668 research outputs found

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    A novel class of scheduling policies for the stochastic resource-constrained project scheduling problem.

    Get PDF
    We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for this problem, which make a number of a-priori sequencing decisions in a pre-processing phase, while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We compare the performance of this new class with existing scheduling policies for the stochastic resource-constrained project scheduling problem, and we observe that the new class is significantly better when the variability in the activity durations is medium to high.Project scheduling; Uncertainty; Stochastic activity durations; Scheduling policies;

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.

    Project management under uncertainty: Resource flexibility visualization in the schedule

    Get PDF
    Going from an idea to a result, using a series of well-defined techniques with deadlines and limited resources, is a skill that a project manager must have. In a rapidly changing environment like the present one, there are many factors that contribute to budget overruns and delays that occur in most major projects. To be successful, one must rely on techniques and tools that assist the project manager in the various stages of the project. Therefore, this paper presents an Add-In for MS Project®, based on a previously developed model for solving the Resource Constraint Project Scheduling Problem with Flexible Resource Management (RCPSP-FRM), which can help the project manager with regard to the scheduling of resources using flexibility, giving him relevant information to the decision making process in case of delays during the execution phase. The flexible chart and table format view allows project managers to easily and objectively identify the activities which can have their durations increased or shortened, impacting significantly on project execution time. This research contributes not only to the academic environment, but also to professional project management environments.This work has been supported by national funds through FCT –Fundação para a Ciência e Tecnologiawithin the Project Scope: UID/CEC/00319/201

    A general framework integrating techniques for scheduling under uncertainty

    Get PDF
    Ces dernières années, de nombreux travaux de recherche ont porté sur la planification de tâches et l'ordonnancement sous incertitudes. Ce domaine de recherche comprend un large choix de modèles, techniques de résolution et systèmes, et il est difficile de les comparer car les terminologies existantes sont incomplètes. Nous avons cependant identifié des familles d'approches générales qui peuvent être utilisées pour structurer la littérature suivant trois axes perpendiculaires. Cette nouvelle structuration de l'état de l'art est basée sur la façon dont les décisions sont prises. De plus, nous proposons un modèle de génération et d'exécution pour ordonnancer sous incertitudes qui met en oeuvre ces trois familles d'approches. Ce modèle est un automate qui se développe lorsque l'ordonnancement courant n'est plus exécutable ou lorsque des conditions particulières sont vérifiées. Le troisième volet de cette thèse concerne l'étude expérimentale que nous avons menée. Au-dessus de ILOG Solver et Scheduler nous avons implémenté un prototype logiciel en C++, directement instancié de notre modèle de génération et d'exécution. Nous présentons de nouveaux problèmes d'ordonnancement probabilistes et une approche par satisfaction de contraintes combinée avec de la simulation pour les résoudre. ABSTRACT : For last years, a number of research investigations on task planning and scheduling under uncertainty have been conducted. This research domain comprises a large number of models, resolution techniques, and systems, and it is difficult to compare them since the existing terminologies are incomplete. However, we identified general families of approaches that can be used to structure the literature given three perpendicular axes. This new classification of the state of the art is based on the way decisions are taken. In addition, we propose a generation and execution model for scheduling under uncertainty that combines these three families of approaches. This model is an automaton that develops when the current schedule is no longer executable or when some particular conditions are met. The third part of this thesis concerns our experimental study. On top of ILOG Solver and Scheduler, we implemented a software prototype in C++ directly instantiated from our generation and execution model. We present new probabilistic scheduling problems and a constraintbased approach combined with simulation to solve some instances thereof

    Project management under uncertainty: using flexible resource management to exploit schedule flexibility

    Get PDF
    Project management still faces a wide gap separating theory from practice, especially regarding the robustness of the generated project schedules facing the omnipresence of uncertainty. A new approach to deal with uncertainty is presented to explore slack that might exist in a given project schedule. We propose that renewable resources' capacity to perform work can be increased so that they can perform additional work in a time unit or can be decreased with the consequent reduction on the performed work. This possibility combined with the slack that some activities have in a specific schedule can be used to absorb deviations that might occur during a project's execution. When a critical activity is about to have its duration increased, slowing down other non-critical activities by putting their resources in a decreased work mode enables the activity to still be executed within time by using resources in an increased working mode. [Received: 14 February 2018; Revised: 2 January 2019; Revised: 8 June 2019; Accepted: 17 November 2019

    A hierarchical approach to multi-project planning under uncertainty

    Get PDF
    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a generic hierarchical project planning and control framework that serves to position planning methods for multi-project planning under uncertainty. We discuss multiple techniques for dealing with the uncertainty inherent to the different hierarchical stages in a multi-project organisation. In the last part of this paper we discuss two cases from practice and we relate these practical cases to the positioning framework that is put forward in the paper

    A hierarchical approach to multi-project planning under uncertainty.

    Get PDF
    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a generic hierarchical project planning and control framework that serves to position planning methods for multi-project planning under uncertainty. We discuss multiple techniques for dealing with the uncertainty inherent to the different hierarchical stages in a multi-project organisation. In the last part of this paper we discuss two cases from practice and we relate these practical cases to the positioning framework that is put forward in the paper.Choice; Complexity; Framework; Hierarchical models; Management; Manufacturing; Methods; Multi-project organisations; Planning; Project management; Project planning; Uncertainty;
    corecore