
A Quorum Sensing Inspired Algorithm

for Dynamic Clustering

Feng Tan1 and Jean-Jacques Slotine2∗†‡

March 19, 2013

Abstract

Quorum sensing is a decentralized biological process, by which a com-
munity of cells with no global awareness can coordinate their functional
behaviors based on cell-medium interaction and local decision making.
This paper draws inspirations from quorum sensing and colony competi-
tion to study the clustering problem.

We propose an algorithm treating each data as a single cell, utilizing
the knowledge of local connectivity to cluster cells into multiple colonies si-
multaneously. The algorithm consists of two stages: first, it spots sparsely
distributed “core cells” and determines for each cell its influence radius;
second, core cells secrete “auto-inducers” that diffuse into the environment
to form colonies. Interactions between colonies eventually determine each
cell’s identity. We combine the two steps into a dynamic process, which
gives the algorithm flexibility to analyze both static and time-varying
data.

Finally, we test our algorithm on several applications, including syn-
thetic and real benchmarks datasets, alleles clustering, and dynamic sys-
tems grouping and identification. The results suggest that our algorithm
performs as well as other cutting-edge methods on static data, while ap-
plications on time-varying data like locations of swarms of robots are also
promising.

1 Introduction

Quorum Sensing [1] [2] [3] [4] is a decentralized biological process, by which a
community of bacteria cells interact with environment locally with no awareness
of global information. Each cell secretes auto-inducers that diffuse into local en-
vironment and build up concentration. These auto-inducers may be captured by

∗1Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA
02139, USA fengtan at mit.edu
†2Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA

02139, USA jjs at mit.edu
‡*This work was sponsored in part by a grant from the Boeing Corporation

ar
X

iv
:1

30
3.

39
34

v1
 [

cs
.L

G
]

 1
6

M
ar

 2
01

3

receptors, which can activate transcription of certain genes equipped in the cell.
In V. fisheri cells, the receptor is LuxR and the mechanism is shown in Fig.1.
When few cells exist in the neighborhood, diffusion kejpg the density of the in-
ducers low, so that no functional behavior will be initiated. However, when the
concentration reaches a certain threshold, a positive feedback loop is triggered
to secrete more and more auto-inducers and fully activate the receptors. Spe-
cific genes are transcribed, and relevant function or behavior expressed by the
genes will be performed collectively. We find that cluster analysis in computer
science closely resembles this quorum-searching phenomenon. So in this paper
we associate these two parts with each other to develop a novel algorithm.

Cluster analysis is to separate a set of unlabeled objects into clusters, so
that objects in the same cluster are more similar. Currently, many cluster-
ing algorithms have been studied, such as hierarchical clustering (CURE [5],
BIRCH [6]), centroid-based clustering (K-means [7]), distribution based cluster-
ing (expectation-maximization algorithm), density based clustering (DBSCAN [8])
and spectral clustering (Normalized Cuts [9], Power Iteration Clustering [10]).
However, current techniques suffer from several limitations: many algorithms
require input of cluster number; sensitivity to outliers and noise often influences
clustering results; some algorithms fail to adapt to clusters with different den-
sity or arbitrary shape. However, these problems seem to be easily solved in
nature by herds of animals, flocks of birds, schools of fish and colonies of cells,
whose robustness and flexibility far exceed artificial algorithms. Consequently,
it is plausible to learn from nature for new clustering algorithms.

Biological insights can inspire new algorithms [11], like work of Yehuda et
al. on borrowing ideas from biology to solve the maximal independent set prob-
lem [12]. We think they can also inspire connections between dynamic system
control and machine learning algorithms. First, a biologically inspired learning
algorithm can be converted into a dynamical process, which suits for real-time
control requirements. Second, biological processes handle well with failures
and dangers which is similar with the robustness and stability requirements for
learning algorithms and dynamic control. Third, biological processes are mostly
distributed systems, which may inspire local decision making strategies to con-
trol swarms of dynamic systems. In this case bridging dynamic system control
with machine learning through biology inspired algorithms is promising.

In this paper, we develop a clustering algorithm inspired by quorum sensing
and colony competition. It is not only able to perform clustering on bench-
mark datasets, but also easy to be integrated with dynamic systems and control
strategies. With further extensions made possible through this integration, con-
trol theory would be more intelligent and flexible. For the following parts of
the paper, we describe details of our algorithm in the second section. Then, we
test our clustering algorithm with several experiments. Lastly, we discuss about
the results shown in the previous sections, and discuss about future works and
extensions.

Figure 1: Quorum sensing model

2 Algorithm Model

To design the algorithm, we model the biological process of quorum sensing and
colony competitions, including the auto-inducer density model, the local tuning
policy, the colony establishments, interactions between and inside colonies and
colony splitting and merging processes.

2.1 Gaussian Distributed Density Diffusion

We treat every data as a single cell and use the Gaussian kernel function to
describe secretion of auto-inducers as:

f(~x, ~xi) = e
− ‖~x−~xi‖

2

σi
2 (1)

We use Gaussian distribution because it constrains the influence of any single cell
in a local region. And the σi can be considered as “influence radius” representing
the secretion ability of each cell. In such way, we can map all the data into a
kernel matrix Mn×n

mij = f(~xi, ~xj) = e
−
‖~xi−~xj‖

2

σj
2

(2)

As we know that, f(x, ~xi) is cell i’s influence over environment. So mij is the

influence from cell j to cell i. Moreover, ~d = M×~1n×1 is the vector representing
local density of all the cells, where

di =

n∑
j 6=i

mij =

n∑
j 6=i

e
−
‖~xi−~xj‖

2

σj
2

(3)

If the density of a certain cell is high, we say this cell is “recognized” and
located in a well-established colony. Also it will be sensible to set a threshold
on mij to make M sparse, since we only want the cells connected with their
local neighbors.

2.2 Local Decision for Influence Radius Tuning

Cells tune their influence radius to connect with neighbors and maintain local
density. We design the process to minimize a “hunger factor”, which is the error
between the density vector and a goal vector as ~a = a · ~1n×1, then ~a− ~d is the
error or the “hunger factor” vector. The “hunger factor” information can be
carried with the auto-inducers whose needed input is the local density that can
be sensed locally. We use the quadratic error as the cost function:

Vdensity = ‖a ·~1n×1 −M ·~1n×1‖2

To minimize it, we take the time derivative of Vdensity

d

dt
‖~a− ~d‖2 =

d

dt
(~a− ~d)T (~a− ~d)

= −2(~a− ~d)T
d

dt
(~d)

= −2(~a− ~d)T (
∂

∂~σ
~d)~̇σ (4)

We name the Jacobian matrix as J = (∂
∂~σ
~d)

Then Jij =
2‖~xi−~xj‖2

σ3
j

e
−
‖~xi−~xj‖

2

σ2
j

Proposition I.
~̇σ = JT (~a− ~d)(∗)

With this tuning policy for ~σi’s, we can have

d

dt
Vdensity = −2(~a− ~d)TJJT (~a− ~d) ≤ 0

In more details,

σ̇i =
∑
j 6=i

Jji(a− dj)

= 2
∑
j 6=i

‖~xi − ~xj‖2

σ3
i

e
−
‖~xi−~xj‖

2

σ2
i (a− dj) (5)

Here, each term is composed of two parts: the (a − dj) term represents the
“hunger factor” of surrounding cells, and the Jji part represents cell i’s poten-
tial to satisfy their needs.
However, this proposition is easy to trigger “over-fitting” or get trapped in local
minimums. Ill-posed results, such as “super cells” with infinite influence radius,
may emerge. On the other hand, it is not feasible for distributed computation
like swarms of robots since for any robot to make decisions, it needs complete
information of all other agents.

Proposition II.

~̇σ = JT (~a− ~d) + β(M −D)~σ − α~σ + ~finit

We regularize the equation in Proposition I. with terms concerning ‖σ‖ and
n∑
j 6=i

mij(σj − σi). For β(M − D)~σ, we add the term based on the assumption

that cells near each other have similar secreting ability. The D matrix is a

diagonal matrix, with the entries Dii =
n∑
j 6=i

mij . So the ith term in the vector

β(M−D)~σ equals to
n∑
j 6=i

mij(σj−σi), which provides diffusive bonding between

cells’ influence radius in a neighborhood. Also, we add inhibition term −α~σ, so
that no “super cell” will emerge despite of existing needs, due to dissipation and
its own capability, as it is in nature. The ~finit term provides initial actuation
to expand the influence radius, which disappears after most of the cells have
been connected with their neighbors. It can be regarded as an exploration stage
searching local communities. Yet still, this proposition requires global informa-
tion.

Proposition III.

~̇σ = M(~a− ~d) + β(M −D)~σ − α~σ + ~finit (6)

We propose the local tuning policy, replacing JT with matrix M . Here M(~a− ~d)
is the local hunger factor vector accumulated at the location of each cell, which
is the driving force tuning the ~σ. When the local environment appears to be
“hungry” (local hunger factor is positive), the cell tends to increase its influence
radius to satisfy the demand, and vice versa. Our algorithm is more biologically
reasonable in this case: the auto-inducers secreted by cells carry the demand
information, and spread as the density distribution.

Assume that influence radius in the same colony are mostly similar, then

M ≈MT , thus all entries in JT only adds a proportional term
‖~xi−~xj‖2

σ3
j

before

mij . So intuitively, M should be a good approximation.
Moreover, we use contraction analysis [13] to prove the convergence of both

Proposition II and III. Contraction analysis proposes that for the system ~̇x =
f(~x, t), if there exists a constant β > 0, such that for ∀~x, ∀t ≥ 0

1

2
(
∂f

∂~x
+
∂f

∂~x

T

) ≤ −βI < 0

then all solutions converge exponentially to a single trajectory, independent of
the initial conditions. More details with other complex metrics can be referred
to [13]. For both propositions, we treat them as ~̇σ = f(~σ) − α~σ, with the
Jacobian matrix F = ∂f

∂~σ . For Proposition II, after rescaling the data such that
∀i, j, ‖~xi − ~xj‖2 > a2

|Fi,j | = 2|2‖~xi − ~xj‖
4

σ6
j

− 3‖~xi − ~xj‖2

σ4
j

|e
‖~xi−~xj‖

2

σ2
j

≤ 3a

‖~xi − ~xj‖2
≤ 3

a

Assume after setting a threshold for mij ’s each cell has less than 5a neighbors,

then |
∑
j Fij | ≤ 15, so make α = 15, we can have ∂~̇σ

∂~σ = F − αI as a negative
diagonally dominant matrix, so that the system is contracting, and converging
to a single equilibrium.

For Proposition III, after rescaling the data such that ∀i, j, ‖~xi − ~xj‖ > a2

|Fi,j | = |
∑
j

mij
2‖~xi − ~xj‖2

σ3
j

e

‖~xi−~xj‖
2

σ2
j |

≤ a

‖~xi − ~xj‖
≤ 1

a

Similarly with the less than 5a neighbors assumption, |
∑
j Fij | ≤ 5, make α = 5,

we have the system for Proposition III contracting, and converge to a single
equilibrium.

The convergence proof by contraction analysis is relatively conservative. In
our simulations, we can get the system converging to a stable equilibrium with
much smaller α choice.

2.3 Colony Establishments and Interactions

In quorum sensing, when the concentration surpasses a predefined threshold,
cells begin to produce specific functional genes to perform group behavior. In
our algorithm, we use this trait as the criterion for establishing a colony. When
the density of a cell belonging to no colony, di surpasses a predefined threshold,
we establish a new jth colony originating from it and add a n× 1 colony vector
~cj into the colony matrix C, where C = [~c1, ~c2, ..., ~cj−1], with the only non-zero
entry as 1 in the ith term, which is also Cij .
In the Normalized Cuts algorithm [9], which is a cutting edge spectral clustering
algorithm widely used for image segmentation tasks, it is designed to minimize
the cost function:

Ncuts(A,B) =
cut(A,B)

assoc(A, V)
+

cut(B,A)

assoc(B, V)

where
cut(A,B) =

∑
i∈A,j∈B

mij

and
assoc(A, V) =

∑
i∈A

mij

We design the colony interactions to minimize a cost function similar to the
Normalized Cuts:

Vcolony =
∑
i 6=j

~cTi (M +MT)~cj −
γ

2

∑
i

~cTi (M +MT)~ci

V̇colony =
∑
i 6=j

~̇ci
T

(M +MT)~cj − γ
∑
i

~̇ci
T

(M +MT)~ci

=
∑
i

~̇ci
T

(M +MT)(~ce − (γ + 1)~ci)

Here, ~ce =
∑
i ~ci Consequently, by making

~̇ci = −(M +MT)~ce + (γ + 1)(M +MT)~ci

V̇colony = −
∑
i

(~ce − (γ + 1)~ci)
T (M +MT)2(~ce − (γ + 1)~ci)

≤ 0

We can also transform the interaction equations into a matrix form, where
Ce is a matrix with every column same as ~ce:

Ċ = −(M +MT)Ce + (γ + 1)(M +MT)C

Summing all colony vectors to achieve the environmental colony vector ~ce
also follows the idea of quorum sensing to simplify the calculation through using
global variable updates instead of calculating every component. Here all entries
in C are saturated in the range of [0, 1]. The interactions between colonies are
composed of two parts, one part is the mutual inhibitions between colonies, and
the other is self-promotion of colonies into the environment. When initially the
colonies have not yet been well developed, there is only colony self-expanding,
like a neighbor-to-neighbor infection. After the colonies have been expanding
for a while, some colonies become neighboring to each other, and the mutual in-
hibition comes into effect. So finally, it will be a balance between self-expanding
and inhibitions from others.

Furthermore, we can explain the interaction in a micro view at the bound-
ary of two competing colonies as shown in Fig.2: suppose that we have two
colonies A and B neighboring with each other, with colony vector as ~cA and ~cB
respectively. For a single cell i in the boundary area between the two colonies,
following the interaction rules,

ċAi = −
∑
j

(mij +mji)cBj + γ
∑
j

(mij +mji)cAj

ċBi = −
∑
j

(mij +mji)cAj + γ
∑
j

(mij +mji)cBj

When γ = 1, it is obvious that ċAi = −ċBi, so if accumulated influence from
colony A is larger than from colony B, as

∑
j(mij + mji)cAj >

∑
j(mij +

mji)cBj , then finally cAi = 1, cBi = 0, vice versa. Eventually each row in C will
have at most one non-zero entry as 1, on the column, whose colony has most
accumulated influence towards the cell.
γ is the parameter measuring the relative strength of inhibition and expanding
forces: when γ < 1, the inhibition force is enhanced, there might exist some
blank boundaries between colonies. While when γ > 1, it is easier for the colony
factors to spread into neighboring colonies. So at the beginning, it would be wise
to tune up γ, to speed up newborn colonies growing, and enhance distributed
small colonies merging. Later when colonies have become stable, we can tune γ
back to 1 to achieve a distinct clustering result.

Figure 2: The interactions between two colonies

2.4 Colony Merging and Splitting

Among the established colonies, some may be well connected to each other, while
also there may be new colonies. Such scenarios require rules for merging and
splitting colony parts. We calculate the ratio between inter colony connections
and intra colony connections as a criterion measuring the merging possibility
for one colony into another:

rij =
~cTi (M +MT)~cj
~cTi (M +MT)~ci

(7)

We set a threshold, such that if rij is large enough, colony i is merged into colony
j. On the other hand, there may be occasions that new clusters are split from
previous colonies. So we set a continuity detecting vector ~si for each colony: the
evolution of ~si follows the same rules of colony interactions. When the detecting
process reaches a stable equilibrium, we restart it all over again. Cells identified
as outliers in each iteration are marked as “no longer recognized” and become
available for forming new colonies upon again.

2.5 Clustering Result

Finally, we get the result by choosing the maximal entry of each row in matrix
C, that determines the colony identity of each cell. And cells with null rows are
regarded as outliers.
Pseudo Code of the proposed algorithm is presented below:

1. Initialize ~σ as ~0, form the M matrix, set the parameters a, b, β, γ
2. Begin the process:
~̇σ = M(~a− ~d) + β(M −D)~σ − α~σ + ~finit
Detect new cluster:

if ∃di > b(b ≤ a) and cell i not recognized by any colony
create a new colony using cell i as core cell
end

Ċ = −(M +MT)(Ce − C) + γ(M +MT)C
Ṡ = −(M +MT)(Se − S) + γ(M +MT)S
Cluster segmented detection:

if in the stable state, S 6= C
update C = S and accept new born clusters
end

rij =
~cTi (M+MT)~cj
~cTi (M+MT)~ci

Cluster merging:
if ∃rij > 0.2, i 6= j
then we can merge the colony i into colony j
end

3. Achieve the clustering results by counting the C matrix

For the parameters choices: γ defines the ability of mutual penetration and
crossing density gaps. So with larger γ, colonies are more inclined to merge.
β measures similarities of σi’s in local neighborhood. Larger β would result
in smoother σi’s distribution, yet potentially rugged density distribution. a
measures sparsity of the connection graph. With a more connected graph, we
tend to have fewer clusters, and vice versa. Hence, we have some basic rules to
tune the parameters: if the result suggests fewer clusters than we expect, we can
tune down a and γ, and if the influence radius of some cells become too large,
we can tune up β and α. In the future, we can design rules tuning parameters
dynamically according to our expectations.

3 Experiments

We test our algorithm on several applications, including synthetic and real
benchmarks datasets, alleles classifications, and dynamic systems grouping and
identification.

3.1 Synthetic Benchmarks Experiments

We provide the clustering results on four difficult synthetic occasions that are
nonlinearly separable and follow no specific distribution: the two-chains model,
the double-spirals model, the two moons model and the island model. The
results are shown in Fig. 3 proving that influence radius tuning ensures that
the density distribution closely fits the topology of data, which provides distinct
separation boundaries.

Figure 3: Clustering results on synthetic benchmarks

3.2 Real Benchmarks Experiments

Iris flower dataset
The Iris flower dataset [14], introduced by Sir Ronald Fisher, consists of 150
instances forming 3 clusters, of which two are only nonlinearly separable.
Pendigits dataset
The Pendigits datasets [15] is a multivariate dataset of 10992 instances, each
with 16 attributes. We randomly choose 1000 instances for clustering. Also,
we build two subsets of the dataset to test: PenDigits01(easier) and PenDig-
its17(harder), with digits “0”, “1” and “1”, “7”, respectively.
Polbooks dataset
PolBooks [16] is a co-purchase network of 105 political books. Each book is
labeled “liberal”, “conservative”, or “neutral”, mostly in the first two category.
Here we compare our results with cutting-edge algorithms including Normalized
Cuts [9], Ng-Jordan-Weiss algorithm [17] and Power Iteration Clustering [10],
shown in Table 1. For the Iris dataset, our performance is comparable to the

cutting edge methods. For the Pen-digits data, we can cluster 10 classes simul-
taneously with overall correctness rate 86.6% while other methods don’t have
such ability. Moreover, for the two subcases, we outperform the comparisons.
For the network segmentation task of Polbooks dataset, although our algorithm
is not designed specifically to solve such tasks, the segmentation result is still
very satisfying.

Table 1: Clustering result comparison with NCut, NJW and PIC

Dataset Instances Clusters
NCut
(%)

NJW
(%)

PIC
(%)

Ours
(%)

Iris 150 3 67.3 80.7 98.0 97.3
Pendigits 1000 10 86.6

PenDigits01 200 2 100.0 100.0 100.0 100.0
PenDigits17 200 2 75.5 75.5 75.5 81.5

Polbooks 105 3 84.8 82.3 86.7 83.8

3.3 Novel Experiment on Application for Alleles Cluster-
ing

As introduced in [18], it is very important to understand the similarities of
DRB (HLA-DR chain) alleles for the designation of high population coverage
vaccines through classifying the supertypes of them. In the work of [18], Wen-
Jun et al. analyzed on 559 DRB alleles, and proposed a kernel matrix based on
BLOSUM62 matrix measuring the distance between the alleles as

DL2(a, b) = (
1

‖N‖
∑
c∈N

(K̂3
N (a, c)− K̂3

N (b, c))2)
1
2

So we utilize proposed distance in our Gaussian kernel, with the same tun-
ing policy. The clustering result compared to [18] is shown in Table 2. Our
result has no misclassification errors. The only difference is that the 25 al-
leles classified as outliers have been classified into some clusters in [18] using
hierarchical clustering methods. Outliers such as DRB5*0112, DRB1*1525,
DRB1*1425, DRB1*1442, DRB1*1469 and DRB1*0832 are discussed as excep-
tions in their result, which makes their classification more doubtful. Also we
share same conclusions on exceptions like DRB1*0338, DRB3*0115; and like-
wise classify DRB1*1440 , DRB1*1469, DRB1*1477, DRB1*1484, DRB1*14116
and DRB1*14102 into the ST8 supertype.
This experiment proves that our algorithm is effective on clustering multiple
clusters simultaneously for alleles clustering data, and also our results support
the conclusions of Wen-jun et al.’s work on the mathematical foundation anal-
ysis of amino acid chains. The detected outliers may lead further analysis and
provide potential directions to biological researchers.

Table 2: Clustering result comparison of alleles clustering
Supertype Number of Alleles Misclassified Outliers

ST52 43 0 0
ST3 63 0 6
ST6 100 0 2
ST8 52 0 2
ST4 93 0 6
ST2 68 0 1
ST5 34 0 1
ST53 6 0 0
ST9 16 0 1
ST7 18 0 1
ST51 15 0 0
ST1 34 0 2
ST10 3 0 3

Overall 25 0 25

3.4 Experiments on Dynamic System Grouping

In this section, we introduce applications on clustering dynamic systems, which
show our capability to deal with time varying data in a continuous way. The
clustering results that we achieve are flexible and changing according to the
distribution of data, which can be regarded as an integral over time.

3.4.1 Application I. Real-time clustering of mobile robots

In natural colonies like fish schools or hordes of buffalos, groups merging and
splitting are so smooth and elegant, which gives the colonies flexibility to deal
with obstacles and dangers. Our first application is to cluster time-varying data
such as locations of working mobile robots imitating the phenomenon. Also
as explained in [19], synchronization will enhance the ability to resist noise and
improve robustness of the whole network. So potentially, we can couple agents in
the same group, to achieve synchronization by forming contracting Lagrangian
systems as introduced in [20] and [21]. Such dynamic grouping and coupling
would help enhance control performance, which can be analyzed in the future.

In our simulation, 200 robots are located as the previously introduced two-
moon dataset, moving around their center locations with radius of 0.5 and
random speed. During that time, 30 new robots join the group, and also some
robots migrate to form new clusters. We update the distance matrix D and in-
fluence matrix M continually. For potential real world application, we can use
electromagnetic field emitters, and electromagnetic field intensity sensors to ac-
tualize the designed mechanism, replacing the agent-to-agent communications
with agent-environment-agent interactions, which is the core idea of quorum
sensing.

From video1 and Fig.5, we can see that the cluster number is first merged
down to 3 clusters, and then varies with the merging and splitting events, ex-
actly describing the real-time variation of the robots migration. And shown
in Fig.4, the influence radius tuning is capable of handling local density vari-
ations: it is tuned down responding to a local high density, and vice versa, to
preserve balance. The results prove our capability of dealing with time varying
data by using the accumulated information to do dynamic clustering, and han-
dling variations of cluster numbers as well. The results also suggest that using
our algorithm to group dynamic systems is feasible and further applications on
synchronization and coordination are promising.

Figure 4: Variation of density and influence radius of a single cell

Figure 5: Cluster numbers of over the simulation time

3.4.2 Application II. Multi-model switching

As introduced in [22] [23], multi-model switching control could improve the
transient control performance and precision. Here we propose a new method
for multi-model switching control:

1http://www.youtube.com/watch?v=EshxTGNpQC4

Suppose we have a system with unknown parameters, however we know that
there are limited possible choices of parameters configuration.

1. Initially, we use adaptive control to assure acceptable performance. Si-
multaneously, we have tens of virtual systems simulating with the same
control input whose parameters scatter around the pre-known choices.

2. When the density of virtual system is stable after tuning, we calculate
local density of the real system:

dr =

n∑
i

e
− ‖

~fr−~fi‖
2

σ2
i (8)

where ~fr and ~fi are Fourier transform vectors of the input of the real
system and virtual systems.

3. If dr exceeds a predefined threshold, we know the real system belongs to a
virtual cluster. Hence we can get the real parameters and switch to robust
control.

4. Further, if the parameters vary again, by detecting dr dropping down, we
can resume adaptive control and wait for the next time that dr surpasses
the threshold.

For experiment, we use 60 virtual dynamic systems as miẍi + bi|ẋi|ẋi + kixi =
ui,mi, bi, ki are unknown constants. The parameters mi, bi, ki are scattered
around three known choices: [4, 3, 2], [2, 4, 3] and [3, 2, 4], with 20 systems each.
And we have a “real” system, whose parameters mr, br, kr are set as [4,3,2]
initially, and then changed to [2,4,3]. Assume the task is to track the trajectory
of xd(t). According to adaptive control theory, we need control law:

u = m̂(ẍd − λ(ẋ− ẋd)) + b̂|ẋ|ẋ+ k̂x− k1s (9)

where s = ˙̃x+ λx̃, k1 > 0 is a constant, and adaptive law:

˙̂m = −s(ẍd − λ(ẋ− ẋd))

˙̂
b = −s|ẋ|ẋ

˙̂
k = −sx

Since we know m̃(ẍd−λ(ẋ− ẋd)) + b̃|ẋ|ẋ+ k̃x converges to 0 asymptotically
and thus u ≈ m(ẍd − λ(ẋ− ẋd)) + b|ẋ|ẋ+ kx, systems with similar parameters
require similar inputs. So that we can use the input Fourier transform vector
to measure distance between systems in our algorithm.

As we can see from the simulation results Fig.6 and Fig.7, soon after the
multi-model switching starts at t = 10 seconds, the density of the real system
surpasses the threshold 5, and the parameters are estimated correctly. After the
parameters change at t = 20 seconds, sharply the density drops along with the

Figure 6: Parameter estimations of the real system

Figure 7: Density of the real system

control mode switched to adaptive control. After about another 10 seconds, the
density is high again, and the system is correctly estimated with new parameters.

With the applications above, we show the potential of combining our algo-
rithm with dynamic systems. The algorithm attempts to imitate the smooth
grouping and coordination of natural colonies and the results prove the reliabil-
ity of proposed algorithm.

4 CONCLUSIONS

This paper presents our dynamic clustering algorithm inspired by quorum sens-
ing as a potential bridge between machine learning and control. Experiments
on different types of unlabeled datasets show that our algorithm performs as
well, if not better, as some cutting edge clustering methods on static datasets
and performs well on dynamic clustering tasks. Our algorithm’s advantage over
existing algorithms can be concluded as:

1. Since the influence radius is tuned to preserve local connectivity, we can
adapt to clusters with different sizes and variations. We can cluster non-
linearly separable data that follow no specific distribution, and handles
noise and outliers well.

2. Our decentralized algorithm is potentially suitable for parallel and dis-

tributed computation. Potential applications on real mobile robots would
replace agent-agent communications with agent-environment interactions.

3. We can cluster multiple colonies simultaneously. And the segments are
dynamically adjusted through smooth merging and splitting.

4. The algorithm is dynamic, which is easy to be combined with real me-
chanical systems. Novel control that is more flexible and robust theory
for coordinating complex systems may emerge.

The overall computation complexity would beO(n)3 with single processor. How-
ever, if we use the algorithm on real robots clustering, with distributed com-
putation, the computation of single robot would be hugely reduced to linear
time.

For future work, first, we will conduct further research developing rules dy-
namically tuning the parameters. Second, for dynamic systems’ metrics, we may
need various better methods for extracting feature vectors rather than just an-
alyzing the fast Fourier transform vector of the inputs. Third, we will look into
the possibilities of using our clustering algorithm on much more applications
involved with dynamic systems. And last but not least, we will develop new
control theories that utilize the information gained from our novel algorithm,
to further improve control performance and synchronization with more natural
self-organizing coordination.

References

[1] M.B. Miller and B.L. Bassler. Quorum sensing in bacteria. Annual Reviews
in Microbiology, 55(1):165–199, 2001.

[2] C.M. Waters and B.L. Bassler. Quorum sensing: cell-to-cell communication
in bacteria. Annual Review of Cell and Developmental Biology, 21:319–346,
2005.

[3] T.D. Seeley and P.K. Visscher. Group decision making in nest-site selection
by honey bees. Apidologie, 35(2):101–116, 2004.

[4] S.C. Pratt. Quorum sensing by encounter rates in the ant temnothorax
albipennis. Behavioral Ecology, 16(2):488–496, 2005.

[5] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm
for large databases. volume 27, pages 73–84. ACM SIGMOD Record, 1998.

[6] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clus-
tering method for very large databases, 1996.

[7] J.A. Hartigan and M.A. Wong. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[8] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. volume 1996,
pages 226–231. AAAI Press, 1996.

[9] Shi Jianbo. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[10] F. Lin and W.W. Cohen. Power iteration clustering. ICML (to appear),
2010.

[11] S. Navlakha and Z. Bar-Joseph. Algorithms in nature: the convergence of
systems biology and computational thinking. Molecular Systems Biology,
7(546), 2011.

[12] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A
biological solution to a fundamental distributed computing problem. Sci-
ence’s STKE, 331(6014):183, 2011.

[13] W. Lohmiller and J.J.E. Slotine. On contraction analysis for non-linear
systems. Automatica, 34(6):683–696, 1998.

[14] R.A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Human Genetics, 7(2):179–188, 1936.

[15] F. Alimoglu and E. Alpaydin. Combining multiple representations and
classifiers for pen-based handwritten digit recognition. In Proceedings of the
Fourth International Conference on Document Analysis and Recognition,
volume 2, pages 637–640 vol. 2. IEEE, 1997.

[16] Mark EJ Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical review E, 74(3):036104, 2006.

[17] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. Advances in neural information processing systems, 2:849–
856, 2002.

[18] W.J. Shen, H.S. Wong, Q.W. Xiao, X. Guo, and S. Smale. Towards a
mathematical foundation of immunology and amino acid chains. Arxiv
preprint arXiv:1205.6031, 2012.

[19] N. Tabareau, J.J. Slotine, and Q.C. Pham. How synchronization protects
from noise. PLoS Computational Biology, 6(1):e1000637, 2010.

[20] Q.C. Pham and J.J.E. Slotine. Stable concurrent synchronization in dy-
namic system networks. Neural Networks, 20(1):62–77, 2007.

[21] S.J. Chung and J.J.E. Slotine. Cooperative robot control and concurrent
synchronization of lagrangian systems. IEEE Transactions on Robotics,
25(3):686–700, 2009.

[22] K.S. Narendra and J. Balakrishnan. Adaptive control using multiple mod-
els. IEEE Transactions on Automatic Control, 42(2):171–187, 1997.

[23] K.S. Narendra, J. Balakrishnan, and M.K. Ciliz. Adaptation and learning
using multiple models, switching, and tuning. Control Systems, IEEE,
15(3):37–51, 1995.

	1 Introduction
	2 Algorithm Model
	2.1 Gaussian Distributed Density Diffusion
	2.2 Local Decision for Influence Radius Tuning
	2.3 Colony Establishments and Interactions
	2.4 Colony Merging and Splitting
	2.5 Clustering Result

	3 Experiments
	3.1 Synthetic Benchmarks Experiments
	3.2 Real Benchmarks Experiments
	3.3 Novel Experiment on Application for Alleles Clustering
	3.4 Experiments on Dynamic System Grouping
	3.4.1 Application I. Real-time clustering of mobile robots
	3.4.2 Application II. Multi-model switching

	4 CONCLUSIONS

