4,448 research outputs found

    Performance and wake analysis of rotors in axial flight using computational fluid dynamics

    Get PDF
    Flow field around rotors in axial flight is known to be complex especially in steep descent where the rotor is operating inside its own wake. It is often reported that, in this flight condition, the rotor is susceptible to severe wake interactions causing unsteady blade load, severe vibration, loss of performance, as well as poor control and handling. So far, there is little data from experimental and numerical analysis available for rotors in axial flight. In this paper, the steady Reynolds-Averaged Navier-Stokes Computational Fluid Dynamics solver Helicopter Multi-Block was used to predict the performance of rotors in axial flight. The main objective of this study was to improve the basic knowledge about the subject and to validate the flow solver used. The results obtained are presented in the form of surface pressure, rotor performance parameters, and vortex wake trajectories. The detailed velocity field of the tip vortex for a rotor in hover was also investigated, and a strong self-similarity of the swirl velocity profile was found. The predicted results obtained when compared with available experimental data showed a reasonably agreement for hover and descent rate, suggesting unsteady solution for rotors in vortex-ring state

    Time integration for diffuse interface models for two-phase flow

    Full text link
    We propose a variant of the θ\theta-scheme for diffuse interface models for two-phase flow, together with three new linearization techniques for the surface tension. These involve either additional stabilizing force terms, or a fully implicit coupling of the Navier-Stokes and Cahn-Hilliard equation. In the common case that the equations for interface and flow are coupled explicitly, we find a time step restriction which is very different to other two-phase flow models and in particular is independent of the grid size. We also show that the proposed stabilization techniques can lift this time step restriction. Even more pronounced is the performance of the proposed fully implicit scheme which is stable for arbitrarily large time steps. We demonstrate in a Taylor flow application that this superior coupling between flow and interface equation can render diffuse interface models even computationally cheaper and faster than sharp interface models
    corecore