7,499 research outputs found

    A lower bound for the determinantal complexity of a hypersurface

    Full text link
    We prove that the determinantal complexity of a hypersurface of degree d>2d > 2 is bounded below by one more than the codimension of the singular locus, provided that this codimension is at least 55. As a result, we obtain that the determinantal complexity of the 3×33 \times 3 permanent is 77. We also prove that for n>3n> 3, there is no nonsingular hypersurface in Pn\mathbf{P}^n of degree dd that has an expression as a determinant of a d×dd \times d matrix of linear forms while on the other hand for n3n \le 3, a general determinantal expression is nonsingular. Finally, we answer a question of Ressayre by showing that the determinantal complexity of the unique (singular) cubic surface containing a single line is 55.Comment: 7 pages, 0 figure

    A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs

    Get PDF
    An algebraic branching program (ABP) is a directed acyclic graph, with a start vertex s, and end vertex t and each edge having a weight which is an affine form in variables x_1, x_2, ..., x_n over an underlying field. An ABP computes a polynomial in a natural way, as the sum of weights of all paths from s to t, where the weight of a path is the product of the weights of the edges in the path. An ABP is said to be homogeneous if the polynomial computed at every vertex is homogeneous. In this paper, we show that any homogeneous algebraic branching program which computes the polynomial x_1^n + x_2^n + ... + x_n^n has at least Omega(n^2) vertices (and edges). To the best of our knowledge, this seems to be the first non-trivial super-linear lower bound on the number of vertices for a general homogeneous ABP and slightly improves the known lower bound of Omega(n log n) on the number of edges in a general (possibly non-homogeneous) ABP, which follows from the classical results of Strassen (1973) and Baur--Strassen (1983). On the way, we also get an alternate and unified proof of an Omega(n log n) lower bound on the size of a homogeneous arithmetic circuit (follows from [Strassen, 1973] and [Baur-Strassen, 1983]), and an n/2 lower bound (n over reals) on the determinantal complexity of an explicit polynomial [Mignon-Ressayre, 2004], [Cai, Chen, Li, 2010], [Yabe, 2015]. These are currently the best lower bounds known for these problems for any explicit polynomial, and were originally proved nearly two decades apart using seemingly different proof techniques

    A Lower Bound on Determinantal Complexity

    Get PDF
    The determinantal complexity of a polynomial PF[x1,,xn]P \in \mathbb{F}[x_1, \ldots, x_n] over a field F\mathbb{F} is the dimension of the smallest matrix MM whose entries are affine functions in F[x1,,xn]\mathbb{F}[x_1, \ldots, x_n] such that P=Det(M)P = Det(M). We prove that the determinantal complexity of the polynomial i=1nxin\sum_{i = 1}^n x_i^n is at least 1.5n31.5n - 3. For every nn-variate polynomial of degree dd, the determinantal complexity is trivially at least dd, and it is a long standing open problem to prove a lower bound which is super linear in max{n,d}\max\{n,d\}. Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor than max{n,d}\max\{n,d\}, and improves upon the prior best bound of n+1n + 1, proved by Alper, Bogart and Velasco [ABV17] for the same polynomial.Comment: v2: corrected a few typos and added reference

    Arithmetic Circuits and the Hadamard Product of Polynomials

    Get PDF
    Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. 1. We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class \ceql, and over fields of characteristic pp the problem is in \ModpL/\Poly. 2.We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size.Comment: 20 page

    An Almost Cubic Lower Bound for Depth Three Arithmetic Circuits

    Get PDF
    We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing an explicit multilinear polynomial in n variables over any field. This improves upon the previously known quadratic lower bound by Shpilka and Wigderson [CCC, 1999]

    Depth-4 Lower Bounds, Determinantal Complexity : A Unified Approach

    Get PDF
    Tavenas has recently proved that any n^{O(1)}-variate and degree n polynomial in VP can be computed by a depth-4 circuit of size 2^{O(\sqrt{n}\log n)}. So to prove VP not equal to VNP, it is sufficient to show that an explicit polynomial in VNP of degree n requires 2^{\omega(\sqrt{n}\log n)} size depth-4 circuits. Soon after Tavenas's result, for two different explicit polynomials, depth-4 circuit size lower bounds of 2^{\Omega(\sqrt{n}\log n)} have been proved Kayal et al. and Fournier et al. In particular, using combinatorial design Kayal et al.\ construct an explicit polynomial in VNP that requires depth-4 circuits of size 2^{\Omega(\sqrt{n}\log n)} and Fournier et al.\ show that iterated matrix multiplication polynomial (which is in VP) also requires 2^{\Omega(\sqrt{n}\log n)} size depth-4 circuits. In this paper, we identify a simple combinatorial property such that any polynomial f that satisfies the property would achieve similar circuit size lower bound for depth-4 circuits. In particular, it does not matter whether f is in VP or in VNP. As a result, we get a very simple unified lower bound analysis for the above mentioned polynomials. Another goal of this paper is to compare between our current knowledge of depth-4 circuit size lower bounds and determinantal complexity lower bounds. We prove the that the determinantal complexity of iterated matrix multiplication polynomial is \Omega(dn) where d is the number of matrices and n is the dimension of the matrices. So for d=n, we get that the iterated matrix multiplication polynomial achieves the current best known lower bounds in both fronts: depth-4 circuit size and determinantal complexity. To the best of our knowledge, a \Theta(n) bound for the determinantal complexity for the iterated matrix multiplication polynomial was known only for constant d>1 by Jansen.Comment: Extension of the previous uploa

    Permanent v. determinant: an exponential lower bound assumingsymmetry and a potential path towards Valiant's conjecture

    No full text
    International audienceWe initiate a study of determinantal representations with symmetry. We show that Grenet's determinantal representation for the permanent is optimal among determinantal representations respecting left multiplication by permutation and diagonal matrices (roughly half the symmetry group of the permanent). In particular, if any optimal determinantal representation of the permanent must be polynomially related to one with such symmetry, then Valiant's conjecture on permanent v. determinant is true

    Geometric lower bounds for generalized ranks

    Full text link
    We revisit a geometric lower bound for Waring rank of polynomials (symmetric rank of symmetric tensors) of Landsberg and Teitler and generalize it to a lower bound for rank with respect to arbitrary varieties, improving the bound given by the "non-Abelian" catalecticants recently introduced by Landsberg and Ottaviani. This is applied to give lower bounds for ranks of multihomogeneous polynomials (partially symmetric tensors); a special case is the simultaneous Waring decomposition problem for a linear system of polynomials. We generalize the classical Apolarity Lemma to multihomogeneous polynomials and give some more general statements. Finally we revisit the lower bound of Ranestad and Schreyer, and again generalize it to multihomogeneous polynomials and some more general settings.Comment: 43 pages. v2: minor change
    corecore