.

7.5. Testing

Testing is an integral part of developing and main-

taining any software package. Simply put, tests confirm

that code executes as intended; however, the benefits

extend beyond the confidence inspired by passing tests.

Testing speeds up development by enabling automated

checking for regression bugs, where a code change unex-

pectedly breaks existing functionality, so developers im-

mediately know when a breaking change is introduced.

Testing strongly encourages other good software carpen-

try practices, such as writing short functions that only

do one thing. Tests significantly lower the risk of refac-

toring code because they ensure consistent behavior of

the code after refactor. Generally speaking, tests reduce

the effort required to maintain a code base.

7.5.1. Python Testing

One of our goals is to have complete test coverage of

the Python code since it underlies all aspects of Marvin.

Marvin uses the pytest package because it requires less

boilerplate code relative to the Python standard library

package unittest; its multi-level fixtures; the ability

to parametrize fixtures; its monkeypatching and mock-

ing options to simulate environments or function calls;

and its quick iteration and inspection of test failures.

These features are particularly helpful for ensuring con-

sistent behavior across data releases, analysis and bin-

ning types, and data access modes.

7.5.2. Continuous Integration with Travis-CI

Software teams are often developing in parallel with

one another, and operating on multiple threads at the

same time. This can lead to conflicts and lost time when

merging threads back together or when modified or new

code introduces breaking changes. Continuous integra-

tion allows a code base to test code changes in a con-

tinuous fashion in real time. Marvin uses the Travis-CI

system for automated testing. Travis-CI is free for all

projects hosted on Github. Once a project’s repository

is connected to Travis, any commit to the code triggers

Travis to set up a virtual environment and run the full

test suite. Travis can be configured to run the test suite

under different environment conditions, such as different

versions of the programming language.

7.5.3. Code Coverage with Coveralls

Code coverage is a method for determining how much

of the code is covered by the tests. As the tests run, the

lines of code touched by the tests are compared against

the total number of lines, and a coverage report is pre-

pared for every code file, and the software package as a

whole. Coveralls is an online interface for visualizing and

tracking the code coverage over time, designed to ensure

the test coverage of the code is always increasing over

time. It can be connected into existing CI services for

real time updates. After Travis successfully completes

a test run, the coverage output is pushed to Coveralls,

where developers can see the progress over time, and

examine individual files for lines of code untouched by

tests.

7.5.4. Framework Testing

Flask comes with a test server designed to simulate

running a real web server. It exposes the web and API

routes so that tests can be properly written against

them. All back-end web and API routes are fully tested

for general compliance and for the desired behavioral

outputs given specific users’ inputs. To ensure the web

front-end behaves as expected after code changes, we

use Selenium combined with the Pytest-Flask exten-

sion to simulate a user experience of navigating Marvin

web pages and interacting with any element on the web

page. These tests can be run locally or hooked into a

CI service. BrowserStack is a service to run web front-

end tests within different versions of multiple browsers,

on any operating system, including tablets and mobile

devices. We have connected Travis and BrowserStack

together, so the web front-end tests Travis performs are

sent to be run on the BrowserStack servers.

8. SUMMARY AND FUTURE POTENTIAL

We have presented the first public release of the

Marvin software, a suite of tools for interacting with

the SDSS-IV MaNGA data set. We have described

the core components of Marvin in Section 2, the main

one being the Multi-Modal Data Access System (Sec-

tion 2.3). The MMA system is a novel method of de-

livering MaNGA data to the user in an agnostic man-

ner, seamlessly switching between local files and a re-

mote database. This allows the user to focus more on

their scientific analysis with the data and less on the

overheads of data access and correct data integration

into existing scripts. The MMA is tightly integrated

into a suite of Python Tools (Section 3) designed to

streamline the users’ interaction with the core MaNGA

data deliverables, and provide remote querying (Sec-

tion 3.3) against the entire MaNGA data set from within

a Python terminal, eliminating the need to download the
full sample. Marvin’s Query system utilizes a pseudo-
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natural language syntax parser (Section 3.3.1) to sim-

plify the writing of SQL queries down to the most mean-

ingful component, namely science-pertinent condition-

als. Marvin provides a web front-end (Section 4), al-

lowing for quick visual exploration of the MaNGA data

set, presented in an intuitive, clean manner that lowers

the barrier of entry for new users into MaNGA data.

The Marvin team of developers is fully committed to

an open-source model of development and has adopted

modern best practices to ensure long-term software sus-

tainability (Section 7). We invite members of the com-

munity to adopt the Marvin software in their workflows

for scientific analysis of MaNGA data, to provide in-

sightful feedback and report issues, or to contribute new

features and functionality.

Marvin has potential in the future to grow to serve

not only the existing community of MaNGA users, but

also the overall astronomy community. In Section 6 we

described a typical workflow with the MaNGA data set.

However, this workflow is not really unique to MaNGA.

Replace the MaNGA data with any other astronomical

data set and the workflow essentially remains the same.

In the same way that Marvin addresses the inherent

issues with the MaNGA workflow, a generalization of

Marvin has the potential to address the same issues for

other astronomy workflows. The most natural extension

of Marvin is to other surveys producing IFU-based data

products, but the design of Marvin and the Brain inher-

ently make them applicable to generic data sets within

astronomy, as well as other scientific disciplines.

8.1. The Brain

Astronomy has many logistical challenges and over-

heads that are often overcome by reinventing existing

tools. There is no suite of tools providing the out-of-

the-box capabilities to address these issues. Many of

the underlying Python packages (e.g., requests, Flask,

SQLAlchemy) that are often used to solve these chal-

lenges are difficult to learn for newcomers and do not

provide a usable solution by themselves. A product

is needed that combines these packages in a way that

addresses the needs of large scientific data sets with

complex interrelationships. The Brain is the beginning

of this product. By further abstracting out Marvin’s

building blocks into the Brain, the Brain will become a

complete framework for a data distribution system, pro-

viding seamless connections between web components,

APIs, and programmatic Python tools. Furthermore,

as the backbone of Marvin, this abstraction will provide

a more robust, sustainable framework for Marvin that

will make it even easier to extend to other data sets.

8.2. As a Template

Marvin serves as an example of a data distribution sys-

tem but currently is quite specific to the MaNGA data

set with nuggets of generalization scattered throughout

it. With the proper abstraction of the Brain, it will

provide a customizable, “Blank Slate”, template prod-

uct to handle more complex data sets and become a

reusable toolkit for other projects within astronomy and

other disciplines. This product, when given a file and

a database presentation of that file, will provide base

classes to provide a connected environment surrounding

that file, with local and remote access, programmatic

tools, a remote query system, and a web front-end to

the data with a minimum display view. Creating a func-

tional application beyond the “Blank Slate” would sim-

ply involve building a new Python package based off the

Brain; subclassing its base classes; and adding function-

ality and details necessary for their particular applica-

tion. This template could be used for rapid deployment

and distribution of data sets for any research group rang-

ing in size from small local teams to large collaborations

or surveys.

8.3. SciServer Integration

While Marvin works either as a local analysis package,

or for browser-based visual exploration, it still requires

local package installation for local analysis, and focuses

on single user software usage. Local package installa-

tion can often interfere with custom user environments,

while single user usage and analysis limits the ability for

collaborative science. However, an advantage of Marvin

is that it can be deployed either as a client service, or in

a server mode distributing content, into existing archive

systems or in different environments. To enable collab-

orative and remote scientific analysis, we are in the pro-

cess of integrating Marvin into the SciServer platform.

SciServer 11 is a fully integrated cyber-infrastructure

system encompassing related, integrated, tools and ser-

vices to enable researchers to cope with, and collaborate

around, scientific big data.

SciServer integration will enable users to utilize the

access and analysis capabilities of Marvin without hav-

ing a local installation. Collaborative science will be

enabled through remote, persistent, Jupyter-notebooks

that can be shared amongst multiple users. Analysis can

be offloaded to the SciServer system removing the need

for any data to be hosted locally. Additionally, through

the SciServer Compute system, the Marvin Query tool

will be expanded to include asynchronous query capa-

bility, allowing intensive queries to be submitted as jobs,

similar to the existing SDSS CasJobs system, freeing up

the user’s local terminal.

11 http://www.sciserver.org/

http://www.sciserver.org/
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8.4. Community Driven Development

Our goal with Marvin was to make it as easy as pos-

sible for users to interact with MaNGA data. In the

pursuit of that goal, we have developed a software frame-

work that is quite extensible, making it extremely easy

to contribute tools, features, and functions that enhance

Marvin’s capabilities. Marvin takes care of all logistical

overhead of interacting with the data, as well as defin-

ing all core tools that provide most of the desired in-

formation. We realize, however, the greatest usefulness

of Marvin are the things not yet done. While the de-

velopers have provided the initial scope of Marvin the

community can greatly expand its usefulness through

code contributions. Through the open source nature of

Marvin and the ability to wrap the existing suite of tools,

the community can easily provide new functionality to

aid in the overall scientific usefulness of the MaNGA

data set for people at any stage of their scientific career.

8.5. User Metrics and Broader Impact

To properly understand the benefit of software within

the community, and to better aid in future software

funding, it is of paramount importance that software

developers play a more active role in assessing the im-

pact and usefulness of their software within the com-

munity. As software itself plays an often overlooked

but important role in the pursuit of scientific discov-

ery, developers not only have a role to provide to the

community but also to better understand their users for

future developments that aid in that discovery. We aim

to address exactly these issues. Marvin has been op-

erating in Beta for over a year now. In this time we

have been collecting anonymous user statistics and met-

rics (e.g. web/API route access or query submissions),

and obtaining feedback on use cases for users within the

collaboration. With this data, plus the data we will col-

lect with the public release of Marvin, we have a good

opportunity to assess the impact of Marvin on the com-

munity of users. We hope to provide feedback on the

current usage statistics for Marvin, some general exam-

ples of scientific workflows utilizing Marvin, as well as

lessons learned throughout the development of Marvin.
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org/anaconda/python), Astropy (Astropy Collab-

oration et al. 2013; The Astropy Collaboration

et al. 2018, http://www.astropy.org), Boot-

strap (https://getbootstrap.com), Browser-

stack (https://www.browserstack.com) brain

(https://github.com/sdss/marvin_brain), Coveralls

(https://coveralls.io/), D3 (https://d3js.org),

DyGraphs (http://dygraphs.com), FITS (Pence et al.

2010), Flask (http://flask.pocoo.org), Flask-Login

(https://flask-login.readthedocs.io), Flask-

JWT-Extended (https://flask-jwt-extended.

readthedocs.io), fuzzywuzzy (https://github.com/

seatgeek/fuzzywuzzy), git (https://git-scm.com),

Highcharts (https://www.highcharts.com),

Jinja2 (http://jinja.pocoo.org/docs), JQuery

(https://jquery.com), Jupyter (Kluyver et al.

2016, http://jupyter.org), Matplotlib (Hunter

2007, https://doi.org/10.5281/zenodo.61948),

networkx (https://networkx.github.io), Nginx

(https://www.nginx.com), OpenLayers (https://

openlayers.org), pip (https://pypi.org/project/

pip), Postgres (https://www.postgresql.org),
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pytest (https://docs.pytest.org/), Read the

Docs (https://readthedocs.org/), requests

(http://docs.python-requests.org), rsync

(https://rsync.samba.org), sdss-access (https:

//doi.org/10.5281/zenodo.1410704), sdss-tree

(https://doi.org/10.5281/zenodo.1410706), Sele-

nium (https://www.seleniumhq.org), Sphinx (http:

//www.sphinx-doc.org), SQLAlchemy (https://www.

sqlalchemy.org), sqlalchemy-boolean-search (https:

//github.com/sdss/sqlalchemy-boolean-search),

Travis-CI (https://travis-ci.org/), uwsgi

(https://uwsgi-docs.readthedocs.io)
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APPENDIX

A. EXAMPLE CODE

A.1. Illustration of the Marvin MMA

This illustrates the access of a Marvin Cube object, utilizing the Marvin MMA, in the Python programming language.

After the initial import of the Marvin Cube tool, a DRP cube is accessible by explicitly providing as input either the

full path to a local file or by an object ID. When explicitly specifying a filename (first example), Marvin assumes a

mode=local and a data origin=file. When specifying an object ID, Marvin will first attempt to open the object

locally from a local database or from a file if one is found (second example). If an object cannot be found locally (third

example), Marvin switches to mode=remote and data origin=api to retrieve the object from a remote location.

In each of the cases, the output is the same, an instance of the Marvin Cube which wraps the specified DRP datacube.

from marvin.tools.cube import Cube
# INFO: No release version set. Setting default to MPL -6

# access locally by filename
c = Cube("/Users/Brian/manga/redux/v2_3_1 /8485/ stack/manga -8485 -1901 - LOGCUBE.fits.gz")
# <Marvin Cube (plateifu ="8485 -1901" , mode=" local", data_origin ="file")>

# access locally by id , will either use a database
c = Cube("8485 -1901")
# <Marvin Cube (plateifu ="8485 -1901" , mode=" local", data_origin ="db")>
# ...or a file
# <Marvin Cube (plateifu ="8485 -1901" , mode=" local", data_origin ="file")>
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http://www.sphinx-doc.org
http://www.sphinx-doc.org
https://www.sqlalchemy.org
https://www.sqlalchemy.org
https://github.com/sdss/sqlalchemy-boolean-search
https://github.com/sdss/sqlalchemy-boolean-search
https://travis-ci.org/
https://uwsgi-docs.readthedocs.io
https://www.nngroup.com/articles/law-of-bandwidth
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Figure A1. Gas-phase metallicity maps for three galaxies (7960-3704, 8466-9102, and 8552-12702) with only star-forming spaxels
shown.

# access remotely when no local version found
c = Cube("8485 -1902")
# WARNING: local mode failed. Trying remote now.
# <Marvin Cube (plateifu ="8485 -1902" , mode=" remote", data_origin ="api")>

A.2. Map Plotting

The following code was used to produce the right panel of Figure 1, which a 2×2 multi-panel plot of Hα flux, log([N ii]

λ6585 / Hα) flux, stellar velocity, and stellar velocity dispersion corrected for instrumental broadening. This snippet

illustrates remote data access for retrieving the maps, map arithmetic and applying logarithms, and the simple but

customizable plotting method for Maps.

import matplotlib.pyplot as plt
import numpy as np

from marvin.tools import Maps

maps = Maps("7977 -12705")

halpha = maps.emline_gflux_ha_6564
nii_ha = np.log10(maps.emline_gflux_nii_6585 / halpha)
stvel = maps.stellar_vel
stsig = maps.stellar_sigma
stsig_corr = stsig.inst_sigma_correction ()

fig , axes = plt.subplots(nrows=2, ncols=2, figsize =(12, 11))
halpha.plot(fig=fig , ax=axes[0, 0])
nii_ha.plot(fig=fig , ax=axes[0, 1], title="log([NII ]6585 / H-alpha)", snr_min=None)
stvel.plot(fig=fig , ax=axes[1, 0])
stsig_corr.plot(fig=fig , ax=axes[1, 1])

A.3. Metallicity Science Use Case

The following code computes and plots gas-phase metallicity maps (Figure A1) and gradients (Figure A2) for star-

forming spaxels only. The code selects galaxies based on global parameters using a Marvin query. It then generates

masks to select the star-forming spaxels using Marvin’s BPT tool (see Section 3.4). Finally it takes advantage of

Marvin’s map arithmetic to compute metallicities.

from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

from marvin.tools.query import Query
import marvin.utils.plot.map as mapplot

# Define query and run it
searchfilter = ("nsa.sersic_logmass >= 9 and "

"nsa.sersic_logmass <= 9.1 and "
"nsa.elpetro_mag_g_r < 0.3")
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Figure A2. Radial gas-phase metallicity gradients (in units of effective radius Reff) for three galaxies (7960-3704, 8466-9102,
and 8552-12702) color-coded by elliptical azimuthal angle with only star-forming spaxels shown.

query = Query(searchfilter=searchfilter , limit =3)
results = query.run()

# Convert query results into a list of Marvin data product objects
results.convertToTool("maps")
galaxies = results.objects

metallicity = []
for it in galaxies:

# Lazy -load [NII] and Halpha maps for each galaxy
nii = it.emline_gflux_nii_6585
halpha = it.emline_gflux_ha_6564

# Compute metallicity , 12+log(O/H), using Eq. 1 from Pettini & Pagel (2004)
N2 = np.log10(nii / halpha)
oh = 8.90 + 0.57 * N2
metallicity.append(oh)

# Create BPT masks for each galaxy
bpt_masks = [it.get_bpt(return_figure=False , show_plot=False) for it in galaxies]

# Default bad data labels for MANGA_DAPPIXMASK
labels_bad = ["NOCOV", "UNRELIABLE", "DONOTUSE"]

# Apply BPT cut to select star -forming spaxels and mask out spaxels with bad data
masks = []
for metal , bpt in zip(metallicity , bpt_masks ):

# Mask out non -star -forming spaxels
starforming = bpt["sf"]["global"]
non_sf = ~starforming * metal.pixmask.labels_to_value("DONOTUSE")

# Merge the non -star -forming mask with the MANGA_DAPPIXMASK mask
masks.append(metal.mask | non_sf)

# Metallicity maps
fig , axes = plt.subplots(1, 3, figsize =(12, 3))
for ax , metal , mask , gal in zip(axes , metallicity , masks , galaxies ):

mapplot.plot(dapmap=metal , mask=mask , fig=fig , ax=ax,
cblabel="12+ log(O/H)", title=gal.plateifu)

fig.tight_layout ()

# Metallicity gradients
fig , axes = plt.subplots(1, 3, figsize =(12, 4))
plt.subplots_adjust(left =0.08, wspace =0.25)
for ax , metal , mask , gal in zip(axes , metallicity , masks , galaxies ):



26

mappable = ax.scatter(
gal.spx_ellcoo_r_re.value[~mask.astype(bool)],
metal.value[~mask.astype(bool)],
c=gal.spx_ellcoo_elliptical_azimuth.value[~mask.astype(bool)],
cmap=cm.hsv ,
vmin=0,
vmax =360,

)
ax.set_xlabel("R/R$_\mathrm{eff}$")
ax.set_ylabel("12+ log(O/H)")
ax.set_title(gal.plateifu)

cax = fig.add_axes ([0.91 , 0.105, 0.01, 0.78])
ticks = np.linspace(0, 360, 9)
cb = fig.colorbar(mappable , cax , ticks=ticks)
cb.set_label("elliptical azimuth angle")

B. Marvin TUTORIALS

In addition to installation instructions and detailed descriptions of the Marvin components, the online documentation

also contains tutorials12, including exercises on specific science cases and example Jupyter notebooks. The tutorials

are intended to familiarize the user with working with MaNGA data via Marvin. Each tutorial is designed as a series

of steps that build on top of one another and flow together to provide a layered learning experience, guiding the user

from a straightforward approach to more in-depth Marvin usage. These tutorials act as a good entry point for new

users diving into MaNGA data.

A few example Marvin tutorials are:

• Lean Tutorial13: an example project using Marvin from start to finish. It focuses on the calculation of the

[N ii]/Hα ratio for star-forming spaxels in galaxies with stellar mass log(M?) = 10–11 M�.

• Plotting Tutorial14: plotting examples of increasing complexity from a single map or spectrum to heavily cus-

tomized multi-panel map plots.

• Sample Selection Tutorial15: examples of how to search on the Primary, Secondary, and Color-Enhanced samples

that make up the MaNGA main sample (Yan et al. 2016; Wake et al. 2017).

Additional Marvin tutorials are available on the main SDSS DR15 site16. These tutorials are designed as simple

introductions to a few basic features of Marvin, with more advanced tutorials in the main Marvin documentation.

Tutorials are provided for both Marvin’s front-end web interface, as well as the Tools. The Tools tutorials focus on

accessing spectra from individual spaxels, plotting maps for derived analysis properties with custom masks, identifying

unique bins, and extracting a binned spectrum. For the web tutorials, there are two videos provided to highlight
some relevant features. One video focuses on exploring an individual MaNGA galaxy. It highlights basic information,

the dynamic interactive maps and spectral visualization, and detailed information from the NSA catalog. The second

video focuses on performing queries on the MaNGA dataset. It explains how to use the simplified SQL interface, the

guided SQL builder, and the table of search results. Both video-tutorials are subtitled in English.

12 https://sdss-marvin.readthedocs.io/en/stable/
tutorials.html

13 https://sdss-marvin.readthedocs.io/en/stable/
tutorials/lean-tutorial.html

14 https://sdss-marvin.readthedocs.io/en/stable/

tutorials/plotting-tutorial.html

15 https://sdss-marvin.readthedocs.io/en/stable/
tutorials/sample-selection.html

16 https://www.sdss.org/dr15/manga/manga-tutorials/
marvin-tutorial/

https://sdss-marvin.readthedocs.io/en/stable/tutorials.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/lean-tutorial.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/lean-tutorial.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/plotting-tutorial.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/plotting-tutorial.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/sample-selection.html
https://sdss-marvin.readthedocs.io/en/stable/tutorials/sample-selection.html
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/
https://www.sdss.org/dr15/manga/manga-tutorials/marvin-tutorial/
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