404 research outputs found

    Managing motion triggered executables in distributed mobile databases

    Get PDF
    Mobile devices have brought new applications into our daily life. However, ecient man- agement of these objects to support new applications is challenging due to the distributed nature and mobility of mobile objects. This dissertation describes a new type of mobile peer- to-peer (M-P2P) computing, namely geotasking, and presents ecient management of mobile objects to support geotasking. Geotasking mimics human interaction with the physical world. Humans generate information using sensing ability and store information to geographical lo- cations. Humans also retrieve this information from the physical locations. For instance, an installation of a new stop sign at some intersection in town is analogous to an insertion of a new data item into the database. Instead of processing regular data as in traditional data management systems, geotasking manages a collection of geotasks, each dened as a computer program bound to a geographical region. The hardware platform for geotasking consists of popular networked position-aware mobile devices such as cell phones, personal digital assis- tants, and laptops. We design and implement novel system software to facilitate programming and ecient management of geotasks. Such management includes inserts, deletes, updates, retrieval and execution of a geotask triggered by mobile object correlations, geotask mobil- ity, and geotask dependency. Geotasking enables useful applications ranging from warning of dangerous areas for military and search-and-rescue missions to monitoring the population in a certain area for trac management to informing tourists of exciting events in an area and other such applications. Geotasking provides a distributed and unied solution for supporting various types of applications

    A Content-Addressable Network for Similarity Search in Metric Spaces

    Get PDF
    Because of the ongoing digital data explosion, more advanced search paradigms than the traditional exact match are needed for contentbased retrieval in huge and ever growing collections of data produced in application areas such as multimedia, molecular biology, marketing, computer-aided design and purchasing assistance. As the variety of data types is fast going towards creating a database utilized by people, the computer systems must be able to model human fundamental reasoning paradigms, which are naturally based on similarity. The ability to perceive similarities is crucial for recognition, classification, and learning, and it plays an important role in scientific discovery and creativity. Recently, the mathematical notion of metric space has become a useful abstraction of similarity and many similarity search indexes have been developed. In this thesis, we accept the metric space similarity paradigm and concentrate on the scalability issues. By exploiting computer networks and applying the Peer-to-Peer communication paradigms, we build a structured network of computers able to process similarity queries in parallel. Since no centralized entities are used, such architectures are fully scalable. Specifically, we propose a Peer-to-Peer system for similarity search in metric spaces called Metric Content-Addressable Network (MCAN) which is an extension of the well known Content-Addressable Network (CAN) used for hash lookup. A prototype implementation of MCAN was tested on real-life datasets of image features, protein symbols, and text — observed results are reported. We also compared the performance of MCAN with three other, recently proposed, distributed data structures for similarity search in metric spaces

    IoT trust and reputation: a survey and taxonomy

    Get PDF
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    2013 Doctoral Workshop on Distributed Systems

    Get PDF
    The Doctoral Workshop on Distributed Systems was held at Les Plans-sur-Bex, Switzerland, from June 26-28, 2013. Ph.D. students from the Universities of Neuchâtel and Bern as well as the University of Applied Sciences of Fribourg presented their current research work and discussed recent research results. This technical report includes the extended abstracts of the talks given during the workshop

    Skyline queries in dynamic environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Personalized Recommendations Based On Users’ Information-Centered Social Networks

    Get PDF
    The overwhelming amount of information available today makes it difficult for users to find useful information and as the solution to this information glut problem, recommendation technologies emerged. Among the several streams of related research, one important evolution in technology is to generate recommendations based on users’ own social networks. The idea to take advantage of users’ social networks as a foundation for their personalized recommendations evolved from an Internet trend that is too important to neglect – the explosive growth of online social networks. In spite of the widely available and diversified assortment of online social networks, most recent social network-based recommendations have concentrated on limited kinds of online sociality (i.e., trust-based networks and online friendships). Thus, this study tried to prove the expandability of social network-based recommendations to more diverse and less focused social networks. The online social networks considered in this dissertation include: 1) a watching network, 2) a group membership, and 3) an academic collaboration network. Specifically, this dissertation aims to check the value of users’ various online social connections as information sources and to explore how to include them as a foundation for personalized recommendations. In our results, users in online social networks shared similar interests with their social partners. An in-depth analysis about the shared interests indicated that online social networks have significant value as a useful information source. Through the recommendations generated by the preferences of social connection, the feasibility of users’ social connections as a useful information source was also investigated comprehensively. The social network-based recommendations produced as good as, or sometimes better, suggestions than traditional collaborative filtering recommendations. Social network-based recommendations were also a good solution for the cold-start user problem. Therefore, in order for cold-start users to receive reasonably good recommendations, it is more effective to be socially associated with other users, rather than collecting a few more items. To conclude, this study demonstrates the viability of multiple social networks as a means for gathering useful information and addresses how different social networks of a novelty value can improve upon conventional personalization technology

    Location cloaking for location privacy protection and location safety protection

    Get PDF
    Many applications today rely on location information, yet disclosing such information can present heightened privacy and safety risks. A person\u27s whereabouts, for example, may reveal sensitive private information such as health condition and lifestyle. Location information also has the potential to allow an adversary to physically locate and destroy a subject, which is particularly concerned in digital battlefields. This research investigates two problems. The first one is location privacy protection in location-based services. Our goal is to provide a desired level of guarantee that the location data collected by the service providers cannot be correlated with restricted spaces such as home and office to derive who\u27s where at what time. We propose 1) leveraging historical location samples for location depersonalization and 2) allowing a user to express her location privacy requirement by identifying a spatial region. With these two ideas in place, we develop a suite of techniques for location-privacy aware uses of location-based services, which can be either sporadic or continuous. An experimental system has been implemented with these techniques. The second problem investigated in this research is location safety protection in ad hoc networks. Unlike location privacy intrusion, the adversary here is not interested in finding the individual identities of the nodes in a spatial region, but simply wants to locate and destroy them. We define the safety level of a spatial region as the inverse of its node density and develop a suite of techniques for location safety-aware cloaking and routing. These schemes allow nodes to disclose their location as accurately as possible, while preventing such information from being used to identify any region with a safety level lower than a required threshold. The performance of the proposed techniques is evaluated through analysis and simulation

    Contextual Social Networking

    Get PDF
    The thesis centers around the multi-faceted research question of how contexts may be detected and derived that can be used for new context aware Social Networking services and for improving the usefulness of existing Social Networking services, giving rise to the notion of Contextual Social Networking. In a first foundational part, we characterize the closely related fields of Contextual-, Mobile-, and Decentralized Social Networking using different methods and focusing on different detailed aspects. A second part focuses on the question of how short-term and long-term social contexts as especially interesting forms of context for Social Networking may be derived. We focus on NLP based methods for the characterization of social relations as a typical form of long-term social contexts and on Mobile Social Signal Processing methods for deriving short-term social contexts on the basis of geometry of interaction and audio. We furthermore investigate, how personal social agents may combine such social context elements on various levels of abstraction. The third part discusses new and improved context aware Social Networking service concepts. We investigate special forms of awareness services, new forms of social information retrieval, social recommender systems, context aware privacy concepts and services and platforms supporting Open Innovation and creative processes. This version of the thesis does not contain the included publications because of copyrights of the journals etc. Contact in terms of the version with all included publications: Georg Groh, [email protected] zentrale Gegenstand der vorliegenden Arbeit ist die vielschichtige Frage, wie Kontexte detektiert und abgeleitet werden können, die dazu dienen können, neuartige kontextbewusste Social Networking Dienste zu schaffen und bestehende Dienste in ihrem Nutzwert zu verbessern. Die (noch nicht abgeschlossene) erfolgreiche Umsetzung dieses Programmes führt auf ein Konzept, das man als Contextual Social Networking bezeichnen kann. In einem grundlegenden ersten Teil werden die eng zusammenhängenden Gebiete Contextual Social Networking, Mobile Social Networking und Decentralized Social Networking mit verschiedenen Methoden und unter Fokussierung auf verschiedene Detail-Aspekte näher beleuchtet und in Zusammenhang gesetzt. Ein zweiter Teil behandelt die Frage, wie soziale Kurzzeit- und Langzeit-Kontexte als für das Social Networking besonders interessante Formen von Kontext gemessen und abgeleitet werden können. Ein Fokus liegt hierbei auf NLP Methoden zur Charakterisierung sozialer Beziehungen als einer typischen Form von sozialem Langzeit-Kontext. Ein weiterer Schwerpunkt liegt auf Methoden aus dem Mobile Social Signal Processing zur Ableitung sinnvoller sozialer Kurzzeit-Kontexte auf der Basis von Interaktionsgeometrien und Audio-Daten. Es wird ferner untersucht, wie persönliche soziale Agenten Kontext-Elemente verschiedener Abstraktionsgrade miteinander kombinieren können. Der dritte Teil behandelt neuartige und verbesserte Konzepte für kontextbewusste Social Networking Dienste. Es werden spezielle Formen von Awareness Diensten, neue Formen von sozialem Information Retrieval, Konzepte für kontextbewusstes Privacy Management und Dienste und Plattformen zur Unterstützung von Open Innovation und Kreativität untersucht und vorgestellt. Diese Version der Habilitationsschrift enthält die inkludierten Publikationen zurVermeidung von Copyright-Verletzungen auf Seiten der Journals u.a. nicht. Kontakt in Bezug auf die Version mit allen inkludierten Publikationen: Georg Groh, [email protected]
    corecore