864 research outputs found

    A quorum sensing inspired algorithm for dynamic clustering

    Get PDF
    Quorum sensing is a decentralized biological process, through which a community of cells with no global awareness coordinate their functional behaviors based only on cell-medium interactions and local decisions. This paper draws inspiration from quorum sensing and colony competition to derive a new algorithm for data clustering. The algorithm treats each data as a single cell, and uses knowledge of local connectivity to cluster cells into multiple colonies simultaneously. It simulates auto-inducers secretion in quorum sensing to tune the influence radius for each cell. At the same time, sparsely distributed core cells spread their influences to form colonies, and interactions between colonies eventually determine each cell's identity. The algorithm has the flexibility to analyze both static and time-varying data, and its stability and convergence properties are established. The algorithm is tested on several applications, including both synthetic and real benchmarks datasets, alleles clustering, dynamic systems grouping and model identification. Although the algorithm is originally motivated by curiosity about biology-inspired computation, the results suggests that in parallel implementation it performs as well as state-of-the art methods on static data, while showing promising performance on time-varying data such as e.g. clustering robotic swarms.Boeing Compan

    A Quorum Sensing Inspired Algorithm for Dynamic Clustering

    Get PDF
    Quorum sensing is a decentralized biological process, through which a community of cells with no global awareness coordinate their functional behaviors based solely on cell-medium interactions and local decisions. This paper draws inspirations from quorum sensing and colony competition to derive a new algorithm for data clustering. The algorithm treats each data as a single cell, and uses knowledge of local connectivity to cluster cells into multiple colonies simultaneously. It simulates auto-inducers secretion in quorum sensing to tune the influence radius for each cell. At the same time, sparsely distributed core cells spread their influences to form colonies, and interactions between colonies eventually determine each cell's identity. The algorithm has the flexibility to analyze not only static but also time-varying data, which surpasses the capacity of many existing algorithms. Its stability and convergence properties are established. The algorithm is tested on several applications, including both synthetic and real benchmarks data sets, alleles clustering, community detection, image segmentation. In particular, the algorithm's distinctive capability to deal with time-varying data allows us to experiment it on novel applications such as robotic swarms grouping and switching model identification. We believe that the algorithm's promising performance would stimulate many more exciting applications

    Bridging adaptive estimation and control with modern machine learning : a quorum sensing inspired algorithm for dynamic clustering

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 89-92).Quorum sensing is a decentralized biological process, by which a community of bacterial cells with no global awareness can coordinate their functional behaviors based only on local decision and cell-medium interaction. This thesis draws inspiration from quorum sensing to study the data clustering problem, in both the time-invariant and the time-varying cases. Borrowing ideas from both adaptive estimation and control, and modern machine learning, we propose an algorithm to estimate an "influence radius" for each cell that represents a single data, which is similar to a kernel tuning process in classical machine learning. Then we utilize the knowledge of local connectivity and neighborhood to cluster data into multiple colonies simultaneously. The entire process consists of two steps: first, the algorithm spots sparsely distributed "core cells" and determines for each cell its influence radius; then, associated "influence molecules" are secreted from the core cells and diffuse into the whole environment. The density distribution in the environment eventually determines the colony associated with each cell. We integrate the two steps into a dynamic process, which gives the algorithm flexibility for problems with time-varying data, such as dynamic grouping of swarms of robots. Finally, we demonstrate the algorithm on several applications, including benchmarks dataset testing, alleles information matching, and dynamic system grouping and identication. We hope our algorithm can shed light on the idea that biological inspiration can help design computational algorithms, as it provides a natural bond bridging adaptive estimation and control with modern machine learning.by Feng Tan.S.M

    Other Buds in Membrane Computing

    Get PDF
    It is well-known the huge Marioā€™s contribution to the development of Membrane Computing. Many researchers may relate his name to the theory of complexity classes in P systems, the research of frontiers of the tractability or the application of Membrane Computing to model real-life situations as the Quorum Sensing System in Vibrio fischeri or the Bearded Vulture ecosystem. Beyond these research areas, in the last years Mario has presented many new research lines which can be considered as buds in the robust Membrane Computing tree. Many of them were the origin of new research branches, but some others are still waiting to be developed. This paper revisits some of these buds

    Swarm Synergy: A Silent Way of Forming Community

    Full text link
    In this paper, we introduce a novel swarm application, swarm synergy, where robots in a swarm intend to form communities. Each robot is considered to make independent decisions without any communication capability (silent agent). The proposed algorithm is based on parameters local to individual robots. Engaging scenarios are studied where the silent robots form communities without the preset conditions on the number of communities, community size, goal location of each community, and specific members in the community. Our approach allows silent robots to achieve this self-organized swarm behavior using only sensory inputs from the environment. The algorithm facilitates the formation of multiple swarm communities at arbitrary locations with unspecified goal locations. We further infer the behavior of swarm synergy to ensure the anonymity/untraceability of both robots and communities. The robots intend to form a community by sensing the neighbors, creating synergy in a bounded environment. The time to achieve synergy depends on the environment boundary and the onboard sensor's field of view. Compared to the state-of-art with similar objectives, the proposed communication-free swarm synergy shows comparative time to synergize with untraceability features.Comment: 8 Pages, 8 figures, 6 tables, pre-print versio

    Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies, Multiagent System Paradigm, and Natural Ecosystems

    Get PDF
    Wireless sensor networks (WSNs) are key components in the emergent cyber physical systems (CPSs). They may include hundreds of spatially distributed sensors which interact to solve complex tasks going beyond their individual capabilities. Due to the limited capabilities of sensors, sensor actions cannot meet CPS requirements while controlling and coordinating the operations of physical and engineered systems. To overcome these constraints, we explore the ecosystem metaphor for WSNs with the aim of taking advantage of the efficient adaptation behavior and communication mechanisms of living organisms. By mapping these organisms onto sensors and ecosystems onto WSNs, we highlight shortcomings that prevent WSNs from delivering the capabilities of ecosystems at several levels, including structure, topology, goals, communications, and functions. We then propose an agent-based architecture that migrates complex processing tasks outside the physical sensor network while incorporating missing characteristics of autonomy, intelligence, and context awareness to the WSN. Unlike existing works, we use software agents to map WSNs to natural ecosystems and enhance WSN capabilities to take advantage of bioinspired algorithms. We extend our architecture and propose a new intelligent CPS framework where several control levels are embedded in the physical system, thereby allowing agents to support WSNs technologies in enabling CPSs
    • ā€¦
    corecore