1,909 research outputs found

    A quadratic algorithm for road coloring

    Get PDF
    The Road Coloring Theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the Road Coloring Problem before being settled by A. Trahtman. Trahtman's proof leads to an algorithm that finds a synchronized labeling with a cubic worst-case time complexity. We show a variant of his construction with a worst-case complexity which is quadratic in time and linear in space. We also extend the Road Coloring Theorem to the periodic case

    On the Number of Synchronizing Colorings of Digraphs

    Full text link
    We deal with kk-out-regular directed multigraphs with loops (called simply \emph{digraphs}). The edges of such a digraph can be colored by elements of some fixed kk-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with nn vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 11/kd1-1/k^d, for every d1d \ge 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 11/k1-1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k=2k=2.Comment: CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Parametric Multi-Step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components

    Get PDF
    The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition

    All finite transitive graphs admit self-adjoint free semigroupoid algebras

    Full text link
    In this paper we show that every non-cycle finite transitive directed graph has a Cuntz-Krieger family whose WOT-closed algebra is B(H)B(\mathcal{H}). This is accomplished through a new construction that reduces this problem to in-degree 22-regular graphs, which is then treated by applying the periodic Road Coloring Theorem of B\'eal and Perrin. As a consequence we show that finite disjoint unions of finite transitive directed graphs are exactly those finite graphs which admit self-adjoint free semigroupoid algebras.Comment: Added missing reference. 16 pages 2 figure
    corecore