52 research outputs found

    QBMMlib: A library of quadrature-based moment methods

    Get PDF
    QBMMlib is an open source Mathematica package of quadrature-based moment methods and their algorithms. Such methods are commonly used to solve fully-coupled disperse flow and combustion problems, though formulating and closing the corresponding governing equations can be complex. QBMMlib aims to make analyzing these techniques simple and more accessible. Its routines use symbolic manipulation to formulate the moment transport equations for a population balance equation and a prescribed dynamical system. However, the resulting moment transport equations are unclosed. QBMMlib trades the moments for a set of quadrature points and weights via an inversion algorithm, of which several are available. Quadratures then closes the moment transport equations. Embedded code snippets show how to use QBMMlib, with the algorithm initialization and solution spanning just 13 total lines of code. Examples are shown and analyzed for linear harmonic oscillator and bubble dynamics problems.Comment: Under review Software

    Numerical Description of Dilute Particle-Laden FLows by a Quadrature-Based Moment Method

    Get PDF
    The numerical simulation of gas-particle flows is divided into two families of methods. In Euler-Lagrange methods individual particle trajectories are computed, whereas in Euler-Euler methods particles are characterized by statistical descriptors. Lagrangian methods are very precise but their computational cost increases with instationarity and particle volume fraction. In Eulerian methods (also called moment methods) the particle-phase computational cost is comparable to that of the fluid phase but requires strong simplificaions. Existing Eulerian models consider unimodal or close-to-equilibrium particle velocity distributions and then fail when the actual distribution is far from equilibrium. Quadrature-based Eulerian methods introduce a new reconstruction of the velocity distribution, written as a sum of delta functions in phase space constrained to give the right values for selected low-order moments. Two of the quadrature-based Eulerian methods, differing by the reconstruction algorithm, are the focus of this work. Computational results for two academic cases (crossing jets, Taylor-Green flow) are compared to those of a Lagrangian method (considered as the reference solution) and of an existing second-order moment method. With the quadrature-based Eulerian methods, significant qualitative improvement is noticed compared to the second-order moment method in the two test cases

    A fully coupled fluid-particle flow solver using quadrature-based moment method with high-order realizable schemes on unstructured grids

    Get PDF
    Kinetic Equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of the velocity distribution function. A quadrature method of moments (QMOM) was derived by Desjardins et al. [1] for approximating solutions to the kinetic equation for arbitrary Knudsen number. Fox [2, 13] derived a third-order QMOMfor dilute particle flows, including the effect of the fluid drag on the particles. Passalacqua et al. [4] and Garg et al. [3] coupled an incompressible finite-volume solver for the fluid-phase and a third order QMOM solver for particle-phase on Cartesian grids. In the current work a compressible finite-volume fluid solver is coupled with a particle-phase solver based on third-order QMOM on unstructured grids. The fluid and particle-phase are fully coupled by accounting for the volume displacement effects induced by the presence of the particles and the momentum exchange between the phases. The success of QMOM is based on the moment inversion algorithm that allows quadrature weights and abscissas to be computed from the moments of the distribution function. The moment-inversion algorithm does not work if the moments are non-realizable, which might lead to negative weights. Desjardins et al. [1] showed that realizability is guaranteed only with the 1st-order finite-volume scheme that has excessive numerical diffusion. The authors [5, 6] have derived high-order finite-volume schemes that guarantee realizability for QMOM. These high-order realizable schemes are used in this work for the particle-phase solver. Results are presented for a dilute gas-particle flow in a lid-driven cavity with both Stokes and Knudsen numbers equal to 1. For this choice of Knudsen and Stokes numbers, particle trajectory crossing occurs which is captured by QMOM particle-phase solver

    A multi-Gaussian quadrature method of moments for simulating high Stokes number turbulent two-phase flows

    Get PDF
    With the great increase in computational resources, Large Eddy Simulation (LES) of industrial configurations is now an efficient and tractable tool. Numerous applications involve a liquid or solid disperse phase carried by a gaseous flow field (eg, fuel injection in automotive or aeronautical engines, fluidized beds, and alumina particles in rocket boosters). To simulate this kind of flow, one may resort to a Number Density Function (NDF), which satisfies a kinetic equation

    ON THE IMPLEMENTATION OF MOMENT TRANSPORT EQUATIONS IN OPENFOAM TO PRESERVE CONSERVATION, BOUNDEDNESS AND REALIZABILITY

    Get PDF
    Different industrial scale multiphase systems can be successfully described by considering their polydispersity (e.g. particle/droplet/bubble size and velocity distributions) and phase coupling issues are properly overcome only by considering the evolution in space and time of such distributions, dictated by the so-called Generalized Population Balance Equation (GPBE). A computationally efficient approach for solving the GPBE is represented by the quadrature-based moment methods, where the evolution of the entire particle/droplet/bubble population is recovered by tracking some specific moments of the distribution and the quadrature approximation is used to solve the "closure problem" typical of moment-based methods. In this contribution some crucial computational and numerical details concerning the implementation of these methods into the opensource Computational Fluid Dynamics (CFD) code OpenFOAM are discussed. These aspects are in fact very often overlooked, resulting in implementations that do not satisfy the properties of conservation, realizability and boundedness. These constraints have to be satisfied in a consistent way, with respect to what done with the other conserved transported variables (e.g. volume fraction of the disperse phase) also when higher-order discretization schemes are used. These issues are illustrated on examples taken on our work on the simulation of fluid-fluid multiphase system

    A hierarchy of Eulerian models for trajectory crossing in particle-laden turbulent flows over a wide range of Stokes numbers

    Get PDF
    With the large increase in available computational resources, large-eddy simulation (LES) of industrial configurations has become an efficient and tractable alternative to traditional multiphase turbulence models. Many applications involve a liquid or solid disperse phase carried by a gas phase (eg, fuel injection in automotive or aeronautical engines, fluidized beds, and alumina particles in rocket boosters)
    • …
    corecore