
i 

 

 

PERSONALIZED RECOMMENDATIONS BASED ON 

USERS’ INFORMATION-CENTERED SOCIAL 

NETWORKS 
 

 

 

 

 

 

by 

Danielle Lee 

BA, Sangmyung University, 1996  

 MS, Sangmyung University, 1998 

MS, Syracuse University, 2001 

 

 

 

Submitted to the Graduate Faculty of 

School of Information Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

University of Pittsburgh 

2013 

 



ii 

 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF INFORMATION SCIENCES 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Danielle Lee 

 

 

 

It was defended on 

November 9, 2012 

and approved by 

Brian Butler, Associate Professor, School of Information Studies, University of Maryland, 

Daqing He, Associate Professor, School of Information Sciences, 

Stephen Hirtle, Professor, School of Information Sciences, 

Titus Schleyer, Associate Professor, School of Dental Medicine, and 

 Dissertation Advisor: Peter Brusilovsky, Professor, School of Information Sciences 



iii 

 

Copyright © by Danielle Lee 

2013 



iv 

 

 

The overwhelming amount of information available today makes it difficult for users to find 

useful information and as the solution to this information glut problem, recommendation 

technologies emerged. Among the several streams of related research, one important evolution in 

technology is to generate recommendations based on users‟ own social networks. The idea to 

take advantage of users‟ social networks as a foundation for their personalized recommendations 

evolved from an Internet trend that is too important to neglect – the explosive growth of online 

social networks. In spite of the widely available and diversified assortment of online social 

networks, most recent social network-based recommendations have concentrated on limited 

kinds of online sociality (i.e., trust-based networks and online friendships). Thus, this study tried 

to prove the expandability of social network-based recommendations to more diverse and less 

focused social networks. The online social networks considered in this dissertation include: 1) a 

watching network, 2) a group membership, and 3) an academic collaboration network. 

Specifically, this dissertation aims to check the value of users‟ various online social connections 

as information sources and to explore how to include them as a foundation for personalized 

recommendations.   

In our results, users in online social networks shared similar interests with their social 

partners. An in-depth analysis about the shared interests indicated that online social networks 

have significant value as a useful information source. Through the recommendations generated 
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by the preferences of social connection, the feasibility of users‟ social connections as a useful 

information source was also investigated comprehensively. The social network-based 

recommendations produced as good as, or sometimes better, suggestions than traditional 

collaborative filtering recommendations. Social network-based recommendations were also a 

good solution for the cold-start user problem. Therefore, in order for cold-start users to receive 

reasonably good recommendations, it is more effective to be socially associated with other users, 

rather than collecting a few more items. To conclude, this study demonstrates the viability of 

multiple social networks as a means for gathering useful information and addresses how different 

social networks of a novelty value can improve upon conventional personalization technology.  
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1 INTRODUCTION 

Information on the Web continues to grow very rapidly and is changing dynamically, ever since 

users have been contributing by continuously creating Web contents such as Wikipedia, blogs, 

social bookmarking and tagging, micro-blogging, etc. A statistic about Internet blogging 

suggested that blog posts being created by users daily equal the entire Web pages in mid-1995 in 

size [54]. The overwhelming amount of information available makes it difficult for users to find 

useful information. In order to cope with this information glut problem, recommendation 

technologies emerged. A variety of recommendation technologies have proven their 

effectiveness in a number of real-life applications such as Amazon.com, Last.fm, Netflix, etc. 

Because of the great potential for growth, not only industry but also academia paid a lot of 

attentions on the development of the technology. Among several streams of the related research, 

one important evolution of this technology is to generate recommendations based on users‟ own 

social networks, instead of anonymous peers – a new generation of social network-based 

recommendations (hereafter, SN recommendations). The idea to take advantage of users‟ social 

networks as a foundation of personalized recommendations evolved from an Internet trend which 

is too important to be neglected – explosively growing online social networks.  

Compared with the era when computer users remained in isolation, users on the Web 2.0 

have found it easier to find interesting people, as well as interesting information, through online 
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social network sites. Following the leading online social networking sites (a.k.a. social network 

sites; SNS in the abbreviation), such as LinkedIn, MySpace, Facebook, etc., various information 

systems have adopted collective intelligence where users are enacting both information supplier 

and consumer roles. Social bookmarking systems, image and video sharing sites, review sites of 

various goods (e.g. books, movies, songs, restaurants, etc.) are a few examples. The systems help 

users find other users whose interests are similar to theirs or familiar to them and, furthermore, 

encourage them to connect with these users. The self-defined online social links establish a rich 

source of information, which is, in turn, used to propagate various kinds of information [11, 18]. 

The users in these online SNSs acquire numerous useful resources, for instance, movies to 

watch, books to read, papers to refer to, bookmarks to explore, music concerts to enjoy, from 

their online connections. According to a recent statistic about online media, Web users in the 

United States spent 22.5 percent of online time on SNS sites (9.8% for online games, 7.6% for 

emails and 4.5% for portals) and as of the third quarter of the year 2011, four-fifths of active 

Web users visit SNSs and blogs. Over 140 million users visited the most famous SNS, Facebook, 

and over 50 million and 23 million users visited Blogger and Twitter, respectively, just in May, 

2011. Naturally, the opinions and information of online connections influence social media users 

to a large extent. Compared with the average adult Web users, active social media users are more 

likely to express their opinions about products and services (about 60% more), and a pair of 

online connections are more likely to follow the same brand (53%) or the same celebrity (32%) 

[47, 137]. Moreover, according to prominent social science theories (i.e. homophily and social 

influence), people make social connections selectively with other people who are similar to them 

and their  attitudes, beliefs and behavioral propensities are affected by and adopted to their social 
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ties. Therefore, with the proliferating online social networking applications and the abundant 

Web-based sociability, it is legitimate to expect to merge online social links with 

recommendation technology.  

In spite of the widely available and diversified online sociability, however, SN 

recommendation technology lies still in infant stage. In particular, according to the literature 

review introduced in the Chapter 2, most of the recent SN recommendations have concentrated 

on limited kinds of online sociality: trust-based networks and friendships. The relevant data 

sources are also restricted to very few kinds such as Epinions, Facebook and Last.fm. Due to the 

trouble to collect the data, sometimes researchers artificially built implicit social networks 

through machine learning approaches. In order to fill these critical needs, as a component of 

personalized recommendations, this dissertation aims to extensively explore newly emerged but 

less focused social network kinds. This study will investigate how to take advantage of users‟ 

online social networks as information sources to acquire useful information and how to generate 

recommendations based on those social networks.  

Conclusively, the significance of this dissertation is to check the availability of users‟ 

online social connections as an information source and to explore how to include them as a 

foundation of personalized recommendations. Now, there is one important question to answer. 

Which social network will be considered in this dissertation? The focus of this study is on users‟ 

self-defined online social networks, rather than implicit social networks inferred by a machine 

learning method. In case of the implicit social networks, depending on which machine learning 

method is used, the structure of the whole social network and social connections of individual 

users will be different. However, users‟ explicit social connections are declared by them, and 
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there is no chance that the members of social connections will be altered, unless the users change 

them. Most importantly, users know who their peers are. When a person makes social links by 

his own choice, it is known that his links affect widely the information he receives, the 

interactions he makes, and other various decision making tasks [18, 36, 106, 176]. Therefore, the 

information favored by his social connections could be legitimately useful and effective to be the 

source of his recommendations. Moreover, users will know that their recommendations are based 

on preferences of their social connections. By using users‟ explicit social connections, it is 

expected that SN recommendations can utilize not only the information about “what users like,” 

but also the information about “whom users are interested in.” Additionally, generating and 

accepting the recommendations is a decision making process. For this reason, it is important to 

know a source of recommendations (i.e., where the recommended information comes from). 

Once users know the source of their recommendations, it is known that user satisfaction about 

the suggested information increases [20, 164, 169].   

As a more elaborated question, which explicit social network will be considered in this 

dissertation? In spite of the explosive popularity of Facebook, every Web 2.0 application doesn‟t 

have the same kind of friendships as Facebook offers. Depending on the domain each system 

belongs to, the way to develop the sociability on the system, and the purpose of the sociality (i.e. 

how the sociality to be used on the system), there are several kinds. In order to prove 

expandability of SN recommendations to more diverse social networks, this study will consider 

three kinds of online social networks having high level of object-centered sociality: 1) watching 

network, 2) group membership and 3) academic collaboration network. Except for the academic 

collaboration network, the other two social networks exist online. Compared with offline 
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networks, they are relatively new and less bounded. Therefore, in spite of the continuously 

growing popularity, it is doubtful about the significance of the online social networks and 

whether the presence of the social relations defines the overlapped interests. Without any 

positive proof about this matter, the idea about the personalized recommendations using users‟ 

less focused online social networks is unworkable. The investigation about the shared interests of 

online social networks and how to measure the interests will be the first part of this dissertation 

(refer to the Figure 1). Once I find a reasonable degree of similarity in the users‟ self-defined 

social networks, the second part will develop recommendations which utilize the social networks 

and compare the recommendation quality with a conventional recommendation technology. The 

data source used for each kind of social network is different in terms of the data structure and the 

way for users to express their interests. Therefore, different recommendation algorithms for each 

social network kind will be examined.  

1.1 PURPOSE OF THE STUDY AND RESEARCH QUESTIONS 

The purpose of this dissertation is made up of two parts as shown on Figure 1.  

It is important to note that the promise of SN recommendations is based on at least one 

assumption: users share similar interests with their online social networks. In order to check this 

assumption, the first objective of this dissertation is to explore online landscape which is 

intricately comprised of information items and social connections collected by users. Many 

researchers whose research interests are social media have tried to understand the related online 
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landscape and to discover its meaningful links with real life. Then, they built practical 

applications on the basis of these discoveries. This dissertation is ultimately to find out valuable 

items for users in the haystack of information by utilizing users‟ online social connections. 

Therefore, one must understand how users‟ social network structure is correlated with their 

information collections, as the preceding investigation of SN recommendations. The first part of 

this dissertation shown on Figure 1 will address this first objective. 

   

Figure 1. The Structure of Dissertation 

The questions will be explored in this part are the following.  

 Q1. Compared with pairs of users who are not socially associated, is it true that socially 

connected users share more common interests?  

 Q2. What is a proper measurement for information similarity of two socially connected 

people? 
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 Q3. Do users have equivalent degree of common interests with their social connections as 

they do with their top N anonymous peers, which are chosen by conventional collaborative 

filtering recommendations (CF recommendations, hereafter)?  

The second objective of this dissertation is to develop and evaluate recommendation 

algorithms using users‟ online social networks. Through the survey of the existing SN-based 

recommendation studies (Section 2.3), it is found that SN recommendation technology is still in 

infant stage. Mainly due to the limitation of available data sources, most of the SN 

recommendations are limited to two kinds of social networks - trust-based social networks and 

friendships. For friendship-based recommendations, most of the studies have focused on the 

acceptability of recommendation directly suggested by friends, rather than the improved quality. 

On the other hand, while trust network-based recommendations have tried to improve 

recommendation quality through the social network, the researchers recurrently used the same 

data set – Epinion.com. Although online social networks and sharing interesting information via 

the networks are ubiquitous on the current Web applications, we hardly find the attempts to 

utilize more diverse sociability and their interactions in recommendations. Therefore, this study 

will demonstrate the viability of less focused online social networks as a means for gathering 

useful information and the potentials of SN recommendations on various collective intelligence 

applications. The specific questions to be considered in this part are the following.  

 Q4. Do SN recommendations produce better suggestions than traditional CF 

recommendations? 

 Q5. For a given three kinds of social networks, are all of them useful sources of information?  

 Q6. Can SN recommendations solve cold-start user problem?  
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1.2 CONTRIBUTIONS OF THE STUDY 

The contribution of this study is twofold. First and foremost, compared with existing SN 

recommendation studies, the three kinds of social networks considered in this dissertation are 

relatively underused. They were rarely taken advantage of as a component of established SN 

recommendations. Therefore, it is expected that this study will demonstrate the potentials of new 

types of SN recommendations. There has been little research to date that investigates the 

feasibility and significance of various social networks for the sake of personalizing users‟ 

information spaces. Existing studies have focused on limited kinds of social networks. This may 

be caused by restricted number of available datasets. Otherwise, the researchers put too much 

emphasis on a few popular social networks, such as trust networks on Epinions.com and 

friendship on Facebook. However, while the three types of social networks introduced in the 

study are widely used in several applications, and users actively participate in the social 

networks, they have been rarely used as a component of personalized recommendations. This 

study addresses how different social networks of a novelty value can improve conventional 

personalization technology.  

Second, it will add significantly new insight into how feasible the online social networks 

as sources of useful information. This study intends to reveal in-depth understanding of users‟ 

online social landscape where the social structures are intertwined with knowledge cultures. In 

other words, this study provides a comprehendible picture of diverse online sociability and 

knowledge sharing patterns. Nowadays, several kinds of new sociability emerge to distribute and 

acquire information. It is speculated that users on social applications may enjoy the social 
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interactions around shared information, and some studies prove that this speculation is true [92, 

96, 191, 201]. However, the nature of various social networks relating to information similarity 

among members of the networks has not been identified comprehensively in literature. Most of 

the recent studies investigated how preeminent social science theories explored through small-

size social data are different with large-sized online social data [136]. In addition, like the studies 

about social recommendations, the studies about online sociality are too much biased to a few 

popular collective intelligent sites, such as Facebook, Twitter, Wikipedia, etc. [53, 78, 84, 89, 

171, 183] With evolving knowledge society around online social network, this study aims to give 

new insights and understanding about social interaction patterns centered on information objects. 

Therefore, it is expected that this offers practical insights to social media researchers and social 

application developers about how to utilize social networks as a critical mechanism to develop 

users‟ knowledge and improve their management of information.  

1.3 STRUCTURE AND OUTLINE 

This section provides an outline for the dissertation starting with the literature review.  

Chapter 2 comprises a literature review on the recent studies about the interest similarity 

existing in online social networks, issues of conventional CF recommendations and the trends of 

recent SN recommendations. One element that explained in this literature review was the 

theoretical background describing various online social interactions in psychological view points 

and discussing how recommender system can use online social networks as a supportive 
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mechanism for users to manage their information spaces. In addition, by studying the state-of-

the-art technologies of CF recommendations, I will explain why SN recommendations are 

necessary as an alternative of CF recommendations. Lastly, this section illustrates how recent 

works of literature about SN recommendation have used online social networks as foundations of 

the information personalization. This investigation of recent literature identifies that it is 

necessary to expand the SN recommendations into the technologies using more diverse and less 

focused social networks.  

Chapter 3 introduces three kinds of social networks considered in this dissertation and 

explains the theoretical background about why these social networks are chosen. It provides the 

description of the concept of “object-centered sociality” and “personal familiarity” as theoretical 

backgrounds, since online social networks are made up of social structure and knowledge 

cultures mainly developed through these theoretical backgrounds.   

Chapter 4 presents brief descriptions of information similarity measures and 

recommendation algorithms used in this dissertation. Even though more detailed explanations 

about similarity measures and SN recommendation algorithms specialized for a social network 

will be explained in each corresponding chapter of the social network, it is a necessary process to 

understand the similarity measures and recommendations. In particular, the chapter explains why 

each measure and recommendation algorithm was chosen among various options.  

From chapter 5 to chapter 7 provides the findings regarding each social network.  

Chapter 5 describes the results of bookmark recommendations using users‟ watching 

network. In this chapter starting with the description of data source, since this unilateral 

relationship is newly emerged, the first part of this chapter suggests the proofs that watching 
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relations share similar interests and the feasibility of watching relations as useful information 

source. Using the outcome of the first part, the second part will explore the recommendations 

utilizing watching relations‟ information. The quality of this watching network-based 

recommendation was compared with traditional CF recommendations.  

Chapter 6 describes bookmark recommendations using users‟ group memberships. In 

case of group memberships, there are two references to be considered – group per se and group 

co-members. When members of a group are able to collaboratively compose their group 

collection and additionally, each member also manages their personal information collections, it 

is curious which reference is more useful for users to acquire useful information. The first part of 

this chapter compares the information similarity of users with their groups or their co-members. 

The second part of this chapter is to generate recommendations using these two references and 

compare the quality with traditional CF recommendations.  

Chapter 7 presents conference talk recommendations using users‟ collaboration network. 

According to the literature review, it is the first attempt to suggest talk recommendations. 

Collaborative network is a kind of professional relationships and highly correlated with their 

shared research interests. Therefore, it is expected that the talks that I am interested in could 

interest my colleagues. Therefore, in the first part of this chapter checks the presence of the 

shared research interests between colleagues. The second part is to generate recommendations 

using the collaboration network. In particular, in this study, recommendations are produced not 

only using the collaboration networks but also another kind of social network existing on the 

recommendation system. The quality of these two recommendations will be compared alongside 

CF recommendations.  
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The final chapter summarizes the major findings of this study. The findings for each 

question are presented as the answers of the research questions. Through answering research 

questions, the implications of the final results of the study are discussed. Following the 

discussions of the implications and research findings, limitations of the study and directions of 

future study are presented. 
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2 BACKGROUND AND LITERATURE REVIEW 

In this chapter, I address several issues related to the topic of this dissertation. First, since main 

topic of this dissertation is to tailor users‟ information spaces based on the preferences of their 

online social connections, this literature review will start with the introduction of the studies 

about why users‟ online social networks can be a useful information source from a social science 

point of view. Secondly, various recommendation technologies will be explained. Since this 

study is to utilize users‟ online social networks as a part of their personalized recommendations, 

a basic understanding about the recommendation technology cannot also be overlooked. In this 

section, particularly, the problems of the current recommendation technologies and the needs of 

an alternative recommendation technology will be mentioned. In the third section, the in-depth 

understanding of existing recommendations based on social networks will be addressed. With the 

explosive popularity of online social networking sites, there are several attempts to take into 

account the online sociality in the information personalization (i.e. personalized 

recommendations). I present the current trends and explain the value of social network-based 

recommendations and its potentials as a solution of the current recommendation problems. In 

addition, I investigate whether the recent research of social network-based recommendations has 

any missing part to fill in. Lastly, since some of the data sources used in this dissertation are 

constituent of social tags, I introduced several relevant studies. Unlike numeric rating-based user 
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preferences, social tags express users‟ cognitive understandings or users‟ various view-points 

about items. Therefore, existing studies which considered social tags as users‟ preferences will 

be introduced in the last section.  

2.1 ONLINE SOCIAL NETWORKS AND THE INTEREST SIMILARITY 

This dissertation aims to assess how users‟ explicit online social networks are feasible as 

information sources and further, as foundations of personalized recommendations. The idea to 

utilize users‟ social networks in personalized recommendations is based on two preeminent 

theories about sociality – homophily and social influence. First, an old proverb saying “birds of a 

feather fly together” articulates with the definition of Homophily. 

“Homophily is the principle that a contact between similar people occurs at a 

higher rate than among dissimilar people ([127, p.416]).” 

This theory insists that people make social connections selectively with the other people 

who are similar to them, for instance, in terms of age, gender, religion, ethnicity, educational and 

occupational class, social positions, etc. Along with the homophily based on these personal traits, 

there is homophiy based on people‟s perceived values and their internal states (i.e. value 

homophily). Therefore, it is also called as social selection [37]. A researcher suggested that the 

desire to be connected to the similar people is because of social comparison [50] and another 

researcher suggested that it is related to constructuralism [31]. People tend to use the others who 

are similar to them as a reference group and compare themselves with the reference to get 
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information or make a decision [50]. On the other hand, there is another suggestion that, due to 

the ease of communication, shared knowledge and other factors which make the interactions 

comfortable, people are more likely to construct social connections with the similar people [31, 

117]. One psychological study showed that the perceived similarity is related to the attraction, as 

well [72].  

As one of the exemplary studies, Barrtarjav, et al. (2005) shows homophily in online 

groups. In the study based on Facebook data, the authors focused on the group members‟ 

personal traits such as age, gender, religion, living area, political opinions, etc. They built 

clusters solely based on these traits and found distinguishable characteristics of each group. 

Depending on the discovered characteristics, they recommended a group to join and their 

recommendation accuracy was 73% on average. Therefore, similar people get together as a 

group. However, while they built the clusters, they excluded outlier users whose traits are not 

similar to the other members, and the outlier users (32% of the users in their data) were not 

covered by the recommendations. Put differently, for one-third of the users in consideration, the 

system was unable to find any recommendable group to join because they were classified as 

noises. Conclusively, people choose a group consisting of other group members who are similar 

with them. However, not only the similarity, there are other factors affecting the choice of groups 

as well, perhaps, such as social network structures in a group, usefulness of the information that 

each group has, etc. [15]  

While homphily explains a mechanism how and why people selectively choose their 

social partners, social influence explains how people are affected by their social partners. Social 

influence represents the situation where people‟ attitudes, beliefs, and behavioral propensities are 
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affected by and adopted to their social ties [36, 37]. Deutsch and Gerard (1955) distinguished 

social influences into two distinct processes according to the expected results of the influences – 

normative influence and informational influence [43]. Normative influence is an influence to 

conform to the positive expectation of their friends or group members. The authors suggested 

that this influence process is based on the fact that people are interdependent with the others and 

seeks the social approval. Therefore, rather than normative influences between two people (e.g. 

friends), the normative influence among a bunch of people (e.g. group members) are stronger. 

People under this influence desire to be a member of a group or a small social network and 

sometimes, this influence transformed into power to urge them to coercive compulsion and 

compliance [43, 153]. A researcher interpreted this influence is rather emotional and irrational 

[176]. As another kind of influence, informative influence refers to “an influence to accept 

information from another as (trustworthy) evidence about objective reality [176, p.35].” This 

influence is motivated by ambiguity and uncertainty of reality. When people are not sure about 

an accurate view of reality and whether they are acting in a right way or not, they seek 

conformity from other people who are similar or have expertise and credibility. It is known that 

the desire of conformity is decreased by the increasing certainty of the reality or situation. This 

informational influence is also a part of social comparison [43]. Therefore, another researcher 

discriminated this informational influence from the normative influence in the point that the 

former is formed for a long time and internalized without any outer pressure [177]. While 

Deutsch and Gerard suggested that two influences occur together, in the current Web 2.0 era of 

which the information is created by countless anonymous Web users, the informational influence 

can occur by itself to collect accurate and useful information. As the results, it is critical to 
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choose the social partners whose information is reliable and accurate. By experiencing various 

SNSs, it seems that Web users are knowledgeable about the importance of reliable social 

partners. It is because, through this social influence, social capital is more valuable than ever, 

and SNSs is one of the most important marketing tools [106].  

Brzozowski and the colleagues (2008) examined social influences of three kinds of social 

connections – friends, allies and foes. In their paper, friends are based on personal familiarity 

(i.e. strong ties). Allies do not necessarily have personal familiarity but share similar ideologies 

(i.e. weak ties) (The data source of this study is online forum for political debates; hence users‟ 

ideologies are important criterion to consider). Foes are the ones having conflicting ideologies or 

political views (i.e. negative tie). In the study using an online forum which aims to vote on 

various controversial political topics and to share the related opinions, they examined what 

resolves users vote on and how they will vote. They found that users‟ friends were more 

influential in the choice of resolves to vote on than allies and foes. That is to say, when their 

friends voted on a certain resolve, users are more likely to vote on the same resolve. In addition, 

interestingly, users tend to avoid resolves that they foes already voted on. However, users voted 

resolves in more similar pattern with their allies than with their friends or foes. Of course, users 

did the least agree with their foes. They concluded that strong ties play a more important role as 

a social filter than weak ties or negative ties [28]. However, it seems that all three ties played 

certain roles as social filters. For instance, strong ties and negative ties are important in the 

choice of items to consider and allies are important to acquire favorable items.  

Singla and Richardson (2008) also tested how frequent contacts affect social connections‟ 

interests. The authors computed the correlations between instant messenger logs and the 

http://www.citeulike.org/user/chrisd/author/Singla
http://www.citeulike.org/user/chrisd/author/Richardson
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similarity of search queries. The results demonstrated that search interests of a user pair who 

exchanged instant messages to each other frequently were more similar than interests of random 

pairs. Moreover, the longer they talked, the more similar they were [163]. 

Another study [3] explored semantic similarity among social contacts. They examined 

word terms on the Stanford and MIT personal home pages and the users‟ social connections. The 

terms in homepages, in-links, out-links and mailing lists were analyzed to see how the 

information similarity predicts the friendship connections. All these four kinds of information 

appeared to be similar for socially connected users. There was also proportional co-relationship 

between information dissimilarity and the relationship distance [3]. 

Yang and Chen‟s research (2008) was also based on social influence. In an educational 

P2P system, knowledge and social networks were combined to suggest items to download. 

Firstly, the system picked up the most knowledgeable and the most preferred users and then 

suggested the target user to interact with the picked users using instant messenger. As time goes 

by, the more often a user had interacted with the target user, the more likely his information was 

recommended to the target user. The authors considered social networks not only through the 

strength of a tie at a certain time point but using evolving change of the tie. Even though the 

thoughtful design of recommendation structure, the limitation of this study is too much 

requirement of human interventions. In order to choose the most knowledgeable user for a query 

term, the system needed evaluations of human experts. The users‟ preferences about other users 

were also based on the explicit ratings. Differently from this educational domain, in general 

system, it is impossible for human experts to evaluate knowledge of every individual and let 

users to give ratings for all other users [191]. 
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Although social science researchers theoretically distinguish between the homophily and 

social influence, the theories suggest one common point – similar interests between social 

connections. Homophily indicates existing similarity prior to the social relations, and social 

influence shows evolving similarity through interactions with social relations. In addition, two 

theories are highly correlated to each other. The cumulative studies about the homophily have 

showed that the social relations with the similar people affect a person‟s way of thinking, his 

attitude, the information for him to choose, and many other his personal perspectives [127]. 

Furthermore, when two socially associated people are alike to each other, their reciprocal 

influence is stronger and longer than another pair who is less similar to each other [126]. 

Therefore, many studies about social dynamics of online social networks have focused on 

whether a pair of social connections bears similarity or not, regardless if the similarity is an 

existing one or evolving one.  

Ziegler and Golbeck (2007) compared interest similarity between people in a social 

network in traditional CF context. They used user information and the user‟s trust-based social 

networks in the book and movie recommendation domain. For the book data set, to lessen the 

data sparsity problem, they grouped the items by topics using an existing taxonomy, rather than 

counting each book. Since this study focused on the similarity of users‟ topics of interests 

derived from the taxonomy, not from the books per se, it was hard to see a clear picture of 

information similarity on the item level. As the authors pointed, the similarity is highly 

dependent on the taxonomy‟s design. Yet, in the second study with movie data set, they 

compared user similarity on the level of individual items and found that the average ratings of 

each movie became more similar as two users trusted each other more [200]. 
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Referral Web [83] was an information retrieval application utilizing social influence. In 

this system, the authors extracted social network information automatically through publically 

available Web information such as co-authorships of papers, organizational charts, or message 

exchanges in newsgroups. Social network was used as a way to disambiguate search queries and 

to reorder the search results. The system chose a certain term which the direct or indirect social 

networks of a searcher are familiar with if there are synonyms and gave a higher priority to the 

results more related to the searchers‟ social connections [83]. 

There are also some social interaction-based games such as Dogear and ESP game. Using 

knowledge about „who is interested in what‟ among our social connections, users guess who 

might own the suggested information among their social connections. When a user‟s guess is 

incorrect, the system asks him whether the friend they guessed could be interested in, and if the 

answer is positive, it recommend it to the corresponding friend [45, 180].  

2.2 RECOMMENDATION TECHNOLOGY: STATE OF ART 

The overwhelming amount of information available on the Web makes users difficult to locate 

the right information on the right time. Personalized recommendation technologies emerged as a 

solution of the information glut problem and have proven the effectiveness in a number of real-

life applications, such as Amazon.com, Netflix, Last.fm, Youtube, and Google, just to name a 

few. The statement of Jeff Bezos, CEO of Amazon.com explained what recommendation systems 

are for.  
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“If  I have 3 million customers on the Web, I should have 3 million stores on the 

Web [159].” 

Depending on how to derive users‟ preferences and how to select candidate items, the 

technologies are classified into three kinds – collaborative filtering based, content-based and 

hybrid recommendation [4, 29, 147].  

As the first recommendation technology, collaborative filtering (CF) recommendations 

employ a process of „word of mouth’ systematically. The power of this technology is based on a 

relatively simple idea: start with a target user‟s ratings, find a neighborhood of users who have 

similar interests to the target users and recommend items favored by this cohort to the target 

users. Because the technology mainly analyzes patterns of ratings across users or items, it has 

been possible to discover presumably favorable items without analyzing any content properties 

of items. For taste-oriented domains (e.g. music, pictures, videos, movie, jokes, cultural events, 

etc.) where content information is unavailable, or the tastes and interests are hardly captured by 

content properties, CF technology is an only viable technology. A common algorithm to find a 

target user‟s cohort is to compare the similarities using K-Nearest Neighbor (KNN) approach. 

Euclidean distance and Pearson correlation are widely used similarity measures to find the 

neighborhood [160, pp. 7 ~ 28]. Clustering models, Bayesian Network model, Gibbs sampling, 

probabilistic relational model, a linear regression,  maximum entropy model, and matrix 

factorization of user-rating matrix are other algorithms used in CF technology [4, 24, 42]. Not 

only rating similarities among users but similarities of metadata or properties among items are 

taken into consideration [70]. 
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In spite of the strengths and big success in both academia and industry, questions about 

CF recommendation quality have been arisen, because personal recommendations are utterly 

tailored by the tastes of unknown users who are selected by fully automated similarity 

calculations [159]. When ad-hoc users who have malicious intentions attempt to distort systems 

or make profits, the CF recommendation systems are totally vulnerable. In an actual incident 

about Amazon‟s sex link gaffe
1
, a group of ad-hoc users intentionally copied the whole profiles 

of Amazon.com users who bought a Christian spiritual guide book, and the recommendation 

system picked these ad-hoc users as perfect peers. Naturally, the recommender system suggested 

the items favored by the ad-hoc users, as it turned out, which were male sex manuals [194]. A 

group of ad-hoc users are also able to reinforce their own ratings and shift the recommendation 

predictions to the directions they intended [140]. Beyond these examples, there are several 

studies showing the vulnerability of CF technologies to the attack of malicious users [91, 119, 

128, 140]. Even for well-intended users, if their tastes are eccentric (so called „black sheep 

users‟), it is not easy to find their peers due to the little overlap in tastes with other users [159]. 

CF recommendations also suffer from other problems like data-sparsity problem, cold-start 

users, and computational overload. When there are too many items to be rated in comparison 

with the total number of users or when the items last for a short period of time (e.g. job openings 

and news articles), the rating data is distributed too sparsely or lasts too short for the system to 

find sufficiently co-rated items among users [4, 130, 159]. For the cold-start users who just join a 

system and have insufficient number of rated items, it is also impossible or very difficult to 

generate CF recommendations [4, 118, 159]. Additionally, because CF recommenders require to 

                                                     

1
 http://news.cnet.com/2100-1023-976435.html  (accessed on April 18, 2011) 

http://news.cnet.com/2100-1023-976435.html
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compare one target user‟s taste with the tastes of all other users, it is computationally very 

expensive [118]. I suggest that all of these problems and shortcomings of CF technology occur in 

part because the CF recommendations are replying on fully automated similarity computations in 

the selection of peers. Although users are the recipients of CF recommendations, the system 

doesn‟t allow them to get involved in the recommendation process. Once CF recommender 

systems choose their peers, users don‟t know who they are and are unable to include or exclude 

peers as they want, even though the source of the recommendation is important criterion for 

judging the quality of recommendations [20]. Therefore, it is required to reconsider the current 

CF recommendation technologies in order to find a way to make users to participate in their own 

recommendation process.  

As the next recommendation technology, content-based recommendations learn user 

preferences from the content of their favorite items and similar information are suggested to 

users based on the content properties [134]. Typical content based recommendations analyze full 

text content and otherwise case-based recommendations, which is a special kind of content 

recommendation, analyze semi-structured or fully-structure meta data [123]. Various information 

retrieval technologies, for example, decision tree, rule induction, nearest neighbor methods, 

VSM, linear classifier, probabilistic language model, naïve Bayes, and artificial neural networks 

are the algorithms for content-based recommendation [4, 130]. The strength of content-based 

recommendation is that cold-start problem can be reduced because the recommendations are 

available with small number of ratings or even no ratings [147]. However, the weakness of this 

recommendation technology is to suggest too obvious and boring recommendations [147]. If 

there is an outbreak of gun violence, for example, it will be constantly on the news and in the 
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papers and magazines. If users expressed interests on a relevant news article, their 

recommendations will be plastered with a bunch of the same news about this gun violence due to 

the same contents.   

Finally, hybrid recommendations are to combine more than one recommendation 

technology. As introduced, each recommendation technology has the pros and cons. In order to 

make up for the shortcomings and maximize the recommendation capability, various hybrid 

systems have been introduced. Especially, not only the CF and content-based recommendations, 

but other less popular recommendation technologies such as knowledge based or demographic 

based technologies have been hybridized [29]. Ziegler, et al. (2004) introduced possibility of a 

new hybrid approach through CF technology and metadata –a „collaboration via content‟ 

approach. In book recommendation domain, they applied topic-related taxonomy information to 

users‟ favored book list. They matched each book with topics in a taxonomy using descriptive 

terms such as topic descriptors and then built user profile vector using the matched topics. 

Therefore, the system was able to generate recommendations for two users who do not have any 

common book. The user and book information were collected from AllConsuming and book-

related taxonomy was book category of Amazon.com. Especially, since the taxonomy was 

hierarchical, the decayed weights of super-topics were considered. For the evaluation, the 

authors compared their taxonomy based CF recommendations with the „naïve‟ random 

recommendations and traditional CF recommendations using item-to-item comparison. In the 

experiment by k-folding evaluation, the precision and recall of the taxonomy based CF 

outperformed other approaches. They also evaluated the recommendation with 51 subjects and 

the ratings and satisfactions for taxonomy based CF were better than the others [202]. 
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Melville, et al. (2002) explored a hybrid movie recommendation to address data sparsity 

and cold-start problem. Users‟ sparse ratings were converted to pseudo-ratings based on content-

based predictions. In specific, users‟ movie ratings acquired from EasyMovie were extensively 

inferred by movie content information (title, director, cast, genre, plot summary and keywords, 

user comments, external reviews and awards) collected from IMDb. Therefore, when computing 

user-to-user similarities, even though two users in consideration didn‟t co-rate the same items, 

once they rated similar items (i.e. the contents of the rated items are similar), the 

recommendations system concluded that they have similar tastes and this is the pseudo-ratings. 

Then in order to ensure the accuracy of the pseudo-ratings, Harmonic Mean weighting (HM 

weighting) was used. If the pseudo-ratings are based on at least 50 co-rated items, the weight will 

be the highest, and otherwise the weight is devalued accordingly. For comparison, their content-

boosted CF was compared with pure content-based, pure CF and naive hybrid method (which is 

the recommendations simply averaged out ratings from pure CF and pure content-based 

predictions). In the evaluation using MAE (Mean Average Error) and ROC (Receiver Operating 

Characteristic), their recommendations of content-boosted CF were better significantly [130].  

Li and Zaiane (2004) also suggested a way to solve a data sparsity problem and a cold-

start problem in the recommendations of Web pages using hybridization. User preferences of this 

study do not rely on users‟ ratings but are based on users‟ usage patterns. By analyzing content 

information of every visited Web page, users‟ navigational logs were split into missions under 

the assumption that each session consists of several interests or missions. Therefore, to make 

content coherent clusters, pages having similar content within a session were grouped together. 

These clusters of all users were aggregated as navigational model. When a user starts a new 
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session, the system identified the navigational pattern and tried to match the pattern with the 

already defined navigational models and recommend the best Web sites to visit. The results from 

experimental evaluation based on a university department Web site showed that their algorithm 

performed better than association rule-based system in terms of accuracy and coverage [103].  

Implicit preference inferred by users‟ usage patterns, however, may be incomplete, limited or 

inaccurate due to the poor design of web sites or incorrect heuristics. Especially, newly added 

Web pages have little chance to be suggested as recommendation because it is not included in the 

usage history. 

2.3 SOCIAL NETWORK-BASED RECOMMENDATIONS 

Due to the effectiveness and technical innovativeness, as explained, CF recommendation 

approach has succeeded in many real-life applications. However, one of the weaknesses of the 

current CF recommendation technology is the lack of user involvement. Even though users are 

the recipients of recommendations and the recommendations come from the information they 

contribute, the recommender systems don‟t allow them to get involved in the recommendation 

process. In addition, due to the utterly automated recommendation process, the selection of peers 

is a black-box to users. Users don‟t know who their peers are, even though their 

recommendations completely tailored by the tastes of the anonymous peers. When users want to 

include their self-selected peers or to exclude unwanted peers, there is no way to do so.  
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Even though the current collaborative filtering recommendation is totally relying on the 

wisdom of crowds from anonymous peers, in early generation of the CF recommendations, 

users‟ social networks were core parts of the recommendation process. One of the earliest CF 

recommendation systems, Tapestry, was based on explicit social connections and allowed users 

to retrieve personalized contents, using annotations added by their friends and colleagues [159]. 

Another pioneering CF project combined explicit social connections with the active “push” 

approach: users could directly send interesting research papers to other colleagues [115]. 

However, these pioneer systems relied on exchange of information within a “small world” and 

found it difficult to retain users and to keep them actively contributing to the recommendation 

process. As the CF-based algorithms became mature, automatic recommendations by 

computation are now dominant. Thanks to the success of various SNS sites, however, we are 

now able to have abundant information about less bounded and wider ranging online social 

networks. In addition, with the help of Web 2.0 applications, it became much easier to share our 

current interests and activities more actively than the era before the Web 2.0. Therefore, in order 

to let users get involved in the recommendations, rather than asking users‟ addition input about 

their preferences, it is effective to utilize their existing online social networks. In this section, I 

introduce the recent studies about social network-based recommendations and address some 

lacking points of this research trend.  
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2.3.1 Definition of Social Network-based Recommendations 

When this social network-based recommendation is one of the critical and innovative matters of 

information personalization research, first, we need to define what the social network-based 

recommendation is. According to the literature review, there is not one solid definition of this 

technology. Depending on the purposes of their studies, researchers defined this recommendation 

technology in broad ways. The following is the varying definitions of social network-based 

recommendations. 

 Recommendations based on users‟ explicit (i.e. self-defined) social networks  

 Recommendations based on users‟ implicit social networks which are inferred by their 

information or profile similarity with the other users 

 Recommendations based on communication patterns among intelligent agents, not human 

beings. 

 Studies to recommend social partners using traditional recommendation methods.  

 Studies to explore how people feel trustworthiness on suggested recommendations 

 Studies under the name of „social recommendation‟, even though the proposed 

recommendation was the traditional collaborative filtering approach which is purely based on 

collective intelligence of social systems or  social media without any consideration of users‟ 

social networks 

The purpose of this dissertation is to explore various recommendations studies utilizing 

users‟ explicit social networks. That is, the social networks considered in this dissertation are the 

ones explicitly defined by user. Therefore, this study is following the first definition. The 
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explicitly defined social connections are important because they have social influence to each 

other and embed a value as social capital. Once users started their social relations with own 

choice, they know who their social partners are and pay attentions to their partners‟ online 

activities. Hence, they are easily affected by their social partners. The recommendations using 

users‟ explicit social connections take into account not only the information about „what users 

like‟, but also „whom users are interested in.‟ The current CF recommendations are assumed that 

the roles of all users in the recommendations are equal, in turn, „role uniformity [173].‟ However, 

generating recommendations and accepting the suggestions are decision making processes. 

Every user has different interests, specialized knowledge, and especially different social context 

and social roles in terms of the kind and strength. For this reason, it is important for users (i.e. 

the recipients of recommendations) to define the foundations of their recommendations and to 

know a source of recommendations (i.e., where the recommended information comes from). 

Table 1 summarizes existing recommendation studies based on users‟ explicit social networks.  

On the other hand, there are several recommendation studies based on users‟ implicit 

social connections. Implicit social connections mean that user-to-user links are inferred by 

automatic computations of a machine. Thus, the choice of machine learning methods and the 

computation details are the major determinants of the users‟ implicit social networks. Put 

differently, depending on what kind of machine learning method is used, users‟ social partners 

will be changed. In addition, users are unable to know who their social partners are, and hence it 

is hard to expect the resultant social interactions such as social influence and social capital. 

Debnath, et al. [40], Liu and Maes [109], Lumbreras and Gavalda [110], O‟Donovan & Smyth 

[140, 139], Palau [143], Stecher, et al. [165], Victor, et al. [179], Walter, et al. [181], Pitsilis and 
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Knapskog [150], Xue, et al. [190] are the recommendations studies based on implicit social 

networks. The practical reason why the researchers chose the implicit social networks instead of 

explicit ones is the lack of available data sources. Actually, the data sources available for social 

recommendations (which consist of users‟ ratings or bookmarks and their social connections) are 

severely limited. In the following section, I will explained this matter in more details, but since 

the researcher have a difficulty to find eligible data sources for their recommendations, they just 

created their own using machine learning methods.  

The studies belonging to the third definition are focusing on how to exchange 

information from one machine to another machine, not the information sharing among human 

beings. Depending on how one machine is trustworthy to another machine, the trust values are 

inferred and propagated. Olsson [142], [90] and Shi, et al. [162] are the examples.  

As another kind of social network-based recommendations, there are attempts to 

recommend people (i.e. social connections), instead of favorable information objects. The 

recommended people could be a male/female to date [5, 88, 151, 152], a person to befriend with 

[7, 30, 63], a colleague to work with [100, 101, 125, 173, 189] or a community to join [6, 184]. 

However, this dissertation is to suggest users their presumably favorable items. Hence, the topic 

of this research trend is out of my focus for now. Nonetheless, the people recommendations are 

one of the most active areas of research regarding the recommendations and one of the most 

important research agenda along with the social network-based recommendations of items.   

The studies belong to the fifth definition is to explore users‟ perceived trustworthiness 

about recommender systems. Since this kind of research focuses on assessing how recommender 

systems have generated reliable suggestions, it is important aspect we need to take into account, 
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but the focus is not quite matched with the points that this dissertation intends. Masthof [120] 

and Wang and Varadharajan [185] are the examples of this kind.  

Lastly, there are other studies just borrowed the terminology from „social 

recommendations‟. The technology and topic of the studies which belong to the last sixth 

definition are nothing to do with social recommendations or social network-based 

recommendations in our consideration. They investigated how to use the traditional collaborative 

filtering recommendation technology in social applications or social media. Groh, et al. [146], 

Sanchez, et al. [157], Victor, et al. [178] and Zhou, et al. [198] are the examples.  

As mentioned, the main focus of this dissertation is the personalized recommendations 

based on users‟ explicit social networks. Rooted on this definition, the relevant studies are 

reviewed. The following section will give us basic understanding of the current trends and 

address the lacking points. 
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Table 1. Summary of Social Network-based Recommendations 

Paper Input Recommendation Method 
Kinds of Social 

Networks 

Target Items and 

the Dataset  

Trust Network-based Recommendations 

Avesani, et al [14] 

Ski resort routes and 

users‟ FOAF (Friend-

Of-A-Friend)  

Selective choice of information entered by reliable 

users 

FOAF and the trust 

values 

Ski Resorts 

(Moleskiing.it) 

Al-Sharawneh & 

Williams [8] 

Item ratings and users‟ 

trust ratings 
Hybridization of trust values and item ratings Trust-based networks 

General Items 

(Epinions) 

Chia & Pitsilis [35] 
Item ratings and users‟ 

trust ratings 

Filtered peers based on trust ratings and user 

properties such as experience level and rating 

similarity 

Trust-based networks 
General Items 

(Epinions) 

DuBois, et al. [44] 
Item ratings and users‟ 

trust ratings 

Modification of CF recommendation with 

Clustering coefficients of trust networks 

(correlation clustering algorithm) 

Trust-based networks Movies (FilmTrust) 

Golbeck & Hendler [56] 
Item ratings and users‟ 

trust ratings 

TidalTrust (trust network inferring algorithm 

according to social distances) 
Trust-based networks Movies (FilmTrust) 

Guo, et al. [62] 
Item ratings and users‟ 

trust ratings 

The nearest neighbors were chosen from users‟ 

anonymous peers and their trusted connections in a 

unified way.  

Trust-based networks 

Movie (FilmTrust & 

Filxster) and general 

items (Epinions) 

Jamali & Ester [73] 
Item ratings and users‟ 

trust ratings 

1) content similarity computed by ratings and 2) 

random walk 
Trust-based networks 

General Items 

(Epinions) 

Jamali & Ester [74] 
Item ratings and users‟ 

trust ratings 

Latent feature and trust propagation induced by a 

matrix factorization technique  
Trust-based networks 

General Items 

(Epinions) & Movies 

(Flixster) 

Ma, et al. [112] 
Item ratings and users‟ 

trust ratings 

Fusing user-to-user social matrix with user-to-item 

rating matrix using the probabilistic factor analysis  

Trust-based 

Networks 

General Items 

(Epinions) 

Matsuo & Yamamoto 

[122] 

Item ratins & users‟ 

trusted networks 

„Pull‟-based recommendation of trust-based 

networks (when a trusted party posts a new 

product with positive opinion, the recommender 

system picks that product for the trusting user as a 

Trust-based networks Cosmetics (@cosme) 
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recommendation).   

Mgureanu, et al. [114] 
Item ratings and users‟ 

trust ratings 

Based on user‟ ratings patterns and their trust 

statements, the system clustered users and 

recalculated the trust ratings and infer the trust 

values to other users.   

Trust-based 

Networks 

General Items 

(Yahoo! Webscope & 

Epinions) 

Massa & Avesani [119] 
Item ratings and users‟ 

trust ratings 

Combination of rating similarity and direct or 

propagated trust ratings in the selection of peer 

cohorts 

Trust-based networks 
General Items 

(Epinions) 

O‟Doherty, et al. [141] 
Item ratings and users‟ 

trust ratings 
Hybridization of trust values and item ratings 

Trust-based networks 

& Implicitly inferred 

trust-based links 

Movie (FilmTrust & 

Filxster), Dating 

Partners (LibimSeti), 

General Items 

(Epinions) 

Walter, et al. [182] 
Item ratings and users‟ 

trust ratings 

Prediction of ratings according to the ratings of 

users‟ direct and indirect trust-based social 

networks 

Trust-based networks 
General Items 

(Epinions) 

Friends-based Recommendations 

Bonhard, et al. [21] 

Users‟ demographic 

profile and users‟ 

ratings 

Direct recommendations from friends who know 

target users well with explanations of 

recommenders‟ identity 

Friendships 
Movies 

(MovieMatch) 

Bourke, et al. [22] 

Users‟ favorite items 

and choice of friend 

neighborhood 

Aggregation of items favored by users‟ friend 

neighborhoods 
Friendships 

Movies/TV 

(Facebook) 

Pera & Ng [148] 

Users‟ favorite books 

including the tag clouds 

and the average ratings, 

the ratings given by all 

users and users‟ social 

connections  

Hybridization of tags assigned to books and users‟ 

friendships information (In the choice of candidate 

items, content information used and the 

subsequent rating prediction, the ratings given by 

users‟ friends were taken into account) 

Friendships 
Book (Amazon and 

LibraryThing) 

Sinha & Swearingen 

[164] 

Users‟ buying/browsing 

history and the names 

of their friends 

Direct recommendations from friends who know 

target users well. 
Friendship 

Books  

(Amazon, Sleeper & 

RatingZones) and 

Movies  

(Amazon, Reel.com, 

& MovieCritics) 

Konstas, et al. [85] 
Users‟ music play-

counts, users‟ tags and 

Application of the Random Walk with Restarts to 

a graph depicting users, tracks, tags and user-to-
Friendship Music (Last.fm) 
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their friends user relations. 

Groh & Ehmig [59] 
Item ratings & users' 

social networks 

CF recommendations with substitution of users‟ 

friends for their peer cohorts.  
Friendships 

Local Clubs 

(A German Site) 

Liu and Lee [108] 
Item ratings & user‟s 

social connections 

Hybridization of CF (choice of social connections, 

instead of peer users or fusing with peer users by 

adding different weights.) 

Friendships 
Online Products 

(Cyworld) 

Other Social Networks-based Recommendations 

Lee & Brusilovsky [93] 
Users‟ bookmarks and 

their watching network 

Hybridizations of watching network-based 

recommendations with CF approach 

Watching Network 

(i.e. Unilateral 

Network) 

Academic articles 

(Citeulike) 

Lee & Brusilovsky [99] 
Users‟ bookmarks and 

their group membership 

Hybridizations of group membership-based 

recommendations with CF approach 
Group membership 

Academic articles 

(Citeulike) 

Guy, et al. [64] 

Users‟ tags, bookmarks, 

comments and their 

social networks 

Calculation of the number of social connections 

who give some feedbacks to bookmarked pages, 

and the relations between users and bookmarked 

pages and combination of these values. 

Professional 

colleagues 

Bookmarks of 

Internet or Intranet 

pages 

(Lotus Connections) 

Yuan, et al., [82] 

Users' music play-

counts & their social 

network 

Two hybridizations of SN and CF (Similarities 

weighted by social network info vs. similarities 

fusing with random walk) 

Group memberships 

& friendship 
Music (Last.fm) 
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2.3.2 Limited Kinds of Social Networks in Personalized Recommendations 

With the success of online networking sites, the kinds of social connections possibly used for 

social network-based recommendations widely ranged from undirected networks such as 

friendships [59, 85], colleagues [115] and co-membership of a group [99] to directed network 

such as trust networks [32, 73, 162, 181], following/watching relations [51, 93], and email 

senders and recipients [155]. Table 1 summaries the existing recommendation studies based on 

users‟ self-defined social networks. In this review, I have been trying to collect exhaustive list of 

the related publications. Up to now, as the summary table indicates, most of SN-based 

recommendations have concentrated on two kinds of social networks; trust-based social 

networks and friendships. In case of trust network-based recommendations, most of them 

concentrated on how to solve the current CF related problems or improve the CF 

recommendation quality by fusing the social context in the traditional CF recommendations. On 

the other hand, friendship-based recommendations range from simple direct recommendations to 

hybrid recommendations fusing users‟ social context with their content properties. Interestingly, 

the focus of the friendship-based recommendation studies was usually users‟ acceptability of the 

recommendations suggested by their friends and usefulness of the explanations, rather than the 

improved quality via systematic evaluations.   

The summary Table 1 now provides clear evidence that the researchers put too much 

emphasis on a few popular social networks. Among 25 studies reviewed on the table, more than 

60% of them are trust network-based recommendations and about 30% of them are friendship-
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based recommendations. Among the remaining 4 studies, if my own studies are excluded, one 

study was based on a professional network and another study was also based on friendship but 

additionally considered group memberships. Moreover, the data sources used for these social 

network-based recommendations were severely limited. It is not easy to find trust network-based 

recommendations not using the Epinions.com data set. In case of friendship-based 

recommendations, there is no dominantly used data source, but some recent studies [85, 192] 

started to focus on Last.FM data, since the system provides an API (application programming 

interface) for researchers to be able to collect the data conveniently. If these studies have used 

the same evaluation framework (for instance, the same set of target users, the same test settings 

and the same evaluation criteria) as the Netflix Prize
2
 contest did, then using the same data 

source for multiple studies is meaningful and worthwhile, but they did not.   

Conclusively, even though they are several social network-based recommendations, the 

kinds of social networks and the number of data sources used in the information personalized are 

still restricted. Consequently, in order to fill the gap, this dissertation will test the feasibility of 

diverse social networks as useful information sources and to assess whether the social network-

based recommendations can be expanded to more varied types of social connections, using rarely 

explored datasets. Because they have been explored by many other researchers, I will not 

consider trust networks and friend networks in this dissertation.     

                                                     

2
 http://www.netflixprize.com/ 

http://www.netflixprize.com/
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2.3.2.1 Trust Network-based Recommendations 

Golbeck (2009) says that the traditional definition of „trust‟ is related to security and reliability, 

but the broader definition of trust for nowadays is related to „a matter of opinion and 

perspective‟. She refers to the broader trust as „social trust’. She suggests that information can be 

aggregated, sorted and filtered through social trust [54]. In her own study, Golbeck also showed 

that users prefer recommendations from trusted people to CF recommendations [56]. 

Massa and Avesani‟s study (2004) showed that a user‟s trust network can solve the ad-

hoc user problem, improve recommendation prediction and attenuate the computational 

complexity. Using Epinions data set, a trust-based technology generated more precise 

recommendations than CF technology. In addition, for users with 4 ratings (i.e. cold start user), 

trust-based technology could make the correct recommendations for 66% of these users, while 

CF could make recommendation for only 14% of the users with a higher margin of error [119].  

The same authors (2007) compared local trust matrix and global trust matrix in 

information personalization. Local trust matrix refers to the computation of missing trust values 

based on users‟ own personal trust values. In user-to-user trust network matrix, there could be 

missing trust values which are not explicitly expressed by users. However, it is possible to 

propagate the trust weights within the trust-based social network. Therefore, local trust matrix is 

personal and subjective view of users. On the other hand, global trust matrix predicted the 

missing trust values using reputation values, which approximate how much the whole social 

network trusts the nodes. It is not personal but standardized. In recommendation, the authors 

combined the trust values (either local trust or global trust or both of them) with similarity of 

ratings. They compared the trust network based recommendation with typical CF 
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recommendations using Epinions.com data set. In evaluations centered on rating prediction and 

user coverage, trust network-based recommendation always produced better suggestions than CF 

recommendations [119].   

Other studies indicated that a trust network decreases the recommendation error and 

increases the accuracy as well [140, 182]. For users with a unique taste, their own trusted 

network could increase the satisfaction of recommendations, since they are able to know where 

the information came from [174].  

Al-Sharawneh and Williams (2010) classified users into two groups: leaders and 

followers based on credibility. The credibility means a combination of trustworthiness and 

expertise. Trustworthiness is calculated using explicit trust ratings and their transitive powers 

(both credibility from direct followers‟ trusts and from indirect followers‟ trusts). Expertise is 

calculated using the distance of each user‟s rating distributions on the center of average ratings 

for a corresponding item. That is to say, when the differences of a user‟s ratings with the average 

ratings are smaller, the users‟ expertise is higher. In order to recommend items, they aggregated 

leaders‟ ratings for a candidate item and the average ratings were combined with a target user‟s 

average ratings. According to their experiment using Epinions dataset, they found that leader-

based recommendation is good to recommend items to cold start users and increase 

recommendation coverage. However, it is in question how the quality can be improved since the 

recommendation is based on all other users‟ ratings regardless of the similarities with a target 

user and hence is very weak personalization. In addition, they added more expertise to the users 

who rated more items. For an ad-hoc user who tries to distort the system with many false ratings, 

there is more chance that the ad-hoc user becomes an expert [8].  
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DuBois and the others (2009) utilized sub-clusters of trust-based social networks in 

recommendations. Compared with their previous studies which are based on trust-based social 

networks [55, 56, 200], in this study, the authors took a set of points in a directed social network 

matrix and groups them on the center of random centroids with a fixed radius of these centers. 

Then they computed the CF-based recommendation algorithm by substituting for peer cohorts 

with users‟ trusted parties. Especially, when the trusted parties are in the same sub-cluster with 

their target users, the similarities were reinforced more. Cluster-enhanced recommendations 

performed better than other recommendations not using the sub-clustering structure. However, 

the qualities of their trust-based recommendations were worse than traditional CF 

recommendations [44].  

Ma, et al. (2008) intertwined two matrices of users‟ information (user-to-user social 

network matrix and user-item rating matrix) through the shared user latent feature space, in order 

to incorporate users‟ social network context in the typical recommendations which are based on 

rating similarities. In this paper, the social network is trust-based. They used probabilistic factor 

analysis and the resultant matrix was filled with the probability of user-rating prediction. 

Interestingly, in computing trust values, they took into account the frequency of trust interaction. 

It means that, when a user trusts a lot of users, the confidence of the trust value is decreased. 

When a user is trusted by a lot of users, the confidence of the trust value is increased. In the 

experiment using Epinion‟s dataset, they compared the quality of their so called „SoRec‟ with 

other matrix factorization-based CF recommendations. Regarding the accuracy and efficiency, 

the SN-based recommendation, SoRec is better than CF recommendations. In addition, for cold-
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start users having very few ratings or even having no rating, SoRec produced better 

recommendations [112].  

Ma and the colleagues (2011) integrated three aspects of recommendations altogether, 

users‟ trust networks, items and users using the probabilistic factor analysis.  They built one 

latent feature matrix about user-user social networks and another latent feature matrix about 

user-item, separately. Then, they integrated the two latent matrices through the shared user 

space. Especially, their integrated latent model is based on the assumption of the social influence 

– users‟ preferences are influenced by their social networks. In the empirical evaluation using 

Epinions‟ dataset, their social network-based recommendations were more accurate and efficient 

than other typical matrix factorization techniques (e.g. non-negative matrix factorization, 

probabilistic matrix factorization, and SVD) and user or item-based neighborhood-based CF. As 

the authors emphasized, the recommendations based on social networks were able to produce 

fairly good prediction even when users have very few ratings or no ratings [113]. 

Matsuo and Yamamoto (2007) introduced a simple „pull‟ approach-based 

recommendation using trust-based networks in recommending cosmetics. Once they think 

another user‟s product reviews are useful or matched with their opinions, users add the reviewer 

as their favorites. Then the system actively referred to favorite products and opinions of the 

trusted reviewers. That is to say, when users‟ trusted reviewers posted a product with positive 

opinions, the system pulled the information of that product and showed it to the users, as a 

recommendation [122]. This recommendation was based on minimum level of computation. 

Probably due to this little computation, the quality was bad (the precision was just 1.49%). In 
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addition, there was no baseline to compare with. Hence, it is hard to guess the recommendation 

quality when it is applied in other domains or other applications.   

2.3.2.2 Friendship-based Recommendations 

In order to take into account not only users‟ tastes about music but also their tags and social 

networks (i.e. friendships), Konstas, et al. (2009) applied the Random Walk by Restart (RWR) 

algorithm on the graph consisting of users, music tracks, and social tags as nodes and play-

counts, tag annotations and friendship relations as edges. RWR provides a good relevance score 

between two nodes in a weighted graph. For a given graph, it measures how two nodes are 

closely related to each other. They used the node relatedness weights between a target user and a 

music track which is not discovered in the target user‟s play-counts to predict recommendations. 

The more closer the candidate track is to the target user, the more probable it is to be 

recommended to him. In the experiment using Last.fm, their RWR approach produced better 

result than typical CF recommendations in terms of precision and recall [85]. However, the 

problem of this study is based on very much skewed data source. When the authors collected 

their data source, they collected top 50 fans of the top 50 musicians who are the most popular at 

that time. That means they are really active and leading users of the Last.fm system. The 

information collection and sharing patterns of much passionate users who were chosen as top 50 

fans of the most popular musicians would not be same with other users who are randomly 

chosen. Therefore, the feasibility of this approach on other datasets is in question. 

Pera and Ng (2011) introduced a SN-based recommendation algorithm which is usable 

for book recommendation domain. Their recommendation is a hybrid approach fusing metadata 
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properties of books with users‟ social context. First in order to choose candidate books to 

recommend, the tag-based content similarities between the candidate books and target users‟ 

favorite books were counted, rather than the similarities of contents derived directly from the 

books (such as from the titles, abstracts or  the authors‟ names). In the subsequent process, they 

aggregated the ratings of the candidate items given by the target users‟ friends rated. They also 

computed how the friends‟ tastes are similar to the target users are. In the experiment using 

LibraryThing, they contrasted the SN-based recommendation with the CF recommendations 

provided by Amazon and content-based recommendations provided by LibraryThing, as 

baseline. As the result, the quality of the hybrid recommendations combining metadata 

information and friend relations was better than other two baseline approaches in terms of 

precisions and ranks [148].  

Groh and Ehmig (2007) compared a friendship-based recommendation with collaborative 

recommendations. Users were asked about the tastes of Munich-area bars. The authors compared 

the taste similarities with between a user and his friends and finally tested the quality of the 

friendship-based recommendations. As the results, users in social networks tend to share more 

similar tastes than randomly paired users and furthermore, the larger the similarity is, the more 

people form cliques. In recommendations, the friendship-based recommendations performed 

better, especially when the ratings are very sparse, and produced more novel suggestions than 

CF-based recommendations. As pointed in the discussion, however, the domain in consideration 

is in highly social context. When we go to a bar, we are usually in company with our friends. 

Therefore, in different domains the quality of the recommendations could be different. In 

addition, the proposed friendship-based recommendation performed better in only special 



61 

 

circumstances such as very sparse ratings or novel recommendations. In other cases, it was worse 

than CF [59]. 

Liu and Lee (2010) introduced a recommendation purely using users‟ friendships based 

on user study with a Korean online networking site, Cyworld. They suggested items based on 

typical CF approach (based on the nearest neighbors‟ preferences), SN-based approach (based on 

friend‟s preferences), and hybrid approach (based on the combination of both the nearest 

neighbors and users‟ friends). Even though they tried to augment the effects of social network 

more than the peer users with different weights, the naïve combination of peer and social 

connections performed the best. In addition, social network-based recommendation performed 

the worst [108]. 

2.3.2.3 Recommendation based on Other Kinds of Social Networks 

Guy and the colleagues tested recommendations based on professional colleague network. They 

compared familiarity-based and similarity-based recommendations using a social software 

application suite for organizations. Given that typical CF recommendation was similarity-based 

approach, familiarity-based approach suggested items that people in my social networks were 

interested in. They collected users‟ self-defined social networks using SONAR, a system to 

aggregate the social connections across different sources (organizational chart relationship, co-

authorship of one paper or patent, etc.) within a company. The recommendation algorithm 

counted the number of social connections who possessed one candidate item and the relation 

type of the social connections about the item (authorships, commenters, bookmarkers, or 

taggers). Depending on the relation types between users and items, they added different weights. 
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According to the resultant values, the recommendations for interesting items (i.e. internet or 

intranet pages) were made. In the survey study with 290 subject, the people preferred familiarity-

based recommendation to the similarity-based recommendation [64]. 

While the area of recommender systems originally ignored user groups, more recent 

research in this field paid close attentions to self-defined user groups. The largest research stream 

under the name of „group-based recommendations‟ focuses on aggregating preferences of a 

group of people and suggesting recommendations to a whole group, not an individual member 

[3, 11, 14]. For example, one of the most cited group recommendation systems, Flytrap 

recommended music for people in the same physical space. The system gathers music 

preferences of each user who is identified by RFID. Once users enter a room, the system 

identifies who they are, aggregates all their preferences together and computes the probabilistic 

values of all music for recommendations [11]. MusicFX also aims to recommend and play music 

to a group of people who are exercising at a gym [20]. Along with recommendation systems for 

music, there are several kinds of group-based recommendations to suggest movies [22], vacation 

destinations [3], news articles [25], photos [9], restaurants [23], etc. to a group of users. 

The study done by Yuan and colleagues (2009) is one of few studies explored how to use 

an individual user‟s group or community membership information in personalizing his own 

information. They introduced two ways to fuse users‟ social network information (friendships 

and group memberships) with traditional CF using LastFM dataset. The first way is weighted-

similarity. They computed user-user similarities based on their listening logs and based on their 

friendships, memberships of the same group or both of them, separately. And then, they fused 

these kinds of similarities together with different weights. The second way is to utilize a random-
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walk approach. They built a user model not only about users‟ social networks (i.e. friendships 

and group memberships) but also about preferences of artists. Then they calculated random walk 

to find similar peers. As the results, they found that social networks-based recommendations 

outperformed typical CF recommendations, regardless of the way. Specifically, the second 

random walk-based recommendation performed best than the first weight-similarities. This study 

shows that, although including social networks as a part of recommendations can increase 

recommendation quality, how to utilize is also important [82].  

2.3.3 Acceptability of Recommendations Suggested by Social Connections 

Some researchers examined how users perceive the recommendations directly suggested by 

friends with other recommendations coming from machines.  

Sinha and Swearingen compared how users feel about recommendations generated by 

online recommenders and the ones suggested by friends. Rather than their own calculations of 

automated recommendations, they relied on recommendations provided by third party 

applications. They tested the recommendation qualities for books and movies. For books, they 

borrowed the list of recommendations from Amazon, Sleeper and RatingZones. For movies, they 

used the list of recommendation from Amazon, Reel.com, and MovieCritics. In order to acquire 

friends‟ recommendations, the participants provided the names of their three friends who can 

provide reasonable recommendations to them. They concluded that friends‟ recommendations 

were more useful and satisfying than those of the recommender system. The recommendations of 

friends also are more trustworthy than those of the system. However, in terms of novelty and 
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serendipity of the recommended items, the typical CF recommendations were better than the 

friends‟ [164].  

Bonhard, et al. also tested the quality of recommendations provided by their friends. The 

major focus of the study was to see the correlation of how they feel recommended items and who 

recommend the items. Specifically, they asked the qualities of three recommendations, which are 

based on distinct characteristics – familiarity, profile (demographic data, hobbies, interests and 

music tastes) similarity and rating similarity – to 60 people (12 groups of 5 friends). The 

participants picked presumably favorable movies for their friend participants and the authors 

produced other two (profile similarity and rating similarity-based) recommendations. They were 

asked to rate the recommended movies with an explanation about who recommend each 

corresponding movie (real name, occupation, hobbies, preferred movie genres, and rating 

overlaps). The participants much more liked the recommendations from their friends than the 

ones of the strangers (73% vs. 27%). In the evaluation of two recommendations, of which each 

was provided by individual friend, they preferred the recommendation of a friend whose rating 

pattern is more similar to them [21].   

Bourke, et al. (2011) executed the similar study with 82 Facebook users. They gave users 

controls to choose members of their own social neighborhoods or took into account users‟ 

communication frequency with other users to select social neighborhoods. On the center of the 

tastes the social neighborhoods, the recommendations about Movie/TV were generated. For 

comparison, the authors selected two different neighborhoods using the similarities of favorite 

items and generated recommendations according to those neighborhoods, as well. The 

participants were asked to rate the recommended items with and without the explanation about 
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which neighbors recommended the items. As the results, of course, when they could see the 

sources of the recommendations, the ratings were higher. However, there was no significant 

difference on the ratings regarding the sources of the recommendations. From this result, the 

authors suggested that users were not good at selecting useful friends as recommendation sources 

[22].  

In another study by Bonhard and Sasse (2006), they examined the reasons why people 

like to know the sources of the recommendations. They suggested that recommendation is a part 

of decision-making process. Advice-seekers decide the value of suggested items according to the 

identity of the recommender. Therefore, the relationship between the receiver of recommended 

information and the source of that information is critical. Their study found that, along with 

rating overlap, profile similarities such as demographics, preferences and interests play an 

important role in users‟ trustworthiness of recommendations [20].  
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2.4 TAGS AS USER INTEREST INDICATORS 

Among three data sources used in this dissertation, two data sources are social 

bookmarking datasets consisting of users‟ bookmark histories and the social tags (Detailed 

explanations about these data sources will be given in the following Chapter 3). Unlike other 

collective intelligence systems enables users to express their item preferences using numeric 

ratings, social bookmarking sites ask users to annotate social tags on their favorite items. In order 

to generate recommendations based on users‟ bookmarking history and the social tags, it is 

critical to decide how to compute users‟ preferences out of users‟ social tag sets. Therefore, in 

this sub-section, several studies about how to model users‟ preferences or interests in social tags 

will be explored.    

Tags are free-text words selected by users to describe their favorite items. Tags were 

found to be helpful for organizing, retrieving and sharing information. The collection of social 

tags is often called as „folksonomy‟ (which is a compound word of „folk‟ and „taxonomy‟[69]) 

equaling it to a collection of conceptual and structured knowledge created by a bunch of people. 

According to the analysis of tags sharing in Connotea, around 23% of tags out of 3359 unique 

tags were shared between users [111]. Although it was preliminary result based on initial usage 

of the system, it shows that tags are being utilized not only as a way to organize information for 

personal goods, but also as a good way to help discover useful information shared by others.  

Users‟ social tags can serve as rich evidence about theirs interests, and this capacity can 

also be applied to construct user profiles for personalized information access. Compared with 
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item ratings in CF recommendations, item tags not only indicate user interest, but also show their 

cognitive understandings about how users approach one item with different viewpoints [71, 79, 

196]. Consequently, if two users share not only many identical information resources but many 

identical tags regarding the resources, they are closely related. 

Au-Yeung, et al. (2008) started their study from an assumption that users are interested in 

multiple topics, and hence their personal collection of tags (i.e. personomy) may consist of 

several clusters. Using 1000 users‟ data from Delicious, they produced clusters of Web resources 

tagged by each user‟s personomies, and found that their assumption is true. In order to test the 

quality of clustered Web pages, they utilized the most oft-annotated tags in a cluster (i.e. 

signature tags of the cluster) as a query and assessed how much the query can retrieve the 

relevant pages. As the result, neither too general nor too specific tags could not retrieve a good 

set of results in terms of precision and recall [13]. 

A study using Delicious data set [71] explored the correlation between users‟ tags and 

content tags. The authors also investigated how well personal tag sets and social contacts‟ tag 

sets represent their preferences. As expected, personal tags were more effective to express user 

preferences. However, user profiles based solely on personal tag sets were not good enough to 

generate recommendation (the best precision was 21%). As another study exploring whether tags 

depicts users‟ preference actually, Firan, et al. (2007) examined music information from Last.fm 

and the tags. The system retrieved music information according to users‟ query. Their tag-based 

profile took into account the similarity of both tags and music tracks. Subjects evaluated that the 

search results generated by tag-based profile were better than the pure CF recommendations 

which just compared tracks [48].  
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Godoy and Amandi (2008) suggested a way to define users‟ profiles based on users‟ 

visited Web pages and the tags. The profile is built upon an incremental, unsupervised 

conceptual learning algorithm; WebDCC (Web Document Conceptual Clustering).  Web pages 

that users had visited are represented as word vectors, which later are clustered conceptually. The 

clustered vectors are summarized by each succinct description using automatic extraction of the 

descriptors. Moreover, unlike other studies based on social tags, the authors organized a 

hierarchy of vectors and tags [52]. Guan and the other (2010) also generate user profile based on 

tags and the contents of documents (e.g. scientific articles or Web pages). Specifically their 

profiles are generated by a graph-based representation learning algorithm. In order to infer users‟ 

interests, they took advantage of three bi-partite relations of social tags such as user-document, 

tag-document, and user-tag. In this situation, however, it is hard to locate semantically related 

tags to a document. For instance, the documents tagged by “automobile” are treated differently 

with the ones tagged by “car.” As the solution, they utilized an affinity graph of documents, 

which are built by word vectors. To recommend interesting documents, they set three bi-partite 

relations and affinity graph in one space. Then they examine how three components (a.k.a, user, 

document, and tag) are close to each other and the closest documents to a target user is 

recommended [61] .   

Szomszer, et al. (2008) showed that tags added by a user represent his preference and 

interests across different systems. They tried to test how similar two sets of tags annotated by 

one user in two separate social tagging systems are. They collected data from delicious and flickr 

and using the usernames or real names of the users, they correlate different user accounts 

between the systems. They found 502 users who have accounts in both systems. After then, 
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severe tag filtering mechanisms were applied in order to increase the tag alignment between two 

folksonomies. In the experimental evaluation, delicious users‟ tag sets was compared with all 

flickr users‟ tags including themselves and calculated who have the most similar tags. The results 

showed that the system chose the same user‟s tags as the closest one for more than 80% of users. 

Especially, tag filtering mechanisms helped improve the tag alignments. It proved that tags 

express users‟ interests and it can be possible to build cross-folksonomy and facilitate multi-

domain adaptive search or recommendation using tags [172]. 

Social annotations are descriptive words added by users to describe information resources 

for the purpose of organizing, retrieving and sharing information in their own way. It does not 

require any specific skill and produces instant benefit for users without too much overhead [68]. 

Millen et al. (2005) suggest that tag annotations are a major reason why current social 

bookmarking systems have enjoyed greater success than social bookmarking system in the 

earlier time [131]. Not only in the social bookmarking systems, but in the countless information 

systems in various domains such as social networking, bibliography management, movie review, 

blogs and so forth, users tag information actively. It is known that tags of a user represent his 

conceptual understanding or categorization of a resource from a personal point view. It is 

„personomy‟, which is a combination of words „personal‟ and „taxonomy‟ [68].  The aggregated 

collection of multiple users‟ (folk) personomy is equal to the collection of the background 

concepts (taxonomy) for a corresponding item [172] and it is „folksonomy‟ (which is a 

compound word of „folk‟ and „taxonomy‟ [69]. In turn, social annotations refer to a power 

lightweight metadata creation tool [2]. In addition, Golder and Huberman insisted that defining 

tag is related to sense-making. Based on their own experience, daily practices, needs and 
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concerns, people perceive a single information item from different senses. The sense-making is 

also involved with social factors, considering that personal experience is associated with others, 

culture or community [57]. Several studies have showed that social tags are expression of users‟ 

interests or preferences and socially connected or related users share same information resource 

and especially tags.  

FolkRank algorithm aims to retrieve information based on folksonomy by counting 

tripartite interaction of users, tags and resources simultaneously. It assumes that a resource 

tagged by important users with important tags is also important. The authors believed that 

because FolkRank computes topic-specific rankings of information contrasted with adapted 

PageRank providing one global rankings, tags can serve as a kind of meta-data whether the 

formal text-based information property (e.g. TF/IDF) is available or not [68, 69]. Therefore, if 

tags are not only generic concepts of information but the expression of users‟ interests, it would 

be possible to verify if users having common tags prefer similar information suggested by 

FolkRank. In later study, they compared quality of recommendations using FolkRank with two 

CF based approaches, where one is based on user-resource similarity based CF and another is 

based on user-tag similarity based CF. Empirical evaluations used three different data sets – 

delicious, Last.fm, Bibsonomy. Recommendations using FolkRank outperformed other two 

approaches in terms of precision and recall [79]. The results can be interpreted that it is more 

effective to calculate tri-partite hypergraph as a whole than to calculate disjoint union of bi-

partite graphs (e.g. user-resource and user-tag). However, the data used in this paper was filtered 

before the experiment. Only users, resources and tags having a certain number of frequencies 

(users have enough number of resources and tags, resources tagged by many users and tags 
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added to many resources by many users) were used in this study. This dense distribution of data 

is quite different with the real nature.  

Other researchers (Li, et al., 2008) did their research with an assumption that tags are 

consistent with information content and further interests. Hence, they thought that frequently co-

occurring tags can cluster sets of similar information and similar users. First, it was tested how 

much of the „most important‟ keywords of a document are covered by user-generated tags. For 

top 10 keywords, 74% of documents are fully covered by user tags and 98.2% of them are 

partially covered. Given that the number of tags was only 7.4% of the total number of keywords, 

users‟ tags represented the topics of the documents very well. In order to cluster users and 

resources, they counted the frequency of co-occurring tags and a set of tags co-annotated more 

than a certain number of times was picked as topics. The users and resources having the tags 

designated as topics are clustered together. In the evaluation, the intra-cluster similarities were 

significantly higher than inter-cluster similarities. Most of users had the topics as their 5 or 10 

tags [104]. That is, users provided useful and accurate tags and common tags among users show 

that the users agree each other for content and further for interests. 

As explained in the Section 2.2.1, one of the biggest problems of CF technology is data 

sparsity. In the tripartite relations of social annotation – user, resources and tags – the data is 

sparser. It is known that the usage pattern of tags follows the power law distribution [65, 68, 69]. 

Small number of tags used very often and large amount of tags used rarely. In consequence, it is 

more difficult to find the users having common resources and tags. An experiment about 

information recommendation using tags showed that tags distribution across multiple users are 

too sparse to find enough level of exact tag matches [196]. However, two users whose resources 
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and tags are not overlapped do not imply that they did not have common interests [71]. Social 

tagging is implicit and asymmetrical preference. When users did not tag an information item, it 

does not mean they are not interested in the item. In order to solve the data sparsity and improve 

information retrieval using tags, Zanadi and Capra (2008) explored social annotations through 

two bi-partite graphs (user-tag and tag-resource). If it is available to solve data sparsity problem 

through tripartite hypergraph as a whole, as explained, the result may be more meaningful or 

robust but the tripartite hypergraph normally increase data sparsity. Therefore, they split the 

tripartite relations into bi-partite graphs. They deployed users‟ tag similarity as a part of search 

tool. Two kinds of tag similarity were counted – user-tag similarity and tag-resource similarity. 

First, they computed the tag similarity of two users regardless of the resources. The more 

common tags they have, the more similar they are. Second, they calculated the tag similarity in 

terms of the resources regardless who the taggers are. The more resources annotated by two tags 

together, the more similar the tags are. When users enter a query, the system treats the query as a 

tag and the query tag is expanded with the similar tags. The search results depend on the 

relevance of the tags assigned to the resources. After then, the query results are sorted by the 

user-tag similarity. If the taggers are similar to the searcher, the resource is ranked higher. The 

experimental results presented that the user-tag similarity improved the retrieval accuracy and 

tag-resource similarity helped uncover unpopular resources which are less tagged. Therefore, 

even though two users do not annotate common information resources, their bi-partite graph 

similarities supported to find relevant information and showed that they are related [193].   

In addition, social tags have semantic problems such as polysemy, synonym and basic 

level of variations. Therefore, disambiguation and elimination of redundancy is necessary [57, 
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65, 172]. Tags are redundant and erroneous as well. User can misspell words and use 

idiosyncratic tags which are meaningful only to the taggers and clueless to someone else. 

Moreover, on the cognitive aspect of hierarchy and categorization, people consider tags at 

different levels of specificity. For instance, tag „java‟ or „php‟ is too specific for a user and tag 

„programming‟ may be too general to another user [57]. Various filtering and dimension 

reduction mechanisms, for instance, lexical dictionary (WordNet), wikepedia, spelling checker, 

compound words checkers can be used to check the morphological variations and errors [167, 

172]. Semantically close tags can be found using Latent Semantic Analysis [41] or naïve 

Bayesian network [116, pp. 234 ~ 265] by the probability of the occurrence of tags in a same 

resource. Symeonidis, et al. (2008) suggested a unified framework to model the triplets of social 

annotation (user, resource, tag) and in order to capture the latent associations among them, 

applied a tensor reduction algorithm, HOSVD (Higher Order Singular Value Decomposition). 

That is, even though a user did not annotate a resource, depending on the interaction of the 

triplets among multiple users and the latent semantic association, how likely he will annotate the 

resource with the tag is calculated. For instance, there are three users and two of them u1 and u2 

tagged resource r1 with tag t1. User u2 also tagged resource r2 with tag t2 and u3 tagged resource 

r3 with tag t3. Then the system can infer that it is more likely that user u1 will add tag t2 to 

resource r2 than the resource r3 and tag t3. Not only the directly annotated resources and tags, but 

the semantically propagated resources and tags were associated. Using two popular Web 

annotation system data sets, they tested the recommendation quality. As the result, compared 

with FolkRank and a collaborative tag suggestion algorithm (Penalty-Reward algorithm), the 

precision and recall of their tensor reduction method was higher [170]. Even though social 
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annotations are not involved, there are several studies to solve data sparsity problem by 

background topical structure, for instance, pre-defined taxonomy [103, 130, 200, 202].  

According to the Golder and Huberman (2006), after a certain amount of tags are added, 

the pattern of tagging become stable, since taggers refer to other users‟ tags and imitate them or 

share their knowledge. This trend is called as „social proof [57].‟ The following statement says 

well the social Web systems are developing centered on users‟ own networks.  

“Flickr and delicious work so well for me not because they aggregate the world‟s 

tags but because they allow me to aggregate my social network‟ tags, links, and 

photos [66].” 
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3 SOCIAL NETWORKS IN CONSIDERATION AND THE DATA SOURCE 

 In this dissertation, I consider three kinds of social networks on the center of two aspects – 

personal familiarity and object-centered sociality.  

The first aspect – Personal Familiarity – is a very typical foundation on which many 

kinds of social network are rooted, in particular networks existing offline. The degree of personal 

familiarity on online social networks depicts how much an online social relationship is based on 

offline social acquaintance and personal interactions. According to homophily and social 

influence theories, it is well-known that strong ties which share frequent interactions and whose 

connections are greatly overlapped to each other tend to be similar in various ways. Beyond this 

social similarity, however, a highly cited theory about social strength [58] tells that, depending 

on the strengths of the social networks, there are distinct patterns in the kind of information 

circulating within the social connections and the way to share information. Strong social ties 

circulate conventional and similar information, and the flow of information is private. On the 

other hand, weak ties tend to share new and heterogeneous information and to disseminate 

information more widely and publicly. Through an exemplary case about job searching, the 

author suggested that acquaintances whose social strength is relatively weak are more helpful in 

acquiring useful job opening information or disseminating the job information [58]. Due to the 

distinct patterns, personal familiarity represented by social strength is an indispensible aspect in 
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understanding how to acquire and share information. Along with the success and prosperity of 

online social networks, there are diverse newly-emerging sociabilities having multiple degrees of 

personal familiarity. However, as the collection of the related literature in the Chapter 2 shows, 

recent social recommendations have focused on very limited kinds. By exploring more diverse 

online social networks as a part of recommendations, thus, I expect to prove the feasibility of 

various sociabilities as important information sources and to demonstrate possibility of new 

social recommendations.  

The second aspect – Object-oriented Sociality – is, relatively speaking, a new and 

innovative foundation on which social networks are rooted, and the focus mainly lies on social 

networks existing online. In the contemporary society which is highly driven by information and 

knowledge, the theory about the object-centered sociality insists that knowledge cultures are 

inter-stitched with the current social structures. The original theory is rather radical. It suggests 

that, in modern society, traditional social linkages forming large communities would be blurred 

out, and human beings as relationship partners would be objectualized according to their 

knowledge and expertise. However, the main idea is that information-driven culture spills and 

weaves the fabrics of the modern society, and information objects are social interaction triggers 

and anchors of communications [25, 33]. Most of the current SNSs and Web 2.0 systems provide 

active aids to this object-centered sociality on them. They provide interfaces for users to get 

together around the contents they create, comment on, link to and add annotations on. Without 

any personal acquaintance or interactions, by the „Constructuralism‟ mentioned in the previous 

Section, the systems are allowed for users to get connected with other users once they perceive 

the usefulness of the other users‟ information collections. However, depending on domains of 
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systems, the degree of object-centered sociality is different. If an application targets on managing 

information items, such as bibliographic information or Web bookmarks like Delicious and 

Citeulike, the users usually focus on other users‟ collected information, rather than their personal 

traits or daily lives. Therefore, users are seeking other users whose information collections are 

beneficial to them. On the other hand, if an application aims to build online social networks like 

Facebook and LinkedIn, the users are mostly interested in their friends‟ social reach, personal 

traits, and activities. Therefore, the users are finding social partners who have had offline 

interactions and have similar personal traits (e.g. same location, same school or company, and 

similar ages and sex), rather than the quality of their information collections [15, 16].  

On the center of these two aspects, I selected three sorts of online social networks – 

watching network, group membership and collaboration network, as shown on Figure 2. 

According to the related literature, these three social networks in my consideration have different 

degrees of personal familiarity and object-centered sociality. In the following, I will introduce 

each of them and explain the defining characteristics of this taxonomy, according to these two 

aspects.   
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Figure 2. Various Social Networks Considered in this Dissertation 

3.1 WATCHING NETWORK: SOCIAL CONNECTIONS CENTERED ON OBJECTS 

Watching network is a typical example of newly emerging online social network. Users on the 

Web 2.0 have found it easier to know who knows what through social networks in virtual space. 

It is a burden, however, to contact the person who knows the desired knowledge via their 

personal ties [124]. Unlike social networking systems mainly focusing on linking mutually 

agreed-up friendships, many social tagging systems, which help users to manage and share 

interesting information online, or blogging systems, which aim to post online journals to express 

themselves, offer the users this new kind of sociability without any burden to ask a consent to be 

connected. Once users find other users who have interesting or similar tastes, they are allowed to 

watch the users‟ information collections continuously. The watching relations don‟t require any 
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offline interactions or emotional bonds to make connections or mutual agreements for being 

connected. It is a unilateral relation which forms a special kind of social network, which I named 

it as „watching network‟. The most typical examples of watching network are “following” on 

Twitter, “watching” on CiteULike, “network” on Delicious or “contacts” on Flickr. Interestingly, 

LiveJournal is providing this watching relationship, one-directed connections without consent to 

be connected, but called it as “Friends”. This relation is convenient and purely based on the 

utility of information possessed by users. In addition, it can compensate for privacy concerns 

because the watched users can decide what to expose or hide to the strangers by themselves.  

Unilateral relations gained attentions along with the success of social tagging and micro-

blogging applications [26, 76, 154]. Wellman suggested that, in Web 2.0 era, various new 

relationships would emerge and the networks are “less bounded [186].” The unilateral 

relationship is one kind of the new relationships. Unlike befriending in SNS (e.g. Facebook, 

MySpace or Friendster) where users increase the number of friends simply for fun or curiosity 

[39], the watching relationships aim to acquire information from the connected people‟s 

collection. When a user unilaterally watches many users, it may cause rapid growth and potential 

dilution of the item list in the watcher‟s collections. Therefore, unilateral relationships require 

users to be careful to select people to watch, based on the utility of information or taste.  

Some researchers may argue that watching relations are not social connections, since they 

may be not based on social interactions or emotional bonds. However, my preliminary works 

[92, 94, 97] and the section 5.2 of this dissertation found an important social property in the 

relationships; homophily. I described the details in the Section 5.2. Specifically, the relations met 

the similarity attraction hypothesis [132] and held the transitivity power [133]. High degree of 
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similarity was embedded in unilateral relations and the similarity decreased with the increase of 

distance. Even though two nodes (i.e. two users) tend not to interact personally or not to share 

any emotion, they are directed networks on the center of interesting information objects and 

naturally it is highly object-centered sociality. Breslin and Decker (2007) said that the social 

networks connecting via items of interests, which are called object-centered sociality, may be 

more long-lived relations than the relationships not sharing any item of interest. In order to help 

users develop better relationships, the authors insisted that SNS have to take into consideration 

people‟s actions about content such as tagging, blogging, adding comments, etc. to find out the 

users‟ people of interests [25]. Even though many social tagging systems support these watching 

relations, surprisingly, there are few studies about how to utilize this social network for 

personalizing information. Java and the others (2007) insisted that one of the reasons why users 

enjoy micro-blogging, such as on the Twitter, is to share information. They also found three 

kinds of users‟ intention to socialize on the Twitter (i.e. following); not only 1) friendship-wise 

relationships but also 2) information sharing and 3) information seeking [80]. 

I interpreted that these watching connections existing on social bookmarking systems 

mimic the process of bookmarking interesting items. In this context, users bookmark other 

interesting users. Therefore, the information of users being watched can be used as a part of the 

watching users‟ preferences. On the other hand the relations don‟t require personal interactions 

or acquaintance necessarily. The watching parties tend not to pay attention to its personal traits. 

In many situations, they even don‟t know who their watchers are. Therefore, I declare this kind 

of relations as highly object-centered sociality but very low personal familiarity.  
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3.2 GROUP MEMBERSHIP: SOCIAL CONNECTIONS CENTERED ON ONE 

TOPIC 

Group activities are usually centered on one solid topic. Users join a group on the Web in the 

terms of community of interest or practice, for instance, a fan club of a musician, a community of 

Hadoop programmers, an online forum for students taking the same class, an online space for 

members of the same project, etc. The relationships in group networks target to distribute topic-

relevant information or contribute topic-related activities. The theory of communal sharing 

relationships explained the social dynamics of this group membership. Group members think 

they share common substances. Before online social networks emerged and proliferated, the 

communal sharing relationships represented very close relationships such as kinship ties [9]. 

However, in the current Web 2.0 era where relationships are getting flattened and less bounded, 

the sense of communal sharing can be applied to the online group activities. Even though their 

relations are not based on strong bonds such as kinship by blood, they still treat information 

objects as their shared assets. Hence, group members are willing to share what they need and 

contribute what they can. Members usually don‟t expect to receive something back as returns of 

their contributions. In addition, they usually don‟t pay attention to the portion of contributions 

made by each individual member. Simply being a member of a group is sufficient to them since 

they are able to use the resources the group is sharing [9]. According to my own preliminary 

result, group members didn‟t pay attention to the information collected in other members‟ 

spaces. However, they really pay attention to the group libraries jointly organized by the group 

members [96].  I suggest that the willingness to share and contribute in groups as the sense of 
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communal sharing exists online. Therefore, memberships of online groups will be informative in 

personalizing their information space.   

Although I defined that group memberships are self-organized by the members, most of 

the studies about online group dynamics are about how to derive implicit communities using 

various machine learning technologies and characteristics of the derived implicit communities 

which are systematically discovered by pattern mining approaches [10, 17, 49, 144, 197]. As the 

example, Zhou and the colleagues studied the information similarities in groups using semantic-

rich contents. In the study based on Enron email corpus, as the first step, they ran the Bayesian 

network and chose the latent topics of emails. They extracted a set of implicit communities 

derived by the latent topics. In addition, by taking into account the associated contacts (i.e. the 

author and the recipients) of each email, they built another set of implicit communities derived 

by the contact structure. When they compared the resultant implicit communities with other 

community formation results from another study as a ground truth, they found that their 

approach succeeded to generate appropriate groups with high similarity in shared messages 

[197]. The weakness of this study is that all communities were implicitly inferred by machine 

learning technology. Even the communities used as the ground truth were implicit communities 

generated by a machine learning technique.  

There are very few attempts to explore social dynamics in self-defined online groups and 

naturally fewer attempts to utilize users‟ explicit group memberships in personalizing 

information. Most of the systems using „group recommendation‟ technologies are to aggregate 

tastes of a group of people into one set and to suggest recommendations for that group of people, 
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not for an individual group member [12, 34, 39, 121, 138, 145]. Therefore, recommendations for 

individual members based on their group memberships are innovative and necessary.  

On the respect to the two axes of the taxonomy, I suggest that group memberships embed 

strong object-centered sociality and medium degree of personal familiarity. As explained, users 

whose interests or purposes are similar to each other get together in an online group. For a group 

of students who are taking the same class, they discuss assignments or class projects, ask 

questions to the instructor and post useful resources regarding the class on the group space. For a 

group of Hadoop programmers, they share exemplary program codes, announce important news 

regarding the technology, post job openings requiring the Hadoop skills and seek aids for their 

programming problems. Therefore, interactions on groups are highly concentrated on 

information about the corresponding topic. Regarding the personal familiarity, in some cases, 

members in the same group could be familiar to each other before they join the group (e.g. 

members of the same project or same research lab). Otherwise, after sharing a number of online 

interactions (e.g. asking and answering a series of questions; participating in the same open 

source development project), they may be able to develop the relations into more familiar social 

relations. However, this social evolvement among group memberships is not always the case.  

That is the reason why I decide the group members as a network having strong object-centered 

sociality and medium degree of personally familiarity.   
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3.3 COLLABORATION NETWORK: SOCIAL CONNECTIONS OF PERSONAL 

ACQUAINTANCE AND SHARED INTERESTS 

Recent studies about computer-supported cooperative works have focused on how organizations 

solve problems in a collaborative way [186]. Due to the effectiveness, several social matching 

systems for professionals and expert location systems have been in use [83, 102, 105, 124, 191]. 

The basic idea of the online social networking systems for professionals is to implement offline 

referral chains onto online spaces. When we confront a problem in a workplace, we usually ask 

our colleagues who have the relevant knowledge or who know other people who may know topic 

of the problem well. In an analogous manner, when a user has a specific problem to solve, these 

online systems help him find individuals who are the most knowledgeable about the problem and 

are socially close enough to contact.  

The Expertise Oriented Search (EOS) system
3
 [102] is one of examples. It was designed 

to help users to identify experts of a certain topic. In particular, users‟ expertise was modified 

depending on whom they have interacted with professionally. As a way to define users‟ 

expertise, the system first draws every user‟s 20 the most relevant Web pages from Google 

Search and publication list from the Digital Bibliography and Library Project (DBLP), and 

Citeseer, respectively. Users‟ expertise was adjusted by topic relevance of their social 

connections. The authors suggested that the topic relevance of a user is propagated through his 

social connections under the assumption that a person‟s expertise diffuses and is developed 

                                                     

3
 http://www.arnetminer.org/ 

http://www.arnetminer.org/
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through social interactions. Both the original topical expertise and propagated relevance values 

are taken into account when searching for experts.  

Yang and Chen [191] described an educational P2P (peer-to-peer) system using expert 

location technology. Albeit this system requires significant ongoing human interventions for 

evaluating users‟ expertise, when a user queries a topic, it recommends items posted by users 

with the highest expertise related to the topic or who are most preferred by the target user [191].  

In my past research, when researchers seek future collaborators to address newly 

emerging research topics and engage in inter- and multi-disciplinary, I discovered that they 

highly relied on their own social networks, rather than the outside of their professional social 

networks, and cared more about the social distances than about the candidate‟s expertise [100].  

In addition, according to a recent study about why researchers use various online SNSs 

and how their online activities are related with their tenure promotion, they expected to acquire 

new and useful tenure-related information from their colleagues through SNSs, and it is the one 

of the reasons why they keep using the SNS applications. One of the fifth participants answered 

that the information existing on the SNSs is helpful for their tenure promotion in somehow [60]. 

Accordingly, in situations where people need new and useful information about their research, 

they will be willing to refer to their colleagues who they have worked together before and hence, 

whose expertise and social context are familiar to them [58, 83, 186].  In here, I will take into 

account the researchers‟ collaboration networks as plausible information sources. Specifically, 

they have interacted to each other personally and their relations is centered on their research 

expertise, the relevant by-products (such as, articles, project proposal, reports, etc.) and 

furthermore the information of common interests. However, it is rare that two researchers‟ 
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interests are perfectly matched. Put differently, some items which interest my colleagues could 

not be of my interests. Conclusively, I decide that these research collaborators‟ relations embed 

medium degree of object-centered sociality and high personal familiarity.    

3.4 THE DATA SOURCES 

In this dissertation, I used two data sources so as to examine the proposed recommendation 

algorithms using three social networks – „Citeulike‟ for watching network and group 

membership and „ConferenceNavigator3‟ for collaboration network.  Citeulike system was 

selected because it supported the corresponding social network and allowed the general public to 

access the social network information. In particular, the system provided a snapshot of their 

systems for the public to collect the users‟ information (i.e. RSS feeds). In case of 

ConferenceNavigator3 (CN3, in short) system, I have been participating in the development of 

the recommendation module. Hence, I can access the whole data on the system. Especially, 

rather than the datasets covering wide spectrum of matters on one application such as Twitter, 

Facebook, MySpace, they were the applications of which the domain concentrate on one kind of 

information. Citeulike is to manage bibliographic information of scholarly articles and 

ConferenceNavigator3 (CN3) is to access conference talk information of various academic 

conferences. Figure 3 shows the list of datasets in my consideration. In the section for each social 

network-based recommendation, I describe the detailed description of the data.  
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Figure 3. Data Sources for Each Social Network 

• Citeulike: Bibliographic Information Watching Network 

• Citeulike: Bibliographic Information  Group Membership 

• ConferenceNavigator3: Conference 
Talk Information 

Collaboration Network 
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4 RECOMMENDATION TECHNOLOGIES  

This chapter aims to introduce information similarity measures and recommendation 

technologies that I used in this dissertation, in general. More detailed approaches which are 

modified for each social network will be explained in the corresponding chapter. 

4.1 INFORMATION SIMILARITY MEASURES 

Through this dissertation, I used two datasets (Citeulike and CN3) for three kinds of social 

network. Users, their preferred items and their online social connections are the main ingredients 

of these datasets. Generally, users‟ preferences about the items can be expressed in ways: unary 

ratings and numeric ratings. Unary rating means that the presence of bookmarks expresses users‟ 

interests on corresponding items, but there is no degree of preference. In this case, the absence of 

the bookmarks doesn‟t necessarily represent that users are uninterested in or dislike that item, 

since there is a high possibility for users not to discover the item yet. On the other hand, numeric 

rating means that the values of users‟ ratings expressed the degree of their interests or 

preferences. Depending on the rating schema of systems, the numeric rating values can show 

positive preferences only or both positive and negative preferences. Both Citeulike (which is 

used for watching relations and group memberships) and CN3 (which is used for collaboration 
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connections) datasets have unary rating schema. Hence, in this Chapter, similarity measure for 

unary rating will be explained mainly. As a reference, similarity measure for numeric ratings will 

be explained briefly.  

For the rest of this paper, I use the following notations. For Citeulike and CN3 datasets 

which consist of users‟ bookmarks and the unary ratings, B is the user-item bookmark matrix, B= 

{B ui}l×n where l and n denote the number of users and items, respectively. u∈{u1, … , ul} 

represents users and i∈{i1, …, in} denotes items. The bookmark of user u on item i is bui. In 

here,  ̂   denotes the predicted bookmark of item i for user u, which is picked by my 

recommendation algorithm as presumably favorable and bookmark-able item. The values of all 

bookmarks are unary rating (the presence of a bookmark).  

Another major characteristic of both Citeulike and CN3 datasets is that they have not 

only the bookmarking history but also various metadata. The target items of both datasets are 

commonly scientific articles. Even though the target item of CN3 system is conference talk, each 

talk presented in a conference represents a scientific article. The available metadata of the 

articles would be titles, authors‟ names, journal/conference names, etc. Therefore, in these 

datasets, the similarity of shared information was assessed using item-based and metadata-based 

approaches. 

4.1.1 Similarity Measure for Unary Ratings 

The very basic and traditional way to measure the information similarity using unary ratings is to 

count the number of items co-bookmarked by two given users. This is the item-based approach. 
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Beyond this number of co-bookmarked items, there are various similarity measures, such as 

Jaccard similarity, dice similarity and log-likelihood similarity. These measures considered the 

fact that sizes of item collections varied dramatically from user to user. Hence, whereas the 

number of co-bookmarked items is absolute measure, these similarities are relative and 

normalized measures. As the normalized measure, first, I used Jaccard coefficient. The Jaccard 

coefficient is the proportion of shared items in the union set of two users‟ collections. Let‟s 

assume that user a and user b are in comparison, and variable Ba and variable Bb denote the 

users‟ information collections respectively. We can compute the coefficient as the following.  

                      
|     |

|     |
 Eq.  1 

The second similarity measure is the log-likelihood similarity, which is another typical 

measure for the unary ratings. Log-likelihood similarity was initially proposed as a statistical 

analysis method for text processing. The strength of this similarity is that, unlike other similarity 

methods which take into account only the cases where an item was co-bookmarked, it takes into 

account not only the cases of co-bookmarked items, but also the cases where an item was 

bookmarked by only one person and even the cases where an item was not bookmarked either of 

them. That is to say, this method measures how unlikely the overlap of interests was occurred 

just by chance [46, 75].  
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Eq. 2 

where, ln(        ) denotes the log-likelihood similarity between two user a and user b.  

na,b is the number of items bookmarked by both user a and b and na is the number of items 

bookmarked by only user a. nb is the number of items bookmarked by only user b and n~a,~b is the 
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number of items bookmarked by neither of them. The similarity value of 0 indicates that two 

users in comparison are neither similar nor dissimilar and a large positive similarity means that 

they are very similar.  

In measuring information similarity, due to the popularity bias (i.e. users are more likely 

to provide feedback on popular items than on rare items [166]), co-bookmarking very popular 

items doesn‟t reflect their shared interests as much as the co-bookmarks of rare items. For 

instance, in measuring movie tastes, the co-bookmarking of a very popular movie like „Avartar‟ 

doesn‟t show the true shared interests between two users than the co-bookmarking of a 

unpopular independent film. Therefore, we incorporate the item popularity into information 

similarity using the average inverse item popularity as the following. We defined this similarity 

measure as „popularity weight‟ of co-bookmarked items.  

     (   ∑
 

  
     

)    ⁄  Eq.3 

where IPab is the average inverse popularity of co-bookmarks between user a and b. Item 

i is one of the items that the user a and b commonly bookmarked (i.e.       , and N is the total 

number of items in the dataset. ni is the total number of bookmarks of the item i and nab is the 

number of co-bookmarks between the user a and b. Bookmarks containing less popular items are 

thus assigned a higher popularity weight value.  
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4.1.2 Similarity Measure for Textual Metadata 

Due to the irregular opportunistic nature of the bookmarking process, users with similar interests 

may not necessarily end up with very similar collections. In this case, similarity of interest might 

be more reliably measured on the level of item‟s meta-data. Even though users‟ preferences were 

expressed in unary ratings, by taking into account the related metadata of bookmarked items, we 

are able to analyze why users bookmarked the corresponding items in more cognitive ways. For 

example, in Citeulike domain, bookmarking papers from the same authors or same journal (or 

conference) can be considered as an indicator of similarity. When titles of two papers in 

comparison have the similar set of keywords, it would be likely that they contain the similar 

contents and context. CN3 domain is also very similar. When users have their own published 

papers, we are able to compare how the metadata of users‟ own publications (for instance, titles, 

authors, conference names, etc.) are alike. In addition, on Citeulike, users added free-text social 

tags when they bookmarked items. Compared with item bookmarks simply showing users‟ 

interests on the corresponding items, social tags indicates users‟ interests on the items in 

cognitive and more descriptive way [71, 196]. With this reason, various kinds of metadata-based 

similarity were compared.  

In order to compute the metadata-based similarities, for every kind of metadata, I used 

the vector space model [156]. Before computing a metadata-based similarity, we built users‟ 

preference model from each metadata. All terms in a metadata of a user‟s bookmarked papers 

were aggregated into a bag of keywords. Then for the effective comparison, I applied text 

processing techniques to the bag of keywords. The terms were case-normalized to the lower-case 



93 

 

letters, and all stop words
4
 were removed. We also applied Porter stemmer so as to reduce word 

variation to its stems or roots [107]. Stemming reduces word variation by truncating words to 

their stems or roots. For example, „computer‟, „computers‟, „computing‟ and „compute‟ are 

stemmed to „comput.‟ The processed bag of metadata keywords were transformed into keyword 

vector consisting of keywords and the TF/IUF (Term Frequency/Inverse User Frequency) values. 

In this paper, we computed each user as a document. Therefore, the original document frequency 

value in traditional TF/IDF (Term Frequency/Inverse Document Frequency) formula was 

changed to the user frequency indicating how many users bookmarked papers of which the titles 

contain the keywords. As Mori, et al. (2006) suggested, when words in two articles similar, the 

contextual representations of article pair are also similar. Therefore, this metadata vector-based 

similarity tries to compute how much two given users are interested in similar contents and 

contexts.   

Depending on the data sources, the available kinds of metadata differ. Hence, the detailed 

description of metadata-based similarities for each data set will be explained in the 

corresponding chapter.  

4.1.3 Similarity Measure for Numeric Ratings  

For a data set having numeric ratings, there are several similarity measures, such as 

Pearson correlation, cosine similarity, Spearman‟s rank correlation coefficient, and mean squared 

difference. Along with the Pearson correlation, the cosine similarity is widely used. It measures 

                                                     

4
 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop 
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the similarity between two n-dimensional vectors based on the angle between them as the 

following. R is the user-item rating matrix. R= {R ui}l×n where l and n denote the number of users 

and items, respectively. The rating of user u on item i is rui, and  ̂   denotes the predicted rating 

value. 

               ( ⃗  ⃗⃗)   
 ⃗    ⃗⃗

| ⃗|  | ⃗⃗|
  

∑            

√∑    
 ∑    

 
        

 Eq.4 

 ⃗ and  ⃗⃗ are the rating vectors of user a and user b, respectively. nai is the numeric rating 

of item i given by user a. Rab is the set of items co-rated by both user a and b. The problem of 

this measure is that it doesn‟t consider the differences in the mean and variance of the ratings 

made by user a and b. Some users could be optimists who have a tendency to rate items higher 

than average users and some other users could be pessimists who have a tendency to rate items 

lower than average users. As a solution of this Cosine measure, there is the adjusted Cosine 

similarity, which is mainly used item-to-item based similarity, rather than user-to-user similarity. 

The next measure, the Spearman‟s rank correlation avoids using the rating values directly.  

The Spearman‟s rank correlation coefficient aims to use the relative differences in users‟ 

ratings through ranks of the ratings. For rating sets of a given user, this measure computes the 

rank of each item, first. When there are the same ratings, these items get the average rank of their 

spot. Then, the Spearman‟s rank correlation is computed as the following.  

            
∑        ̅        ̅      

√∑        ̅  ∑        ̅  
          

 
Eq.5 
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rai is the rating rank of item i in user a‟s list of rated items and   ̅ is the average rank of 

items rated by a. Even though the purpose of this method is to avoid the problem of rating 

normalization, when there are a large number of tied ratings and the rating schema ranges a few 

values, it easily lost the advantage. In addition, this method is computationally expensive.  

Mean Square Difference is to evaluate the similarity as the inverse of the average squared 

difference of co-rated items between user a and b. The weakness of this method is that it doesn‟t 

allow computing the negative correlation between user preferences and when there is no co-rated 

item, it is impossible compute this value.  

            
|   |

∑           
     

 Eq.6 

Lastly, the Pearson correlation coefficient is to compute the similarity by removing the 

effects of mean and variance of users‟ ratings.  

                
∑        ̅̅ ̅        ̅̅ ̅      

√∑        ̅̅ ̅  ∑        ̅̅ ̅  
          

 
Eq.7 

According to empirical studies about comparing quality of similarity measures, especially 

for user-to-user based similarity, the Pearson correlation outperformed other measures [67]. Due 

to the simple, computationally inexpensive and good quality, this Pearson correlation is the most 

popular similarity measures used in recommendation systems [42, 77]. Therefore, in this 

dissertation, I chose this Pearson correlation as a similarity measure for numeric ratings.   
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4.2 RECOMMENDATION TECHNOLOGIES 

In order to generate collaborative filtering (hereafter, CF) recommendations, we generally 

do the following four steps; 

 Modeling Users Preferences: By understanding what users‟ like in the past, recommender 

systems aim to predict what they are going to like in the future. Hence, the first task of the 

recommender systems is to model users‟ preferences based on their rating/bookmarking 

patterns.  

 Selection of peers: Once they understand users‟ preferences, systems based on CF 

technology pick N peers who have the most similar tastes or interests with their target users. 

 Computation of prediction probability: Among item of N peers, the system chooses 

candidate items which are not discovered by our target users yet and, based on the 

preferences of both target users and N peer, predicts the probability of how much the target 

users would like each candidate.  

 Suggestion of recommendations: Depending on the prediction probability, recommender 

systems choose and suggest the most favorable items as recommendations.  

My proposed social network-based (SN) recommendation algorithm mainly aims to make 

a change at the second and the third stage of the recommendations as shown in the Figure 4. At 

the second stage, as social network-based recommendations, target users‟ social connections will 

substitute for the anonymous peers of traditional collaborative filtering. At the third stage of the 

recommendations, the way to compute the recommendation probabilities will be considered from 

K-nearest neighbor approach to matrix factorization. In this section, K-Nearest Neighbors 
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approach and matrix factorization approach will be described. Detailed descriptions about social 

network-based recommendations will be explained in each corresponding chapter.  

  
Computation of Prediction Probability 

  
K-Nearest Neighbors Matrix Factorization 

Selection 

of Peers 

Anonymous 

Peers 
CF approach SVD approach 

Social Networks SN approach SN SVD approach 

Figure 4. Summary of Recommendation Algorithms 

4.2.1 Recommendations based on K-Nearest Neighbors 

K-nearest neighbor approach chooses K anonymous peers who are the most similar to our target 

users and, among K peers‟ bookmarked items which are not discovered by target users yet, 

selects recommendable candidate items [159, pp. 291 - 324]. In order to compute the information 

similarity between a target user and his peers, it is critical to choose the best similarity measure. 

Particularly, because there is no empirical evidence indicating the best similarity measure for 

bookmark-based preferences, it is required to test and compare various measures. In addition, 

several values of K will be examined in this paper.  

4.2.2 Matrix Factorization Recommendations  

The matrix factorization method is to derive a set of latent (hidden) factors from the users‟ 

rating/bookmark patterns and characterize both users and items by such latent factors. For movie 

recommendations, as an example, the latent factors could be genre, director of the movies or 
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main actors. For music recommendations, the factors could be music types (e.g., classic, hip-hop, 

or country) or singers of the music. Even though the latent factors are not interpretable by 

humans, matrix factorization statistically identifies critical characteristics to make 

recommendations. For a large number of items, matrix factorization can collapse the whole items 

into a smaller approximation in which highly correlated and co-occurring items were 

transformed into small size vectors. In addition, this technology can predict missing ratings as 

approximate values. Therefore, even though users didn‟t rate/bookmark a lot of items, it is 

possible to generate recommendations. The overall recommendation quality is known to be 

better than traditional collaborative filtering [86, 112, 149]. In this paper, as a matrix 

factorization method, singular vector decomposition (SVD) with „Alternating-Least-Squares 

with Weighted –Regularization (ALSWR) factorizer‟ was used [129].  

Again, for Citeulike and CN3 datasets which consist of users‟ bookmarks, B is the user-

item bookmark matrix, B= {B ui}l×n where l and n denote the number of users and items, 

respectively. u∈{u1, … , ul} represents users and i∈{i1, …, in} denotes items. The bookmark of 

user u on item i is bui. In here,  ̂   denotes the predicted bookmark of item i for user u, which is 

picked by my recommendation algorithm as presumably favorable and bookmark-able item.  

This SVD starts with a low-rank approximation of the l× n bookmark matrix B. When f is 

the number of latent factors to be extracted, we are able to derive two f-dimensional lower rank 

matrices: R ≈ PQ
T
. One matrix P presents users‟ latent factor matrix, where P ∈    . The u-th 

row of P, pu is the user u‟s vector and represents how much a user u is associated with f latent 

factors. Another matrix Q presents items‟ latent factor matrix, where Q ∈    . The i-th row of 
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Q, qi is the item i's vector and represents how much an item i possesses f latent factors. By 

computing the inner product between the two vectors, we can approximate the probability of the 

missing bookmarks,  ̂   (i.e. how likely a certain user u is going to bookmark item i) [38, 81] as 

the following. 

 ̂        
  Eq. 8 

The major challenge of SVD is to minimize the error of prediction, eui = bui -  ̂  . When 

there are many missing elements in the bookmark matrix, however, the typical SVD algorithm 

cannot find P and Q. One way to solve this problem is to fill out the missing values, for instance, 

with the average number of bookmarks of a user or an item. However, when a system fills out 

the missing values in a wrong way, even if it is possible to find the P and Q, the results are 

highly prone to overfitting [86]. As the solution of these data sparsity and overfitting problem in 

SVD, Zhou, et al. [199] proposed the ALS-WR, which to learn the model by fitting the existing 

bookmark records. As the first stage, from known bookmark records, we need to model P and Q 

with a weighted-λ-regularization.  The optimal model is defines as   

             
   

∑    
 

       

 λ ‖  ‖  ‖  ‖
   Eq. 9 

Where K contains all (u, i) pairs for which the bui is known (the training set).  λ is a 

constant to control the degree of regularization and usually decided by cross-validation. By 

learning from the existing bookmark history, this modeling aims to minimize the regularized 

squared error [86]. 

Now it is the stage to compute alternating least squares (ALS). ALS aims to minimize 

noises and possible errors on the above regularized model. The basic idea is, when both P and Q 
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are unknown, to fix one of the matrices and to compute another matrix again by solving a least 

squares problem. This algorithm alternates the steps by fixing one of the both matrices. In 

specific, when Q is fixed, so as to re-compute the P matrix, ALS computes a separate ridge 

regression for each user. It takes the latent vector (qi) of items bookmarked by the user u as input 

variables and the value of his bookmarks (bui) as output variables.  

               ∑     
 

    

 Eq. 10 

           ∑      

    

 Eq. 11 

Where Au is the covariance matrix of user u‟s item latent factor vector (having the 

number of factor f), which is the input, and du is the input-output covariance vector. Finally it 

finds the optimal pu by the ridge regression as the following. 

                 Eq. 12 

E is the f-dimensional identity matrix: Ef∈    . lu is the number of items bookmarked 

by user u. Similarly, when P is fixed, we can re-compute the Q matrix using the following (ni is 

the number of user who bookmarked item i) [149]. 

            
     Eq. 13 

In particular, for this paper, I used the implementation of SVD with ALS-WR 

recommendation module on Mahout. 
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4.3 EVALUATION OF RECOMMENDATION QUALITY 

Evaluation methods of recommendations are determined by aspects of the assessment. Majority 

of recommendation-related studies have been focusing on how the recommendation predictions 

are accurate. Along with the accuracy, there are various aspects to be evaluated. How are the 

recommendations diverse (diversity)? Are the recommendations novel or obvious (novelty)? Are 

the recommendations serendipitous to the recipient (serendipity)? Are the systems suggesting 

trust worthy recommendations (trustworthiness)? Do the recommendation systems produce the 

suggestions efficiently (scalability)? In e-commerce system, does applying recommendation 

technology increase the revenue (utility)?  As the recommendation technologies are evolving and 

gaining the popularity, the viewpoints of how to evaluate the technologies are also evolving. In 

this dissertation, I assessed the quality of recommendation technologies through offline 

experiments. That is, all experiments in this dissertation are performed using users‟ existing 

bookmark histories or ratings histories, and then simulate how the recommendation system can 

predict the pre-defined bookmarking or rating behaviors. Therefore, rather than evaluation 

criteria based on the users‟ perceptions, such as trustworthiness, system utility or scalability, the 

accuracy of the technology will be the main aspect to be assessed.  The evaluation method for the 

recommendation accuracy is also determined by the kind of predicted user preferences – whether 

the recommendation is to predict a unary rating (i.e. presence of a bookmark) or a numeric rating. 

In the following section, evaluation methods for unary ratings and numeric ratings will be 

explained separately.  
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4.3.1 Evaluation Method for Unary Ratings 

For unary ratings like Citeulike and CN3 datasets, information retrieval-based evaluation 

methods, such as precision, recall and F-1 measure, are usually used. In an offline experiment, 

we normally use N-fold cross validation. Users‟ bookmark sets are randomly split into N equal 

sized subsets so as to execute N-fold cross validation. For each iteration, one of the N subsets 

was used as a test set and the remaining N-1 subsets were used as a training set. This process was 

repeated with a different test set for N times. Then, the accuracy is judged by how many items in 

a test set appear in the recommendations. In the results, there are four possible outcomes of the 

recommendations and the test set.  

Table 2. Classification of the Possible Outcomes of the Recommendations 

 Recommended Not Recommended 

In Test Set True-Positive (tp) False-Negative(fn) 

Not In Test Set False-Positive (fp) True-Negative (tn) 

In the classification of the Table 2, the precision is the ratio of „True-Positive‟ in the 

recommended list (precision = tp/(tp+fp)) and the recall is the ratio of „True-Positive‟ out of the 

all items in the test set (recall = tp/(tp+fn)) [161]. In this paper, I will compute the accuracy of 

the recommendations according to the recommendation ranks. The recommendations are usually 

displayed in a ranked list. Users expected that items in a higher rank would be more important 

than other items in lower ranks. Therefore, it is critical to place correct recommendations in a 

higher rank, and the position of correct recommendations is a critical evaluation criterion of 
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recommendations. In all kinds of SN-based recommendation in my consideration, I will use 

multiple numbers of Top N recommendations (e.g. Top10, Top 5, and Top 2). For the evaluation 

of recommendations in each rank, precision at point N and recall at point N will be used. The 

precision at point N (precision@N) is the ratio of the number of correctly predicted items in the 

top-N recommendation list to N (Eq. 14). Recall at point N (recall@N) is the ratio of the number 

of correctly predicted items in the top-N recommendation list to the total number of relevant 

items (Eq. 15). 

             
                        

              
  

           

 
 Eq. 14 

          
                        

                
  

           

    
 Eq. 15 

Between the precision and recall, it is typical that there is a tradeoff. As the N is larger, it 

is likely that the recall is getting better and the precision is getting worse, and vice versa. Hence, 

considering the precision and recall separately, I will use the harmonic value, F1 measure, as the 

following [82].  

        
                    

                    
 Eq. 16 

Lastly, in order to compute the recommendation accuracy by ranks in more sophisticated 

manner, I also computed the Mean Average Precision (MAP) as the following [87]. It computes 

average precision of each test user and averages out the average precision of all users. The 

formula of average precision (AP) of a test user according to rank N is the following. A variable 

r denotes a recommended item among the set of Top N recommendations, R (r   R) and another 

variable Hitr represents hit of the corresponding item. When a corresponding item is one of the 

test items, then the hit value is 1 and otherwise it is 0.  
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Eq. 17 

4.3.2 Evaluation Method for Numeric Ratings 

The difference between unary ratings and numeric ratings is, as explained, the latter 

schema can represent how much a user like or dislike the corresponding item. Therefore, the 

evaluation method should judge not only whether the recommendation system can predict 

favorable items like the above F1 measure do, but also how much the system can predict the 

rating values correctly or how much the system can predict the relative position of the 

recommended items on the list of users‟ rated items. Mean absolute error (MAE) and root mean 

squared error (RMSE) are the most widely-used measures to compute the recommendation 

system‟s predictability of the rating values. On the other hand, the normalized cumulative 

discounted gain (NDCG) is the most typical measure to compute the predictability according to 

the relative positions.  

First, MAE computes the difference between the known rating values and the predicted 

rating values as the following.  

     √
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 Eq.18 

where    and   ̂  are the known rating value and the predicted rating value of item i for a 

target user u, respectively. The item i is in the user u‟s test set. The following equation shows 

how to compute the RMSE.  
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 Eq.19 

Compared with MAE, RMSE penalizes larger errors. Let‟s assume that there are three 

items in the test set. In one recommendation, the error of one item is 3 and the errors of the other 

two items are 0. In one recommendation, the error of two items is 2 and the error of another item 

is 0. Then the RMSE of the former case is larger than the latter case [161].  

Lastly, NDCG is widely used evaluation method not only for information retrieval but 

also for the evaluation of recommendations. When recommendations are presented to users as 

ranked list, regardless of the predicted ratings, it considers the relative rank positions of 

recommended items. This method compares the suggested ranked list with the optimal ranking 

list. The Discounted Cumulative Gain (DCG) of each user is computed as the following.   

       ∑
   

         

 

    ̂

 Eq.20 

Where u is the recipient of recommendations (  ̂) and i denotes an item of i th ranked 

position in the recommendation list. The ri is the user‟s rating on the item i. In particular, using 

the logarithm base, this measure adds more weight to highly ranked documents and incorporates 

different level of accuracy through different gain values. Hence this measure emphasizes the 

correctness of highly-ranked items more. This DCG value is normalized into NDCG by dividing 

by the ideal DCG which is the optimal ranking list. In the same way, the ideal DCG is computed, 

but since the ideal DCG is the optimal ranking, the list is reordered such that the most highly 
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rated items appear first. The average normalized DCG over all users is selected to show the 

accuracy of recommendation [1, 168].  
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5 WATCHING NETWORK-BASED RECOMMENDATIONS 

This chapter aims to examine how feasible recommendations based on watching network are. As 

a newly emerging social network, it is hard to find any comparable offline social networks. This 

means that it is still doubtful about the significance of this new online social network and, in 

accordance with the intentions defined by the service providers, it is still unsure whether the 

social network can be really a useful information source. Therefore, the promise of watching 

network-based recommendations should be based by proof positive that the presence of watching 

relations defines the similarity of the users‟ interests. The first part of this chapter will suggest 

the proof. In particular, using various information similarity measures, it will be examined the 

degree of information similarity between pairs of watching connections and changes of the 

similarity according to the social distance. Once we find reasonable degree of similarity between 

watching relations, the recommendations based on the watching network will be assessed in the 

second part of this chapter. The quality improvement made by watching network-based 

recommendations will be assessed by comparison with typical collaborative filtering 

recommendations. As the data source of this study, Citeulike will be used. 
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5.1 DATA SOURCE FOR WATCHING NETWORK: CITEULIKE 

The data source of the watching network is Citeulike
5
. The system is one of the leading systems 

for managing and sharing bibliographic information, along with Bibsonomy
6
, Mendeley

7
, and 

Connotea
8
. CiteULike is one of the most successful social bookmarking systems and enables the 

users to engage in watching relations. While other SNSs (e.g. Facebook, Twitter, Google Plus, 

etc.) which aim to promote online social networking and to encourage sharing various 

information about users‟ daily lives, the Citeulike system is to manage and share one solid kind 

of information – bibliographic information of scholar articles and books – and provides watching 

network as one method for users to acquire useful information.    

Citeulike data in consideration is made and distributed by the Citeulike administrators. 

Specifically, the dataset used in this dissertation is backed up on May 15, 2011. The data set 

contains article ids, all users, users‟ bookmarks, dates and times of the bookmarks and social tags 

at the time when this dataset was made. Since it doesn‟t contain information about metadata of 

articles (i.e. titles, authors, publication journals, abstracts, and publication years) and watching 

relations, I collected the information separately. The following Table 3 is the descriptive 

statistics, and Figure 5, and Figure 6 show the distributions of users and articles according to the 

bookmarks. This dataset has 94,388 Citeulike users and 3,210,960 articles, consisting of about 

3.9 million bookmarks. 66.3% of the users (n = 62,568) have at most 5 bookmarks and 89.9% of 

the articles (n = 2,885,833) were bookmarked only by one user. The bookmark sparsity of this 

                                                     

5
 http://www.citeulike.org 

6
 http://www.bibsonomy.org/ 

7
 http://www.mendeley.com/ 

8
 http://www.connotea.org/ 
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Citeulike data set is 0.9999, which is similar with the sparsity of Netflix [77, p. 170]. The users 

who are in watching relations (whether they are watching or being watched) are 11,439, which 

are 12.1% of the whole population. They formed 44,847 watching relations totally.  

Table 3. Descriptive Statistics about the Cituelike Watching Dataset 

Social Networks No. of Users in Watching Relations 11,439 

No. of Relations 44,847 

No. of Unidirectional Relations 44,381 

No. of Reciprocal Relations 233 

Avg. No. of Watched Partners per Watching User 13.91 (σ = 28.7) 

Information 

Collections 

No. of Distinct Articles 3,210,960 

No. of Users 94,388 

No. of Bookmarks 3,869,993 

Avg. No. of Bookmarks per User 41.0 (σ = 407.5) 

Avg. No. of Tags per User 143.21 (σ =2408.3) 

Avg. No. of Bookmarkers per Article 1.21 (σ =1.4) 

Avg. No. of Tags per Article 4.21 (σ = 7.2) 

Figure 7 is the distribution about how many connections each user watches. 3223 users 

watch other users. Each user watch about 14 users on average and 77.3% of them (N = 2492) 

watch at most 5 connections. Figure 8 displays the distribution about how many users are being 

watched by other users. 9,897 users are watched by other users, and 4.53 users watch them, on 

average. Most of them (N= 8,126, 82.1%) are watched by at most 5 users, and in particular, 15 

users are very popular. They watched by more than 100 users. These users are making 44,381 

watching relations. Interestingly, very few of the relations (N = 233) are reciprocal. I suggest this 

majority of unilateral direction in the relations is because Citeulike users are unable to see who 

are watching them.  Before beginning to compute information similarities of watching relations 

and the watching network-based recommendations, one should understand the heterogeneous 
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information usage patterns depending on users‟ social status and the social patterns of watching 

network.   

 

 

Figure 5. Distribution of Users according to 

the Number of their Bookmarks 

 

Figure 6. Distribution of Articles according 

to the Number of The Bookmarks 

  

Figure 7. Distribution of users according to 

how many users they are watching 

Figure 8. Distribution of users according to 

how many users they are being watched by 
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Information Usage Patterns of Users according to Their Social Status 

As mentioned, about 12% of users in the dataset (11,439 users) are watching other users 

or are being watched by other users. That means 88% of the other users are not involved in any 

watching relations. I examined the differences of these two groups of users in terms of their 

information usage patterns. The former group of users who are in watching relations (whether 

they are watching users or watched partners) started to use Citeulike in earlier day of the system 

lifetime (975.8 days ago when this data set was made, σ = 638.3 days ago) and have used 

Citeulike for longer period of time (M = 455.2 days, σ = 535.6 days). On the center of a different 

date when each bookmark was made, they also used the system more often (M = 34.3 times, σ = 

70.9 times). They also collect larger amount of bookmarks, 217.4 bookmarks (σ = 592.9) on 

average. On the other hand, the latter group of users not having any social partners started to use 

Citeulike in relatively later day (801.2 days ago when this data set was made, σ = 567.2 days) 

and have used Citeulike for much shorter period of time (M = 58.6 days, σ = 191.7 days). They 

also used the system less often (M = 2.8 times, σ = 8.7 days). They have about 10 times less 

bookmarks than the former user group, 16.7 bookmarks (σ = 368.3). Figure 9 shows how two 

groups of users have different distributions of bookmarks. Because the difference of the 

information usage patterns between two user groups is so clear, I didn‟t run a statistical test. The 

differences mean that users who are more familiar with and more active in the system tend to 

engage in watching relations. The Pearson correlation test also shows the same results. The 

earlier they started to use the Citeulike and the longer a user has used the system, the more social 

networks he has (γ = .18, p < 0.001; γ = .05, p < 0.001). The more bookmarks a user has, the 

more social partners (either watching users or watched users) he has (γ = .15, p < 0.001).  
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Figure 9.  Bookmark distribution of users who involve in watching relations contrasted 

with the one of users not involved 

When there are some differences in usage patterns between users who are in and out of 

the Citeulike watching network, do watching users and watched users use the system differently? 

The watching users started to use Citeulike in earlier days of the system lifetime (1,323 days ago 

when this data set was made, σ = 618.3 days) than watched users (920.5 days ago, σ =623.1 

days). They also have used Citeulike for longer period of time (M = 616.4 days, σ = 606.1 days) 

than the watched users (M = 474.9 days, σ = 547.1 days). However, the numbers of bookmarks 

between the watching users (M = 235.7, σ = 630.6) and the watched users (M = 243.4, σ =632.1) 

are not significantly different. Figure 10 contrasts the bookmark distributions of two user groups. 

The interesting part is that the more items a user bookmarked, the more users watch him (γ = .37, 

p < 0.001). The earlier a user started to use the Citeulike and the longer he has used the system, 

the more users he is watched by (γ = .05, p < 0.001; γ = .25, p < 0.001). In addition, the more 

item a user bookmarked, the more users he watches and this correlation is significant (γ = .046, p 

< 0.001). The earlier a user started to use the Citeulike and the longer he has used the system, the 
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more users he watch (γ = .29, p < 0.001; γ = .08, p < 0.001). Through these results, it is clear that 

users who had experienced the system more tend to watch or be watched. Collecting more 

bookmarks is also beneficial to involve in watching relations. Since users are unable to see who 

is watched by whom, it is clear tendency that rich users are watched by other users due to the 

perceived usefulness of the bookmark collections, rather than social popularity. However, since 

this Citeulike dataset doesn‟t contain any record about the time when a user started to watch 

another user, it is hard to figure out the causal relations between the watching relations and the 

size of bookmarks. As explained, once a user declared a watching relation with another user, the 

library of the watched user is automatically updated to the watching user on his „watchlist‟ page. 

Hence, it is unclear whether the watching users aggregated their rich collections by referring to 

their watched parties and copying some items from the watchlist or whether they actively 

collected information using their own strategies and the two users in watching relations got 

connected due to inherent similarities of their interests. Therefore, in the later section, I will 

explore whether watching relations are a convenient social mechanism to acquire useful items or 

a social network sharing not only the bookmarks but also inherent similarity of interests.  
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Figure 10. Bookmark distribution of users who are watching others, contrasted with the 

users who are being watched by others 

5.2 FEASIBILITY OF WATCHING NETWORK AS A USEFUL INFORMATION 

SOURCE 

It is presumed that watching relations are highly centered on interesting objects, since the 

relations are usually initiated with users‟ perceived utility of the partners‟ information collection, 

and the major function of the relations is referrals of useful information. The above descriptive 

statistics also shows that richer users tend to be watched by more users. However, it is a vague 

presumption, and there is no clear evidence showing the feasibility of the social network as a 

useful source for recommendations. Even though it seems for users to get connected with a 

purpose to acquire information, are they actually influenced by their connections? Will 

information collected by a user be useful to his watching partners? Otherwise, are users racking 

up watching connections just for fun or out of curiosity as they do on various online social 

networking sites? Once the point that utility-based relations maintain high information similarity 
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is proved, which similarity measure is the most representable for the shared interests? In order to 

answer these questions, I will examine the following hypotheses.  

H5.1. Information similarity between a pair of users who are in a watching relationship is higher 

than the information similarity between a pair of users who are not in a watching 

relationship.  

H5.1.1. Information similarity between a pair of users who are in a direct watching 

relationship is higher than the information similarity between a pair of users in an 

indirect watching relationship. 

H5.1.2. With the increase of social distance, the information similarity between two users 

is decreasing.  

H5.2. The similarity between a pair of watching connections is comparable to the similarity of 

users‟ Top N peers which are chosen by traditional CF recommendation technology.  

The target items of Citeulike dataset are scientific articles which contains various 

metadata. In order to determine the most representative similarity measure for watching network, 

the similarities based on the metadata will be compared with item-based similarities  

H5.3. Metadata-based similarities are better than item-based similarities on demonstrating the 

similarities of watching connections. 
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5.2.1 Information Similarity Measures 

In the Citeulike dataset, users‟ preferences were modeled by their bookmark history and 

expressed in unary ratings. Therefore, the similarity between a given users pair can start from 

counting how many items they co-bookmarked.  In addition, the target items of the Citeulike 

data are scientific articles which contain various publication-related metadata from titles and 

abstracts to publication years and author names. When users bookmark the articles, the system 

enables them to add free-text tags, as well. Therefore, in this paper, the similarity of shared 

information was assessed using item-based and metadata-based approaches. 

For the rest of this paper, we use the following notation. B is the user-item bookmark 

matrix, B= {B ui}L×N where L and N denote the number of users and items, respectively. u∈{u1, 

… , ul} represents users, and i∈{i1, …, in} denotes items. Bi is the bookmark collection of item i 

and Bu is the bookmarks of user u. 

5.2.1.1 Number of Co-bookmarks and Jaccard Coefficient 

The very basic and traditional way to measure the information similarity using unary ratings is to 

count the number of items shared by two given users. In this study, as the item-based similarity 

measure, the number of common items found in both users‟ bookmark collections was counted. 

This refers to as „the number of co-bookmarks‟. This is absolute number of common items, since 

we didn‟t consider the proportion of the common items to users‟ bookmark collections. 

However, sizes of bookmark collections varied dramatically from user to user. Let‟s assume that 
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there are two pairs of users – user a and b; user c and d – have the same number of co-

bookmarks, 10. The former pair is richer users, and the union collections of their bookmarks |Ba

∪Bb| consist of 250 items. The union collections of the latter pair |Bc∪Bd| have 40 items. For the 

richer users (a and b), sharing 10 common items are rather trivial, but for the poorer users (user c 

and d), sharing 10 items means that most of their favorite items are common. We need to 

measure the number of co-bookmarks using relative (normalized) ratios, thereof. Based on this 

number of co-bookmarked items, there are various similarity measures, such as Jaccard, Dice, 

Cosine and Log-likelihood similarities. As the first normalized measure, we chose „Jaccard 

coefficient‟. The Jaccard coefficient is the proportion of shared items in the union set of two 

users‟ collections. When user a and user b are in consideration, we can compute the coefficient 

as the following.  

                      |     | |     | Eq.  21 

5.2.1.2 Log-likelihood Similarity 

The next similarity measure is „the log-likelihood similarity‟, which is another typical similarity 

measure for the unary ratings. Log-likelihood similarity was initially proposed as a statistical 

analysis method for text processing. The strength of this similarity is that, unlike other similarity 

methods which take into account only the cases where an item was co-bookmarked, it takes into 

account not only the cases of co-bookmarking, but also the cases where an item was bookmarked 

by only one person and even the cases where an item was not bookmarked either of them. That is 

to say, this method measures how unlikely the overlap of interests was occurred just by chance 

[46, 75].  
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 Eq.22 

where, ln(        ) denotes the log-likelihood similarity between two user a and user b. 

na,b is the number of items bookmarked by both user a and b. na and nb is the number of items 

bookmarked by only user a or user b, respectively. n~a,~b is the number of items bookmarked by 

neither of them. A large positive similarity means that they are very similar and a large negative 

similarity means the dissimilarity. The similarity value of 0 indicates that two users in 

comparison are neither similar nor dissimilar [75].  

5.2.1.3 Popularity Weight of Co-bookmarked Items 

In measuring information similarity, due to the popularity bias (i.e. users are more likely to 

provide feedback on popular items than on rare items [166]), co-bookmarking very popular items 

doesn‟t reflect their shared interests as much as the co-bookmarks of rare items. For instance, in 

measuring movie tastes, the co-bookmarking of a very popular movie like „Avartar‟ doesn‟t 

show the true shared interests between two users than the co-bookmarking of a unpopular 

independent film. Therefore, we incorporate the item popularity into information similarity using 

the average inverse item popularity as the following. We defined this similarity measure as 

„popularity weight‟ of co-bookmarked items.  

     (   ∑
 

  
     

)    ⁄  Eq.23 

where IPab is the average inverse popularity of co-bookmarks between user a and b. Item 

i is one of the items that the user a and b commonly bookmarked, and N is the total number of 
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items in the dataset. ni is the number of bookmarks of the item i and nab is the number of co-

bookmarks between the user a and b. Bookmarks containing less popular items are thus assigned 

a higher popularity weight value.  

5.2.1.4 Metadata-based Similarity 

Due to the irregular opportunistic nature of the bookmarking process, users with similar interests 

may not necessarily end up with very similar collections. In this case, similarity of interest might 

be more reliably measured on the level of item‟s meta-data than counting co-bookmarked items. 

Even though users‟ preferences were expressed in unary ratings, by taking into account the 

related metadata of bookmarked items, we are able to analyze why users bookmarked the 

corresponding items in more cognitive ways. For example, in Citeulike domain, bookmarking 

papers from the same authors or same journal (or conference) names can be considered as an 

indicator of similarity. When titles of two papers in comparison are constituent of the similar set 

of keywords, it is likely that they contain the similar contents and context. In addition, users 

added free-text social tags when they bookmarked items. Compared with item bookmarks simply 

showing users‟ interests on the corresponding items, social tags indicates users‟ more cognitive 

and descriptive interests on tagged items [71, 196]. With this reason, in this study using Citeulike 

dataset, we consider various kinds of metadata – paper titles, author names, and the social tags.  

As the first metadata-based similarity, we computed „title vector-based similarity‟. In 

order to compute the similarity of the textual metadata, we used the vector space model [156]. 

Before computing the title vector-based similarity, we built users‟ preference model from all 

titles of their favorite items. All terms in titles of a user‟s bookmarked papers were aggregated 
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into one bag of keywords. Then for effective comparison, we applied text processing techniques 

to the bag of title keywords. The terms were case-normalized to the lower-case letters, and all 

stop words
9
 were removed. We also applied Porter stemmer so as to reduce word variation to its 

stems or roots [107]. The processed bag of title keywords were transformed into title keyword 

vector consisting of keywords and the TF/IUF (Term Frequency/Inverse User Frequency) values. 

In this paper, we computed each user as a document. Therefore, instead of the document 

frequency value in the original TF/IDF formula, I used the user frequency indicating how many 

users bookmarked papers of which the titles contain the keywords. As Mori, et al. (2006) 

suggested, when words in two articles similar, the contextual representations of the article pair 

are also similar. In particular, titles of papers represent the topic of the paper succinctly. 

Therefore, this title vector-based similarity tries to compute how much two given users are 

interested in similar contents and contexts.   

As the second metadata, we used authors‟ names. We named the similarity, as „author 

name vector-based similarity‟. Because papers are published under the names of the authors, the 

topics of papers are directly connected with the authors, and the readers acknowledge the names 

as experts of a corresponding topic. When a user bookmarks several papers written by an author, 

it is easy to infer his interests lay on the author‟s research topics. Hence, author names are one of 

the important anchors to find interesting papers and indicative of interests on the related topics. 

Since the author names are proper nouns, none of the text-processing techniques were applied to 

this metadata. All authors‟ names of one user‟s bookmarked papers were aggregated as one bag 

of names and the TF/IUF values were computed. In here, in the same way of building title 

                                                     

9
 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop 
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keyword vector, the user frequency value is about how many users bookmarked papers written 

by the same authors.  

Along with the titles and author names, there are other kinds of metadata available to 

infer users‟ preferences such as abstracts, journal/conference names and publication year. 

However, I failed to find the abstracts and journal/conferences names for more than the half of 

the papers in this Citeulike dataset. In addition, I concluded that the publication years don‟t carry 

much meaning as a kind of metadata to infer users‟ information preference and similarity. 

Therefore, only two kind of metadata were considered in this dissertation.  

5.2.1.5 Social Tag-based Similarity 

The last metadata is users‟ social tags. Compared with titles and author names describing the 

contents and context of articles innately, social tags are about how each user approaches the 

articles from a personal point view. It is known that tags annotated by a user represent his 

conceptual understanding or categorization of a resource. Thus, users‟ social tags can serve as 

rich evidence about user interests. When two users have many common tags, we interpreted this 

result to mean that their interests are overlapped.   

In particular, unlike other studies about social tag-based information similarity, we didn‟t 

count tag similarity based tri-partite (user-tag-resource) relations. Put differently, we didn‟t 

compute how two users annotate the same tags for the same articles. Instead, we computed how 

two users annotate the same tags regardless of the annotated articles. The reason is that our own 

previous studies showed that the tag similarity based on the tri-partite relations (i.e. how two 

users annotated the same items with the same tags) was too trivial (0.06% of the Jaccard efficient 
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for the Citeulike watching relations and 0.004% of the Jaccard efficient for the Citeulike group 

co-members) to suggest a meaningful similarity level between two users [96, 98].  

Before we build social tag vector, due to the idiosyncratic nature of social tags, it is 

required to clean up the metadata. In Citeulike, users are able to add free-text tags of their choice 

on bookmarking items. However, when users don‟t assign any tags, Citeulike automatically 

assigns pseudo-tags, „no-tag‟. When users imported bibliographic information from a citation file 

such RIS, BibIX, ENL files, the system also automatically adds pseudo-tags like „*file-import-

xx-xx-xx‟. These pseudo-tags were added just for the system‟s sake and don‟t carry any 

meaning. Therefore, we eliminated the pseudo-tags for the comparison. Then, we built two kinds 

of tag vectors. For one tag vector, we didn‟t apply any text-processing techniques except case-

normalization, and it is referred to as „original tag vector-based similarity.‟ For another kind of 

tag vector, the same text-processing techniques used for paper titles (i.e. case normalization, 

stop-word removal, and stemming) were applied to the tags, and it is referred to as „processed 

tag vector-based similarity.‟ These two tag vectors compute the degree of overlapped interests 

between two users. By comparing these two kinds of tag vectors to each other, we aim to test 

whether applying text processing techniques improve the effectiveness of the similarity 

measures. For both original tag vector and processed tag vector, we computed the TF/IUF values 

for each tag. The user frequency is about how many users annotated their bookmarks with a 

corresponding tag. 

Once all metadata vectors – title vector, author name vector, original tag vector and 

processed tag vector – were built, the similarity between a pair of users was computed using the 
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cosine similarity for every metadata vector. In summary, the Figure 11 shows the similarity 

measures used in this study.  

 

Figure 11. Summary of Similarity Measures 

5.2.2 Information Similarity of User Pairs according to their Social Distances 

This section is to test whether pairs of users in watching relationships share more similar 

information than users who are randomly paired and not socially associated to each other at all 

(H5.1). As the first step, the item-based information similarity was computed according to the 

users‟ social distances – direct, 1hop, 2hop and random pairs. In particular, the Citeulike dataset 

considered in this dissertation has two kinds of social networks. One kind is watching network 

which is explored in this chapter and another kind is group memberships which will be explored 

in the chapter 6. Thus, I classified two users neither in watching relations nor in group co-

memberships as a random pair. Since they are not socially associated, and the social reachability 

is uncountable, their social distance was defined as infinite. The Table 4 shows the result.  
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Table 4. Comparison of Item-based Similarity Depending on the Distances of Watching Relations 

 

No. of Co-

bookmarks 
Jaccard Log-Likelihood Popularity 

Direct 1.80 0.21% .204 8.69 

1Hop .39 0.04% .097 7.75 

2Hop .16 0.02% .061 7.38 

No Relation .04 0.02% .023 6.92 

 
F = 5192.0,  

p < .001 

F = 10408.9,  

p < .001 

F = 7091.0,  

p < .001 

F = 2396.4,  

p < .001 

For all kinds of item-based measures, the similarities were significantly different 

according to the social distances of user pairs (for number of co-bookmarks, F = 5192.0, p < 

.001; for the Jaccard Co-efficient, F = 10409.0, p < .001; for the log-likelihood similarity, F = 

7091.0, p < .001; and for popularity, F = 2396.4, p < .001). For all kinds of the item-based 

measures, user pairs in direct watching relations produced the largest degree of similarities. On 

the contrary, the similarities of user pairs randomly coupled were the smallest for all measures. 

The differences were obvious, and the Scheffé post-hoc pairwise comparison also showed that 

the differences between direct watching connections and random pairs were significant. Hence, 

at least for the item-based similarities, the hypothesis 5.1 has met.  

In addition, the similarities were decreased incrementally along with the increase of the 

social distance. The post hoc pairwise comparison displayed that the differences of all item-

based similarities were significantly different among pairs in direct, 1hop and 2hop distance. The 

results proved that the hypotheses 5.1.1 and 5.1.2 are true for the item-based similarities. 

Therefore, we conclude that interests of direct watching connections are the most similar. 

According to the result of log-likelihood similarities, the co-shared items are based on inherently 

co-shared interests between two users, not by chance. The users in direct watching relationships 

also tend to share rare items, and user pairs in distant relationships or in no relation shared 
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popular or rather common items. We can identify this result as clear evidence about the 

homophily existing on the watching network. 

We also compared the metadata-based similarity by the social distances and the following 

Table 5 is the result. The result of the metadata-based similarity is also the same with item-based 

similarity. For all kinds of metadata-based measures, the similarities were significantly different 

according to the social distances of user pairs (for title vector-based similarity, F = 21296.7, p < 

.001; for the author name-based similarity, F = 8623.1, p < .001; for original tag-based 

similarity, F = 18692.5, p < .001; and for processed tag-based similarity, F = 19152.0, p < .001). 

In the same patterns as the comparison of items-based similarities demonstrated, the similarities 

of users in direct watching relationships were the largest and the similarities of users in no 

relations were the smallest. The post-hoc pairwise comparison showed that the difference was 

significant. The hypothesis 5.1 hereby has the met completely. The similarities were decreased 

along with the increase of the social distance, as well. The post hoc pairwise comparison 

presented that the differences of all metadata-based similarities were significant among pairs in 

direct, 1hop and 2hop distance. Therefore, both hypotheses 5.1.1 and 5.1.2 are true for all kinds 

of similarities. Conclusively, users in direct relations shared items having the most similar topics 

or the most similar tag sets than user pairs in distant or infinite social distances.  
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Table 5. Comparison of Metadata-based Similarity Depending on the Distances of Watching 

Relations 

 
Title Vector 

Author Name 

Vector 

Original Tag 

Vector 

Processed Tag 

Vector 

Direct .1440 .0149 .0362 .0505 

1Hop .0814 .0033 .0095 .0168 

2Hop .0626 .0020 .0062 .0114 

No Relation .0147 .0007 .0012 .0020 

 F = 21296.7,  

p < .001 

F = 8623.1,  

p < .001 

F = 18692.5,  

p < .001 

F = 19152.0,  

p < .001 

5.2.3 Information Similarity vs. Social Features 

In the above, we checked that watching relations share the most similar interests. As the close 

scrutiny of the information sharing patterns, I examined how the information similarities are 

correlated with the social features of watching relations. The selected social features are 

bibliographic coupling and edge betweenness centrality. First, bibliographic coupling of two 

vertices in a directed network (i.e. watching network) is the number of other users which both 

vertices watch. For instance, vertex i and j watches three of the same users and so have a 

bibliographic coupling of 3. In a directed network, if two users have social relationships with the 

same other people, the number of common neighbors can indicate how strongly they overlap 

socially [135, pp. 116-118]. In addition, this watching network is mainly to acquire useful 

information from other users whose information collections are interesting. Therefore, the 

number of the same partners in watching network can be a good indication that they deal with 

similar matters. When there is significantly positive correlation between the information 

similarities and this bibliographic coupling, it is clear proof that the presence of watching 

relations defines the similarity of the users‟ interests. Fortunately, the correlation test showed 
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that all eight kinds of similarities have significantly positive correlations with the values of 

bibliographic coupling (for number of co-bookmarks, r = .06, p < .001; for the Jaccard Co-

efficient, r = .05, p < .001; for the log-likelihood similarity, r = .12, p < .001; and for popularity, 

r = .06, p < .001; for title vector-based similarity, r = .10, p < .001; for the author name-based 

similarity, r = .08, p < .001; for original tag-based similarity, r = 0.05, p < .001; and for 

processed tag-based similarity, r = .05, p < .001).   

Second, a betweenness centrality of an edge is the number of geodesic paths (i.e. the 

shortest path) passing through the edge. In order to compute this centrality value, geodesic paths 

between every pair of vertices in the network are computed, and the numbers of paths running 

along the corresponding edge are counted [135, p. 382]. Basically, this is a property for vertex; to 

measure how one vertex can act as a bridge to connect two vertices. In the similar sense, this 

edge betweenness is to consider influence of an edge within a network. In Citeulike watching 

network, let‟s assume that information flows from user to user, and each user has the same power 

of communication. The most effective way to deliver information from one vertex to another 

vertex is to take the shortest route. Therefore, it is more likely that the information will often 

pass down through user pairs having high edge betweenness than pairs with low edge 

betweenness. That is to say, edges with high tend to have important control over passing 

information within the network.  

If there is a significant correlation between edge betweenness centralities and users‟ 

information similarities, the result could be interpreted to mean that the user pairs sharing more 

similar items tend to have more control over circulating information within the social network. 

When users formed their watching network around items of their interest, moreover, pairs of 
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users having common interests will share more coherent set of items and other users get around 

them so as to acquire the relevant information to their interests. Therefore, the user pairs whose 

interests are more largely overlapped may have stronger influential power. The Pearson 

correlation test found the significantly positive correlations of edge betweenness with the number 

of co-bookmarks, the Jaccard co-efficient and log-likelihood similarity (for number of co-

bookmarks, r = .10, p < .001; for the Jaccard Co-efficient, r = .06, p < .001; for the log-

likelihood similarity, r = .15, p < .001). However, this result raised one question. Isn‟t it likely 

that larger amount of information collections could lead to higher betweenness values because 

users may simply get around rich users to acquire information? According to correlation test, 

there was a significantly positive correlation between this edge betweenness and the number of 

items in union set of two users‟ collections (r = .08, p < .001).  Then is it true that users just 

decided to get around rich users? In order to check this question more, it is tested how edge 

betweenness is correlated to item popularity and metadata-based similarities. I also found that 

significantly positive correlations for other remaining similarities (for popularity, r = .10, p < 

.001; for title vector-based similarity, r = .11, p < .001; for the author name-based similarity, r = 

.09, p < .001; for original tag-based similarity, r = 0.04, p < .001; and for processed tag-based 

similarity, r = .05, p < .001). This means that the user pairs having higher edge betweenness 

centrality tend to share rare items, and their interests described by the titles, author names, and 

social tags of their favorite articles are more similar than other pairs having lower edge 

betweenness.  Users are not simply watching other rich users but watching other users who have 

coherent items matched to their interests. 
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5.2.4 Social Connections vs. Top N Anonymous Peers 

The previous results demonstrated that users in watching networks do share their 

interests. Then is the watching network substitutable for anonymous peers selected by CF 

computations, in terms of the shared interests? This question will be answered in the next section 

about watching network-based recommendations (i.e. the Section 5.3) in a full scale. Prior to the 

Section 5.3, as a simple way to answer this question, the information similarities of watching 

connections were compared with the similarities of top N peers (H5.2). Since CF mainly used 

item-based similarity, top 20, 10, and 5 peers were selected using Jaccard co-efficient and log-

likelihood similarity. The reason why these two item-based similarities are particularly 

considered is that these two similarity measures are widely used in recommendations using 

bookmark records.  

For the comparison, users who watch other users were chosen as target users, and six 

groups of their anonymous peers (i.e. top 20, 10 and 5 peers based on Jaccard co-efficient and 

log-likelihood similarity, respectively) were selected for every target user. These peers could 

include the target users‟ watched partners since the selection of the peers were made by fully 

automated computations of the nearest neighbor approach, without any consideration of social 

information. In the same manner to the top peers, I classified target users‟ watched partners into 

eight groups (i.e. all of the watched partners and top 20, 10 and 5 partners based on Jaccard co-

efficient and log-likelihood similarity, respectively). Then, I examined the differences on the 

information similarities between anonymous peers and social partners. The results demonstrated 

that target users‟ watching connections under-shared their bookmarks than anonymous peers. 
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According to a One-way within subjects ANOVA, for both Jaccard co-efficient and log-

likelihood similarity, the differences were significant (F = 610.0, p < .001 for Jaccard co-

efficient; F = 972.3, p < .001 for log-likelihood similarity). In the Bonferroni pairwise 

comparison to find the pattern of differences, for both the Jaccard and log-likelihood similarities, 

the values of anonymous peers were significantly higher than the ones of watching connections. 

That is, target users share more common items with their anonymous peers than the watching 

partners. This result suggests that, when taking into account the information similarity solely 

based on co-bookmarks, the recommendations based on this watching network might not be easy 

to beat traditional collaborative filtering.   

If anonymous peers possess more common items of interests, are the watching 

connections less useful sources of information than anonymous peers? If anonymous peers are 

effective information sources, why did the target users connect to their watching partners, instead 

of anonymous peers? Is it because the target users simply couldn‟t find the anonymous peers or 

is there another reason for the target users to make the watching relationships with their current 

partners? In order to answer these questions, other aspects of information were explored – 

metadata. As explored above, metadata similarities could indicate overlapped interests between 

two users in more cognitive and descriptive ways. When anonymous peers share genuinely more 

common interests with our target users, it is expected that their metadata-based similarities will 

be also higher than the similarities of watching connections. The metadata-based similarities 

were compared for the same anonymous peers and watching partners. In particular, since Jaccard 

co-efficient and log-likelihood similarity picked heterogeneous groups consisting of different 

peers, the metadata-based similarities were computed and compared for both groups separately. 
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Figure 12 shows the results. The results demonstrate that watching connections have higher title 

and tag similarities than anonymous users, even though the similarities of author names were the 

opposite. The differences were all significant according to One-way within subjects ANOVA (F 

= 1253.6, p < .001 for title similarity; F = 996.0, p < .001 for author name similarity; F = 542.3, 

p < .001 for original tag similarity; F = 606.1, p < .001 for processed tag similarity). In case of 

title similarity, the results of Bonferroni pairwise comparison showed that title similarity of top 5 

anonymous peers chosen by Jaccard co-efficient (i.e. Top 5 peers by Jaccard in the Figure 12) 

were insignificantly different with the title similarities of watching connections. However, the 

title similarities of the other peer groups were significantly lower than watching connections. In 

case of social tag similarity, our target users shared significantly more similar tags with their 

watching partners than peers, regardless whether the social tags were original or text-processed. 

Even though our target users have more common items with anonymous peers, their preferences 

expressed in a semantically rich format were not as much similar as the preferences of watching 

connections are. I interpret these results to mean that, due to the irregular and opportunistic 

nature of bookmarking process, item-level similarity may lag behind „true‟ interests shared 

between pairs of watching connections. Therefore, notwithstanding the under-shared items, it is 

evident that users in a watching relation share similar interests and they could be a critical source 

for personalized recommendations to each other. However, author name-based similarities 

between pairs of watching connections were rather lower than the same similarities between 

target users and their anonymous peers. The differences were also significant. It hits that the 

author name is a feature closely related to the items per se. Therefore, the similarity based on 

author names might not be a good similarity measure to indicate watching connections‟ shared 
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interests and further, to be used in watching network-based recommendations. To conclude, 

depending on how to measure the information similarities, our target users share more similar 

items with their anonymous peers and share more similar keywords and social tags with their 

watching connections. Therefore, the anonymous peers and watching connections have 

complementary ability to each other. Therefore, I suggested that H5.2 has met.  

As shown up to now, it is important to decide how to measure the information similarity 

for watching network-based recommendations. Item-based measures were not sufficient to 

represent the similarities of watching connections. It seems that the shared interests of watching 

connections could be effectively expressed through titles of their favorite items and the social 

tags. In the next sub-section, in order to determine the best similarity measure for the watching 

network-based recommendations, the comparative effectiveness of each similarity measure will 

be assessed.   

  

Figure 12. Metadata-based Similarity Comparison between Watching Connections vs. Top 

N Peers 
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5.2.5 The Best Similarity Measures for Watching Network  

In the previous section, we verified that the watching relations enable Citeulike users to 

communicate knowledge and information to each other. The aforementioned results suggested 

that users in watching relationships possess higher information similarities than users in distant 

social distance or no connection. As explained in the section 5.2.4, nevertheless, some similarity 

measures are better than the others in representing the shared interests of watching relations, and 

the effectiveness of each similarity measure is still unclear. This section aims to test which 

measure indicates the similarity of the watching relations the most effectively. The 

aforementioned 8 similarity measures are assessed by seeing which measure predicts the existing 

relations the best. For this test, we chose the users who watch the other users as target users as I 

did on the section 5.2.4. Therefore, they are 3223 watching users. Then, we computed all eight 

similarity measures of the target users with every other user, regardless whether the two users are 

socially associated or not. Then, we picked the top N similar users of the target users and among 

the top N users, it is counted how many users were actually in social associations. The 

comparison was executed with increasing top N ranks such as top 50, top 20, top 10 and top 5. 

Under the precondition of homophily and social influence, we can reckon that the more similar 

interests two users commonly share, the more likely they are socially associated with each other. 

This comparison, thus, seeks to determine the similarity measure to meet this condition. 

As the evaluation criteria of this prediction, traditional evaluation methods for 

information retrieval were used; precision and recall. The precision aims to measure how precise 

the predictions are and the recall aims to measure how complete the predictions are. More 
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specifically, precision at point N (precision@N) is the ratio of the number of correctly predicted 

items in the top-N list to N. Recall at point N (recall@N) is the ratio of the number of correctly 

predicted items in the top-N list to the total number of relevant items. As explained, we will 

compute the accuracy of the predictions according to the four different top N ranks. (N = 50, 20, 

10, and 5). 

First, for 3223 target users who are watching users, we tested the effectiveness of 

individual measure by forecasting who they watched. Figure 13 shows the precision and recall of 

the predictions made by each similarity measure, respectively. According to the one-way 

ANOVA test, the differences in the precisions are significantly different depending on the kinds 

of measures for all ranks (F = 106.7, p < .001 for Top 50; F = 92.0, p < .001 for Top 20; F = 

100.2, p < .001 for Top 10; and F = 127.9, p < .001 for Top 5). In lower ranks (i.e. top 50 and top 

20), most metadata-based measures were significantly better than item-based similarity. 

However, in the higher ranks (i.e. top 10 and top 5), the number of co-bookmarks (i.e. absolute 

number of co-bookmarks) and title vector-based similarity produced significantly the most 

accurate predictions. Between these two measures, there was no significant difference. Two tag 

vector-based similarities and author name-based similarities were the second best measures, and 

among these measures, there were no significant differences in terms of precision. However, the 

Jaccard co-efficient (i.e. normalized and relative ratio of co-bookmarks) and the popularity 

weights made the worst predictions in the top N list. 

Regarding the results of recall, like the results of precision, in higher N list (i.e. top 20, 

top 10 and top 5), the number of co-bookmarks produced the most complete predictions out of 

the target users‟ existing social relations. For top 20 and top 10, the title vector-based similarity 
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also produced the good results, and there was no significant difference between the absolute co-

bookmark number and the title vector-based measure. However, in top 5 results, the number of 

co-bookmarks significantly outperformed the title vector-based measure. The pattern of 

difference regarding the recalls of the other similarities was not the same to the patterns of the 

precisions. In any top N ranks, log-likelihood measure did the least complete prediction. In 

addition, two tag-based similarities didn‟t performed well. For either kind of evaluation criteria, 

author name–based similarity was a good and effective measure, since it predicted the 

significantly second most correct and complete predictions in all ranks. Additionally, tag-based 

similarities are computed using term-frequency information. In particular, even though the 

original tags and the processed tags are rooted on the same set of tags, several text-processing 

techniques were applied to the later set in order to reduce word variation and to increase the 

chances of term matching. The Scheffé pairwise test result yielded that the two measures are not 

significantly different to each other regardless of the evaluation criteria and the N ranks. It 

demonstrates that text-processing techniques such as stop-word removal and stemming don‟t 

significantly contribute the effective comparison of tags.  

Regardless of the evaluation criteria (either precision or recall), counting how many items 

a given pair of users co-bookmarked (i.e. absolute measure of co-bookmarks) is the most 

effective way to compute the information similarity of this utility-based watching networks. Title 

vector-based measure representing how much the topics of the bookmarked items are overlapped 

between two users is also effective. On the other hand, except the number of co-bookmarks, the 

item-based measures are less effective than the metadata-based measures. In spite of the good 

performance of absolute measure of co-bookmarks, the effectiveness of the normalized measures 



136 

 

(i.e. Jaccard co-efficient and log-likelihood) was disappointing. Another popularity weight was 

also below our expectation. Lastly, two tag-based measures performed quite the same level, since 

we failed to find any significant difference. Therefore, applying the text processing techniques 

didn‟t contribute distinctive improvement in representing shared tags between watching 

connections. Therefore, the hypothesis suggesting better performance of metadata-based 

similarities than item-based similarities (H5.3) is rejected.  

 

(a) The results of the Precision 

 

(b) The Results of the Recall 

Figure 13. Results of the Test to Forecast Watching Relations 
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As the next step, we combined the individual measure to intensify the effectiveness and 

tested whether combining multiple effective measures together increase the performance or not. 

Each similarity measure has heterogeneous range of values. For instance, the values of co-

bookmarks could range from 0 to 3,210,960 (i.e. total number of items in our dataset) and the 

values of Jaccard coefficients and all metadata-based similarities range from 0 to 1. Hence, 

before fusing similarity measures, it is required to normalize each similarity measure using the 

Standard Score (SS) like the following.  

    
    

 
 Eq.24 

where x is one similarity value, and µ and σ is the mean and standard deviation of the 

corresponding similarity measure, respectively. Then the normalized similarity values were 

combined together, and existing watching relations were predicted using the combined 

similarities. The following Figure 14 and Figure 15 show the results of precision and recall of the 

combined measures along with the best two individual similarities (i.e. the number of co-

bookmarks and title vector-based similarity). 

We found that, regardless of the ranks, there are significant differences on the precisions 

(F = 63.76, p < .001 for top 50, F = 57.54, p < .001 for top 20, F = 65.49, p < .001 for top 10, F 

= 83.84, p < .001 for top 5). The Scheffé post-hoc pairwise test showed that the combinations of 

metadata-based measures produced significantly better results than the combinations of item-

based measures, in lower ranks (top 50 and top 20). In higher ranks (i.e. top10 and top 5), on the 

other hand, the differences were blurred. The precisions were insignificantly different between 

the combinations of item-based measures and the combinations of metadata-based measures. 

However, when the number of co-bookmarks is fused with metadata-based similarities, it 
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produced the better precisions for both top 10 and top 5 results. Specifically, when the number of 

co-bookmarks, title vector-based similarity and processed tag vector-based similarity were 

combined together (i.e. ①+⑤+⑦ on the Figure 14), it significantly outperformed all the other 

similarities. Among the combinations, hence, combining the number of co-bookmarks, titles and 

processed tags is the most effective to accurately predict the existing watching relations and to 

represent the similarity of watching connections. However, interestingly, two best individual 

measures (i.e. the number of co-bookmarks and title vector-based similarity) also made almost 

equivalent level of predictions with the combinations even though the pairwise test concluded 

that the precisions of the two individual similarities are significantly lower than the best-

performed combination.   

 

Figure 14. Precisions of Combined Measures for the Prediction of Watching Relations  

(①= No. of Co-bookmarks; ② = Jaccard; ③= Popularity; ④ = Log-likelihood; ⑤ = Title 

Vector; ⑥ = Original Tag Vector; ⑦ = Processed Tag Vector; ⑧ = Author Name Vector;  

The data series is displayed in the order of the legend) 
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Figure 15. Recalls of Combined Measures for the Prediction of Watching Relations  

(①= No. of Co-bookmarks; ② = Jaccard; ③= Popularity; ④ = Log-likelihood; ⑤ = Title 

Vector; ⑥ = Original Tag Vector; ⑦ = Processed Tag Vector; ⑧ = Author Name Vector;  

The data series is displayed in the order of the legend) 
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and processed tag vector-based similarity (i.e. ①+⑤+⑦ on the Figure 15). Between these two 

kinds of combinations, there was no significant difference. In addition, two best individual 

measures (i.e. the number of co-bookmarks and title vector-based similarity) also made good 

predictions, even though the recalls of the two individual similarities are significantly lower than 

the best-performed combinations.   

To conclude, for both evaluation criteria, the combination of the number of co-

bookmarks, title vector-based similarity and processed tag vector-based similarity explain shared 

interests of watching relations the most effectively. In order to predict and effectively show the 

sociality of watching relations, thus, the most critical information to consider is what they 

bookmarked, what the bookmarked items are about and which tags users annotate the 

bookmarked items with. In the following section, recommendations based on watching network 

using will be executed and assessed using various similarity measures including the best-

performed combinations of similarities.  

5.3 EVALUATION OF WATCHING NETWORK-BASED RECOMMENDATIONS 

This section explores the potentials of watching network as an effective source of 

information by including the network in the personalized recommendations. Since the main 

focus of this part is on the benefit of the watching network as an alternative source to the 

anonymous peers, the watching network-based recommendations will be compared with typical 

CF recommendations. Therefore, the most critical hypothesis to be assessed in this part is the 

following.  
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H5.4. Watching network-based recommendations produce better recommendations than 

traditional CF approach.   

Moreover, as mentioned, the final output of this recommendation is research articles 

which embed not only users‟ bookmarks records about them but also various metadata such as 

titles, author names, publication journal or conference names, etc. and users‟ annotated tags. In 

order to augment the recommendation quality, it is critical to determine the best way to take 

advantage of the watching network and the various metadata in the personalization process. 

Thus, in this watching network-based recommendation, we considered three aspects – users‟ 

preferences on information items (i.e. research articles or books), watching network of users and 

content of items. Summarizes the overall design of recommendation approaches considered in 

this part.  

 

Figure 16. Overall Design of Watching Network-based Recommendation Algorithms 
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As mentioned on the section 4.2, CF recommendations are made in four steps – modeling 

user preferences, selection of peers, computation of prediction probability and suggestion of 

recommendations. In order to find better ways to generate the watching network-based 

recommendations, in every step, I will try out various ways of doing that.  

Modeling Users Preferences 

The recommendations based on K-nearest neighbors are generated using two different kinds of 

user preferences – bookmarks of items and metadata of items. The above section 5.2.5 shows 

that both users‟ bookmark records and metadata of items (in particular, titles and users‟ social 

tags) are workable similarity measures. In particular, when the bookmark records are fused with 

the metadata, it represents the shared interests of watching connections the best. Therefore, I 

modeled users‟ preferences in three ways – 1) based on users‟ bookmarks, 2) based on metadata 

of items (i.e. content boosted recommendations; that is, CBCW recommendations), and 3) based 

on the combinations of bookmarks and the metadata (i.e. recommendations using content 

similarity weight; that is CW).  

Selection of peers 

The results of the previous section indicated that users in direct watching connections tend to 

share more similar interests than indirect watching connections. Then is it better to include not 

only the connections to be watched by our target users but also the connections watching our 

target users? Even though the latter connections were not defined by our target users, the analysis 

result showed that they also have similar interests. In addition, when target users have very few 

watching connections, instead of relying on the limited number of social links, is it effective to 

include social links who are connected with distance (i.e. 1 hop)? Lastly, according to the results 

of the first part, the top N peers still have higher bookmark similarity than their watching 
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connections. Can hybrid recommendation fusing users‟ top N peers with their watching 

connection enhance the quality? Therefore, the point that I evaluate in this step (i.e. the selection 

of peers) is to determine the optimal scope of social network to be a component of the watching 

network-based recommendations through the following hypotheses. 

H5.5. Recommendations based on direct watched partners are better than the recommendations 

based on extended scope of watching connections.  

H5.5.1 Recommendations based on direct watched partners are better than the 

recommendations based on both direct and indirect watched partners.  

H5.5.2 Recommendations based on direct watched connections is better than the 

recommendations based on both direct watching and watched connections. 

H5.6 Pure social recommendations solely based on watching network is better than the hybrid 

recommendations based on both watching network and anonymous top N peer users. 

Algorithms to compute the prediction probability 

Once the better way to model users‟ preference is determined, in accordance with the resultant 

preferences, the better recommendation algorithm to compute the prediction probability will be 

chosen. In here, I test the K-Nearest Neighbor approach and matrix factorization algorithm.  

Suggestion of recommendations 

The recommendations mainly based on users‟ bookmark records are usually hard to make more 

precise suggestions than the recommendations based on numeric ratings. The bookmarks just 

represent users‟ simple interests on the corresponding items but don‟t reflect how much they are 

interested in or why the items interest them. Thus, for more accurate recommendations, we need 

to consider extra information. Citeulike is one of the typical social bookmarking systems and the 
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social bookmarking systems generally enable users to annotate social tags regarding what they 

think about the bookmarked items. As a social bookmarking system, of course, a part of the 

Citeulike data is the social tags. Additionally, other kinds of metadata such as title, abstract, 

author names, publication journal/conference names and publication years are also available. 

However, as explained, in the Citeulike data set considered in this dissertation, except title and 

author names, the other kinds of metadata are missing in many articles. Therefore, at the final 

step of the recommendations where the recommended items are selected by the prediction 

probability, users‟ extra preferences based on the metadata will be applied.  

5.3.1 Recommendation Algorithms 

5.3.1.1 Watching Network-based Recommendation and Hybrid Recommendations 

The main focus of this study is to assess the substitutability of watching network for 

anonymous peers in recommendations. The watching network is a unilateral network defined by 

one party of the relations, not by mutual consents of two parties. According to the first part of 

this chapter, however regardless of the direction, the users in watching relations share common 

interests to each other. Therefore, even though the watched users didn‟t initiate the relations and 

don‟t know who are watching them, due to the shared interests, the information favored by their 

watching users could be a useful source. In addition, although the users connected with distance 

(i.e. 1hop) shared less similar interests than directly watching connections, their similarities were 

higher than the values of randomly paired users. Therefore, the users having a 1hop distance with 

our target users could be a valuable source, as well. In order to determine the optimal scope of 
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the watching connections to be a component of the watching network-based recommendations, I 

proposed three strategies in the selection of social connections – based on direct watching 

connections („Watch‟), direct watching and watching connections („ReciWatch‟) and direct and 

indirect watching connections (1hopWatch).  

In the step to compute the prediction probability of recommendations, K-Nearest 

neighbors and matrix factorization algorithm were used alternatively. When the K-Nearest 

Neighbor approach is used, I only considered users‟ watching networks. Let‟s assume that the 

social recommendations are generated using the K-Nearest Neighbors based on direct watching 

connections. The recommendation considers only the bookmarks of our target users and the 

bookmarks of their partners being watching by our target users. In the execution of the matrix 

factorization approach, for every target user, I built a separate sub-matrix being made up of the 

target users‟ bookmarks (in the training sets) and bookmarks of the direct watching connections. 

Due to the small number of bookmarks and much less sparse matrix, the recommendations could 

be efficiently generated. The data sparsity of the whole Citeulike dataset in our consideration is 

.9998 but the average data sparsity of watching network-based sub-matrices is 0.771 (σ = 0.30). 

The standard matrix factorization approach feeds the whole bookmark data onto the computation 

once. Therefore, the system requires a huge size of memory and often complains about the heap 

size error. When considering the whole dataset, the algorithm requires a large number of latent 

factors (e.g. > 100 for Netflix dataset [199]) and the large number is directly connected to the 

computational cost. On the other hand, watching connections are made up of relatively small 

number of links and focus on narrow scope of contents. Therefore, it doesn‟t require computing a 

large number of factors. In addition, whenever a user updates his bookmark history or changes 
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his group-based social connections, the system is able to rebuild small sub-matrix only for the 

corresponding user and calculate the matrix factorization right away. In a situation where online 

users‟ participation is getting increased, the large-scale SVD has a serious scalability problem 

[23, 158, 195].  

In the watching network-based recommendations based on the other two strategies to 

select social connections, the direct watching connections were altered to the corresponding 

social connections (i.e. watching and watched connections or direct and indirect watching 

connections) and the recommendations were produced in the same way like the above.  

Lastly, as an extra option to consider, I also propose hybrid recommendations by 

combining target users‟ top N anonymous peers with their direct watching and watched 

connections (i.e. Hybrid, Hybrid_CW, HybridSVD, and HybridSVD_CW). In here, the variable 

N is determined as many anonymous peers as each target user‟s watching and watched 

connections are. According the experimental evaluation to decide the optimal setting of the 

recommendations, the CF recommendations using the K-nearest neighbors produced the best 

results when the considered anonymous peers were the equal number to the target users‟ 

watching network-based connections. A target user‟ top N anonymous peers were combined with 

his watching and watched connections. In particular, among various hybridization strategies, I 

used the mixed hybrid strategy [29]. Put differently, two sources of information – one source is 

target users‟ top N anonymous peers and another source is their watching network-based social 

connections – were mixed as one set, and then the mixed set was used as a foundation of the 

recommendations. 
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5.3.1.2 Content Similarity Weights  

In the first part of this chapter, I found that in measuring information similarity among 

watching connections, metadata of items are equally critical as counting users‟ common 

bookmarks. Citeulike data consisting of social bookmarks represents what users are interested in, 

but not how much they are interested in the corresponding items or why the items interest them. 

In order to help users manage their favorite items more effectively and express their interests on 

the items in a more cognitive way, the Citeulike system enables the users to annotate free-text 

tags when they bookmark favorite items. However, the item-based similarities (such as Log-

likelihood similarity, the number of co-bookmarks, and Jaccard coefficient) count just how many 

items they interested in but don‟t take the reasons for the interests into consideration. Therefore, 

the recommendations solely based on item-based similarity, it is hard to produce more elaborate 

and accurate suggestions. To enhance the recommendation accuracy and reflect users‟ cognitive 

understandings on the items and contents of items in recommendations, I utilize a content 

similarity weight.  

In the above CF and social recommendations, at the final stage of recommendations, the 

final prediction probability of each candidate item (i.e. the value indicating how much the target 

user will like the candidate item) is computed by aggregating and averaging out the similarities 

of the peers who bookmarked the candidate item.  Therefore, when some candidate items belong 

to the same set of peers, the probability values are exactly the same, even though the items differ 

in the contents and it is very likely that users added different tag sets. Using the content 

similarity weights, I try to add the different contents of items and social tags in the 

recommendations. The above CF and social recommendations are based on how much users‟ 
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like-minded anonymous peers or social connections liked the candidate items through the 

bookmark-based similarities. The recommendations using content similarity weight, along with 

to the like-minded anonymous peers or social connections‟ opinions, take into account how the 

topic of the items are matched with the target users‟ interests.   

Once a list of candidate items were selected from CF recommendation and social 

recommendations, the system compares how the contents and social tags of these candidate items 

are similar to the target user‟s keyword vector-based and processed tag-based profiles. Although 

I already computed keyword vectors and processed tag-based vectors for the test about the 

information similarity (i.e. the test of the section 5.2), in this recommendation, users‟ data were 

split into a test set and training sets. Therefore, by excluding the test set of each test iteration, the 

target users‟ keyword-based and processed tag-based vectors were re-generated iteratively. 

Additionally, I generated the same kinds of vectors for each item, as well. Particularly, in 

processed tag vectors, I did not limit the scope of the social tags to the users‟ watching 

connections. I included all social tags annotate to the corresponding items, except target users‟ 

own tags once the item is one of their test set items.  

The following equation denotes how the content similarity weights were applied in the 

recommendations.  

         
∑                

 
 ((

      

  
)  (

      

  
)) Eq. 25 

The above equation shows CF recommendations using content similarity weight (CFCW) 

of a candidate item i for a target user u. For every candidate item, the system calculated cosine 

similarity (kui) between user u‟s keyword vector-based profile ku and keyword vector-based 

profile of item i, ki. It also calculated cosine similarity of (tui) of user u‟s process tag-based 
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profile tu and processed tag-based profile of item i, ti. These two cosine similarities are combined 

as one content similarity weights, but in order to normalize the values, I applied the standard 

score using the mean µ and standard deviation σ of the corresponding similarity measure, 

respectively. This content similarity value is multiplied with the final prediction probability 

value of KNN recommendation (e.g., Jaccard similarity) for the item i. In here, v denotes one of 

the user u‟s anonymous peers (pu) and has the candidate item i in his bookmarks. V is the number 

of peers who have the candidate item i in their bookmarks. In the same way, the content 

similarity weights were applied to the resultant candidate items selected through matrix 

factorization algorithm as the following.  
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)) Eq. 26 

5.3.1.3 Content Boosted Recommendations  

The next content-boosted recommendations used hybrid recommendations fusing user 

preference with content information. The difference between this content-boosted 

recommendations and previous content similarity weight is when and how to apply the content 

information in recommendations. As explained, content similarity weights were applied at the 

final selection of recommended items. On the other hand, the content-boosted recommendations 

are to use users‟ content-based profile as their preferences instead of simple bookmark based 

ratings. This content-boosted approach is inspired by Melville, et al. [130]. The original content-

boosted collaborative filtering (CBCF) was designed for sparse datasets where simple co-rating 

profiles can‟t produce sufficient number of peers. Briefly, the Melville‟s original algorithm links 

one vector consisting of actual user ratings with another vector consisting of item-to-item 
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similarities based on contents of the items. Therefore, even when two users didn‟t rate exactly 

the same items, if they rated the similar items in the similar manner, these two users could still be 

considered as „peers‟ to each other. The Melville‟s CBCF approach was based on users‟ numeric 

ratings of items. Since this dataset doesn‟t have users‟ numeric ratings of items but only includes 

bookmarks, this study introduced a modified version of CBCF.  

In the selection of peers, a target user‟s content profile was compared with other users‟ 

content profile in item-by-item basis. When two users bookmarked the same item, of course, it 

would be the perfect match, 1. For a target user‟s bookmarked item missing in his peer‟s 

bookmarks, among the peer users‟ bookmarks, the system picked the most similar item with a 

target user‟s bookmarked item. The similarity values of the most similar items was summed up 

and averaged out with the number of the target user‟s bookmarks (refer to equation 27).  

 

Eq. 27 

u is a target user and v is his peer and the user u has totally n bookmarked items. j is user 

v‟s the most similar items with every i. For instance, a target user u bookmarked talk #1 and #2 

and his peer v bookmarked talk #1, #3 and #4. Because the talk #1 was bookmarked by both 

users, the content similarity of that item is the perfect match 1. However, the talk #2 was 

bookmarked by the user A but not by the user B. Then the system found that #3 is quite similar 

to #2 with the value of 0.9, and #4 is moderately similar with the value of 0.5. Then the content 

similarity between #2 and #4 was ignored and, instead, only the similarity with talk #3 was 

considered. The resultant similarity between users A and B (SA,B) is (1+0.9)/2. During the final 

recommendation process to select recommendable items, among the candidate items, I applied 

the content similarity weights of the candidates in the same way with the section 5.3.1.2. Put 
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differently, this content similarity value of a corresponding item is multiplied to its final 

prediction probability value calculated by the content-boosted similarity.  

5.3.2 Experimental Evaluation of Recommendations  

For the evaluation of the proposed recommendation algorithms, 3223 users who were 

watching other user(s) and have at least one bookmarked item were selected as target users. 

Their bookmarks were randomly split into 10 almost equal-sized subsets so as to execute 10 

cross validation. This strategy split items into N sets randomly. Hence, when target users have 

less than 10 bookmarks, I split the set of bookmarks into N sets consisting of one bookmark. Of 

course, the N is less than 10 for this case. For each iteration, one of the 10 subsets is used as a 

test set and the remaining 9 sets are used as a training set. Recommendations will be assessed by 

how many recommended items are actually in the test set as hits.  This process is repeated with a 

different test set for 10 times and the hit numbers will be averaged out. I called this dataset as a 

„whole dataset.‟ In addition, so as to determine various algorithmic parameters of the K-nearest 

neighbors and matrix factorization approaches, I needed a small random set. Among the 10 

subsets, I used the first one set for this purpose and called this set as a „probe dataset.‟  

As the evaluation criteria, because Citeulike dataset doesn‟t contain numeric ratings, 

traditional evaluation methods for information retrieval were used; precision and recall. The 

precision aims to measure how precise the recommendations are, and the recall aims to measure 

how complete the recommendations are. The accuracy of the recommendations will be computed 

according to the top 10, 5 and 2 recommendations (N = 10, 5, & 2). The recommendations are 
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usually displayed in a ranked list. Users expected that items in a higher rank would be more 

important than the other items in lower ranks. Therefore, it is critical to place correct 

recommendations in a higher rank and the position of correct recommendations is a critical 

evaluation criterion of recommendations. 

5.3.3 Social Network-based Recommendations using Various Settings  

Before we start examining watching relation-based recommendations, it is required to 

find a better way to compute the similarity of the K-Nearest Neighbor algorithm and to optimize 

matrix factorization settings. In K-Nearest Neighbor algorithm, we need to determine a good 

similarity measure and an optimal value of K (i.e. how many like-minded anonymous peers or 

social peers will be considered). In addition, the optimal setting of matrix factorization is 

important criteria to affect the recommendation quality. Usually the good similarity measures of 

KNN and optimal settings of matrix factorization are determined by cross validation. However, 

due to the large dataset size, if I compute and compare the various algorithmic settings using the 

whole dataset, it is computationally too expensive. For this cross validation, thus, a smaller 

„probe dataset‟ was used. The first of the users‟ tenth dataset was withdrawn as a test set and 

using nine of the tenth datasets as training data, the recommendations were generated. Then by 

computing whether the items in the withdrawn test set were recommended or not, the F1 values 

were computed. The choice of the best similarity measure was determined by the highest F1 

values in three ranks – top 10, top 5 and top 2. Then, once the good setting for each 

recommendation is decided, I will regenerate the recommendations with a bigger „whole dataset‟ 

and compare the quality with other approaches. The more detailed explanations about the test 
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settings and results are described in the Appendix A.1. By following the best results, the best 

similarity measures of K-Nearest Neighbors and the optimal settings of the matrix factorization 

are as the following Table 6.  

Table 6. The Optimal Setting of Each Recommendation Approach 

Kinds of Recommendations Optimal Settings 

KNN-based CF Jaccard Coefficient with the same number of peers as much as the 

target users‟ social connections exist 

Watch Log-likelihood Similarity with all social connections 

ReciWatch Jaccard Coefficient with the top 50 similar social connections 

1hopWatch Jaccard Coefficient with the top 20 similar social connections 

Matrix 

Factorization-

based 

CFSVD 50 factors with λ=0.15 

WatchSVD 24 factors with λ=0.15 

ReciWatchSVD 20 factors with λ=0.15 

1hopWatchSVD 24 factors with λ=0.15 

The next analysis is to check whether adding metadata information of items can enhance 

the recommendation quality or not. Table 7 and Table 8 display the precisions and recalls of top 

N results including the statistical significance. The results showed that even though some 

differences are not statistically significant, adding content property of items to the 

recommendations are consistently helpful to increase the accuracy and completeness of the 

recommendations without any exception.  
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Table 7. Differences of Recommendation Precision Depending on Metadata Properties of Items 

 
Top10 Top5 Top2  

CF 1.89% 2.18% 2.81% t = -2.18, p = .029 for top 10; 

t = -2.66, p = .008 for top 5; 

t = -2.80, p = .005 for top 2 CF_CW 2.67% 3.53% 5.14% 

CFSVD 0.88% 1.13% 1.31% t = -8.47, p < .001 for top 10; 

t = -7.55, p < .001 for top 5; 

t = -6.27, p < .001 for top 2 CFSVD_CW 1.93%* 2.53%* 3.10%* 

Watch 1.32% 1.78% 2.67% t = -5.55, p < .001 for top 10; 

t = -6.27, p < .001 for top 5; 
t = -6.13, p < .001 for top 2 Watch_CW 2.30%* 3.44%* 5.57%* 

WatchSVD 1.00% 1.15% 1.39% t = -11.21, p < .001 for top 10; 
t = -10.87, p < .001 for top 5; 

t = -9.50, p < .001 for top 2 WatchSVD_CW 2.50%* 3.11%* 3.98%* 

ReciWatch 1.32% 1.84% 2.84% t = -7.68, p < .001 for top 10; 

t = -7.84, p < .001 for top 5; 

t = -6.64, p < .001 for top 2 ReciWatch_CW 2.46%* 3.60%* 5.62%* 

ReciWatchSVD 1.20% 1.37% 1.65% t = -8.74, p < .001 for top 10; 

t = -8.98, p < .001 for top 5; 

t = -7.86, p < .001 for top 2 ReciWatchSVD_CW 2.41%* 3.05%* 3.79%* 

1hop 0.86% 1.10% 1.63% t = -12.21, p < .001 for top 10; 

t = -12.73, p < .001 for top 5; 
t = -10.77, p < .001 for top 2 1hop_CW 2.07%* 2.94%* 4.54%* 

1hopWatchSVD 0.99% 1.13% 1.37% t = -9.67, p < .001 for top 10; 
t = -9.72, p < .001 for top 5; 

t = -8.27, p < .001 for top 2 1hopWatchSVD_CW 2.16%* 2.74%* 3.43%* 

Hybrid 1.08% 1.33% 1.54% t = -3.03, p = .002 for top 10; 

t =-3.15, p = .002 for top 5; 

t = -2.87, p = .004 for top 2 Hybrid_CW 2.44% 3.44% 4.87% 

HybridSVD 1.26% 1.48% 1.79% t = -7.97, p < .001 for top 10; 

t = -7.65, p < .001 for top 5; 

t = -6.19, p < .001 for top 2 HybridSVD_CW 2.56%* 3.22%* 4.05%* 

Table 8. Differences of Recommendation Recall Depending on Metadata Properties of Items 

 
Top10 Top5 Top2  

CF 1.74% 0.97% 0.44% t = -1.22, p = .224 for top 10; 

t = -1.53, p = .126 for top 5; 

t = -1.82, p = .070 for top 2 CF_CW 2.45% 1.68% 1.12% 

CFSVD 1.88% 1.19% 0.61% t = -3.40, p < .001 for top 10; 

t = -3.42, p < .001 for top 5; 

t = -2.84, p < .001 for top 2 CFSVD_CW 2.93%* 2.05%* 1.15%* 

Watch 1.02% 072% 0.49% t = -3.59, p < .001 for top 10; 

t = -3.89, p < .001 for top 5; 

t = -3.34, p < .001 for top 2 Watch_CW 1.80%* 1.48%* 0.98%* 

WatchSVD 1.14% 0.68% 0.37% t = -7.49, p < .001 for top 10; 

t = -6.64, p < .001 for top 5; 

t = -4.49, p < .001 for top 2 WatchSVD_CW 3.12%* 1.98%* 1.00%* 

ReciWatch 0.96% 0.70% 0.48% t = -4.33, p < .001 for top 10; 

t = -4.34, p < .001 for top 5; 

t = -3.42, p < .001 for top 2 ReciWatch_CW 173%* 1.40%* 0.90%* 
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ReciWatchSVD 1.10% 0.69% 040% t = -6.99, p < .001 for top 10; 

t = -6.42, p < .001 for top 5; 
t = -4.22, p < .001 for top 2 ReciWatchSVD_CW 2.61%* 1.82%* 0.96%* 

1hop 0.84% 0.56% 0.37% t = -7.49, p < .001 for top 10; 

t = -7.04, p < .001 for top 5; 
t = -5.41, p < .001 for top 2 1hop_CW 1.89%* 1.44%* 0.98%* 

1hopWatchSVD 1.05% 0.60% 0.32% t = -6.55, p < .001 for top 10; 

t = -6.34, p < .001 for top 5; 
t = -4.30, p < .001 for top 2 1hopWatchSVD_CW 2.44%* 1.71%* 0.86%* 

Hybrid 0.98% 0.83% 0.39% t = -1.03, p = .299 for top 10; 

t = -.78, p = .432 for top 5; 
t = -1.03, p = .303 for top 2 Hybrid_CW 1.46% 1.16% 0.75% 

HybridSVD 1.16% 0.72% 0.43% t = -5.78, p < .001 for top 10; 

t = -5.22, p < .001 for top 5; 

t = -3.22, p < .001 for top 2 HybridSVD_CW 2.77%* 1.93%* 0.98%* 

(* indicates that the differences are statistically significant) 

The next analysis is to determine better algorithm to compute the recommendation 

probability between K-Nearest Neighbor and matrix factorization algorithms within each 

approach using the same kinds of peers. From this comparison, the whole dataset was used in the 

recommendations. Since the approaches with content similarity weights produced generally 

better results, the comparison was made on the center of those approaches. Table 9 and Table 10 

show the results of precisions and recalls including the statistical significance levels, 

respectively. Unlike the distinct pattern of differences on the recommendation quality depending 

on the absence and presence of the content similarity weights, there is no clear winner between 

the K-Nearest Neighbor and matrix factorization. The differences were not significant either. The 

patterns of differences on precision and recall are also contrasting. In terms of precision, 

recommendations using the K-Nearest Neighbor were more accurate, but in terms of recall, 

recommendations using matrix factorization were more complete. In order to decide a better 

method to compute the prediction probability for each kind of recommendation approach, I 

calculated the extra F1 measures as shown on Table 11. The differences of F1 between K-

Nearest Neighbors and matrix factorization are mostly insignificant and no distinct patterns of 

differences. Due to the insignificance of the differences, thereof, I chose the approach yielding 
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the higher F1 value in the highest rank (i.e. top 2). According to the choice of better 

recommendation algorithms for each recommendation approach, the originally proposed design 

of recommendation approaches (i.e. Figure 16) can be densely summarized as Figure 17. In the 

following analyses, the chosen algorithms will be used for the comparison.  

 

Figure 17. Revised Design of Watching Network-based Recommendation Algorithms 

Table 9. Differences of Recommendation Precision between Different Methods to Compute 

Prediction Probability 

 
Top10 Top5 Top2  

CF_CW 2.67% 3.53% 5.14% t = 2.90, p = .004 for top 10; 

t = 2.62, p = .009 for top 5; 

t = 3.30, p = .001 for top 2 CFSVD_CW 1.93% 2.53% 3.10% 

Watch_CW 2.30% 3.44% 5.57% t = -.96, p = .337 for top 10; 

t = 1.10, p = .269 for top 5; 

t = 3.47, p = .001 for top 2 WatchSVD_CW 2.50% 3.11% 3.98% 

ReciWatch_CW 2.46% 3.60% 5.62%* t = .29, p = .768 for top 10; 
t = 2.17, p =.030 for top 5; 

t = 4.63, p < .001 for top 2 ReciWatchSVD_CW 2.41% 3.05% 3.79% 

1hopWatch_CW 2.07% 2.94% 4.54% t = -.55, p = .580 for top 10; 

t = .90, p = .364 for top 5; 

t = 3.14, p = .002 for top 2 1hopWatchSVD_CW 2.16% 2.74% 3.43% 

Hybrid_CW 2.44% 3.44% 4.87% t = -.54, p = .589 for top 10; 
t = .65, p = .510 for top 5; 

t = 1.53, p = .126 for top 2 HybridSVD_CW 2.56% 3.22% 4.05% 
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Table 10. Differences of Recommendation Recall between Different Methods to Compute 

Prediction Probability 

 
Top10 Top5 Top2  

CF_CW 2.45% 1.68% 1.12% t = -.86, p = .387 for top 10; 

t = -.78, p = .434 for top 5; 

t = -.08, p = .930 for top 2 CFSVD_CW 2.93% 2.05% 1.15% 

Watch_CW 1.80% 1.48% 0.98% t = -3.28, p = .001 for top 10; 
t = -1.63, p = .101 for top 5; 

t = -.08, p = .936 for top 2 WatchSVD_CW 3.12% 1.98% 1.00% 

ReciWatch_CW 1.73% 1.40% 0.90% t = -3.211, p = .001 for top 10; 

t = -1.80, p = .071 for top 5; 

t = -.36, p = .718 for top 2 ReciWatchSVD_CW 2.61% 1.82% 0.96% 

1hopWatch_CW 1.89% 1.44% 0.98% t = -2.08, p = .037 for top 10; 

t = -1.21, p = .224 for top 5; 

t = .71, p = .474 for top 2 1hopWatchSVD_CW 2.44% 1.71% 0.86% 

Hybrid_CW 1.46% 1.16% 0.75% t = -3.67, p < .001 for top 10; 

t = -2.46, p = .014 for top 5; 
t = -1.05, p = .291 for top 2 HybridSVD_CW 2.77% 1.93% 0.98% 

Table 11. Differences of Recommendation F1 between Different Methods to Compute Prediction 

Probability 

 
Top10 Top5 Top2  

CF_CW 1.68% 1.54% 1.28% t = .51, p = .608 for top 10; 
t = -.05, p = .956 for top 5; 

t = .19, p = .843 for top 2 CFSVD_CW 1.57% 1.56% 1.22% 

watch_cw 1.29% 1.37% 1.26% t = -3.37, p < .001 for top 10; 
t = -1.46, p = .144 for top 5; 

t = .38, p = .701 for top 2 watchSVD_CW 1.81% 1.63% 1.19% 

reciWatch_CW 1.36% 1.40% 1.23% t = -2.26, p = .023 for top 10; 
t = -.74, p = .457 for top 5; 

t = .61, p = .538 for top 2 ReciWatchSVD_CW 1.63% 1.50% 1.13% 

1hop_CW 1.26% 1.27% 1.18% t = -2.08, p = .037 for top 10; 
t = -.86, p = .385 for top 5; 

t = 1.13, p = .256 for top 2 1hop_watchSVD_CW 1.48% 1.37% 1.01% 

Hybrid_CW 1.30% 1.28% 1.05% t = -2.80, p = .005 for top 10; 
t = -1.69, p = .090 for top 5; 

t = -.50, p = .614 for top 2 HybridSVD_CW 1.73% 1.59% 1.15% 

5.3.4 Comparison of Various Recommendation Approaches 

In previous section, the good way to compute the prediction probability was found for 

each recommendation approach along with the optimal algorithmic settings. Now the quality of 
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the watching network-based recommendations will be compared with the other recommendations 

including traditional CF recommendations. Figure 18 displays the comparison result of both 

precision and recall. According to the One-way ANOVA test, the differences of precision were 

significant but the differences of the recall were not, except the top 10 recall (F = 20.10, p < .001 

for top 10 precision; F = 22.92, p < .001 for top 5 precision; F = 25.95, p < .001 for top 2 

precision; F = 4.18, p = .001 for top 10 recall; F = 1.71, p = .127 for top 5 recall; F = .63, p = 

.675 for top 2 recall). 

I checked the patterns of the differences through the pairwise test.  First, I compared two 

approaches utilizing different methods to incorporate metadata information of items in 

recommendations – content similarity weight and content boosted recommendations. The 

approach adding content similarity weight outperformed the content boosted recommendation in 

precision. In the results based on recall, the differences were not significant but the quality of 

content boosted recommendations dropped along with the increase of the rank. Therefore, rather 

than taking into account the metadata properties of items in the step to compute the user-to-user 

similarity, it is more effective to apply the information at the final step to choose the 

recommended items.  
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Figure 18. Differences of Recommendation Quality depending on the Kinds of 

Recommendation Approaches 

The next analysis was to compare the recommendations based various scopes of watching 

network, so as to find out the best scope of watching network which can produce better social 

recommendations. As shown, this study considered three varying scopes of watching network – 

direct watching, direct watching and watched and direct and 1hop distance watching 

connections. The differences were not significant in precision. Despite of the insignificance, in 

higher ranks (i.e. top 5 and top 2), the quality of the recommendations based on watching and 

watched connections was the best among all proposed recommendations.  The approach based on 

users‟ direct and 1hop distanced watching connections was the worst. However, the results of the 

recall were not the same. The recall of the recommendations based on watching and watched 

connections were the poorest in all ranks and there is no consistently better approach among the 

three kinds of watching network-based recommendations. Therefore in the test of H5.5.1 which 
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aims to compare the direct watching connections with the connections combining users‟ direct 

and indirect social connections as viable information source, the hypothesis is rejected for both 

precision and recall.  In the test of H5.5.2 for the comparison between the direct watching 

connections with both direct watching and watched connections, due to the statistical 

insignificance, in spite of the better performance of the latter social connection kind (i.e. both 

direct watching and watched connections), the hypothesis is also rejected. As the relevant 

hypothesis, the H5.5 is also rejected. All scopes of watching network considered in this chapter 

have equivalent values as information sources.   

Then did the watching network-based recommendation perform better than traditional CF 

recommendations, which is a baseline of this comparison? According to the pairwise test, the 

quality of CF recommendations was not significantly different with watching network-based 

recommendations. That means that watching network-based recommendations didn‟t performed 

better than CF recommendations, but can produce the suggestions as good as the CF 

recommendations produce. Therefore, the relevant hypothesis H5.4 is rejected. If the target 

users‟ anonymous peers and their watching network-based connections are equally good 

information source, when we combine these two groups of peers together, can the 

recommendations based on the combined peers generate better recommendations? As explained, 

I generated hybrid recommendations by taking into account the preferences of both anonymous 

peers and watching connections. In the comparison centered on precision, in the lowest rank, it 

performed the second best following CF recommendations. Nonetheless, as the rank is getting 

higher, the quality dropped. Therefore, the relevant hypothesis H5.6 is partially rejected when we 

just count the results of precision. In terms of precision, there is no value to combine different 
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peer groups. On the other hand, the comparisons based on recall demonstrated different patterns. 

In the lower ranks (i.e. top 10 and top 5), the recall of the hybrid recommendations performed 

significantly better than the other recommendations even though, in the highest rank, the recall of 

the hybrid recommendations didn‟t show significant improvement. When there are some 

enhancements regarding the completeness of the recommendations, combining anonymous peers 

and watching network could be meaningful. By following the results, the relevant hypothesis 

H5.6 is partially accepted when solely counting the results of recall.  

5.3.5 Watching Network-based Recommendation for Cold-start Users 

The descriptive statistics of this Citeulike data source (introduced in the section 5.1) 

explained that users participating in the watching network are more familiar with the Citeulike 

system and use the system more often than the other users who don‟t participate in the network. 

In the former user group (i.e. members of the Citeulike watching network), however, there are 

still 316 users (9.80% of our target users) having less than 5 bookmarks. Usually, in 

recommendations, users having this amount of bookmarks or ratings are hard to receive 

reasonably good recommendations since the numbers of bookmarks are insufficient to present 

what they like properly. Therefore, these users are called as cold-start users. One weakness of the 

CF recommendations is this cold-start user problem. Since the recommendations rely on the 

overlapped interests or tastes among users, when users have insufficient information about 

interests or tastes, it is difficult to guess presumably favorable items. As explained in the chapter 

2, some researchers suggest that social network-based recommendations could be a good 

solution to solve this cold start user problem. Hence, in this subsection, I will test whether the 
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best recommendation approach differs according to target users‟ bookmark numbers and whether 

watching network-based recommendation is a good option for cold-start users. For this test, I 

classified users into three clusters according to their number of bookmarks – cold-start users (n < 

5), user having medium level of bookmarks (5 <= n < 200) and users having large number of 

bookmarks (n >= 200). There are 316 users, 2,080 users and 827 users in each cluster, 

respectively. I evaluated which recommendation approach is the best for each cluster of users.  

Figure 19 is the result of precision and Figure 20 is the result of recall. In order to find 

out the statistical significance of the difference, I executed Two-way ANOVA test. The test 

demonstrated that the differences on the precision and recall according to different 

recommendation approaches were statistically significant among the user clusters (F = 3.32, p < 

.001 for top 10 precision; F = 2.83, p = .002 for top 5 precision; F = 3.00, p < .001 for top 2 

precision; F = 5.55, p < .001 for top 10 recall; F = 6.40, p < .001 for top 5 recall; F = 8.64, p < 

.001 for top 2 recall). As the next analysis, I find the patterns of difference on the various 

recommendation approaches among three clusters of users.  

First, for users having large information collection, the differences of the various 

recommendation approaches are significant (F = 9.02, p < .001 for top 10 precision; F = 9.52, p 

< .001 for top 5 precision; F = 11.37, p < .001 for top 2 precision; F = 6.83, p < .001 for top 10 

recall; F = 7.21, p < .001 for top 5 recall; F = 8.74, p < .001 for top 2 recall). For this cluster of 

users, CF recommendation is always the best option in terms of both precision and recall. 

However, I failed to find any watching network-based recommendation which is working as 

consistently well as the CF recommendation is.  
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Second, in case of the cluster of users having medium level of information collections, 

the precision differences of the various recommendation approaches are significant but the 

differences of recall are not significant (F = 5.11, p < .001 for top 10 precision; F = 5.53, p < 

.001 for top 5 precision; F = 7.73, p < .001 for top 2 precision; F = 2.03, p = .070 for top 10 

recall; F = 1.06, p = .378 for top 5 recall; F = 1.82, p = .105 for top 2 recall).  The both precision 

and recall demonstrated that watching network-based recommendation was the best option for 

this cluster of users having medium level of information collection. In terms of precision, the 

watching network-based recommendations performed significantly better than the other 

recommendations including the CF recommendations. Even though the differences were 

insignificant, the watching network-based recommendations yielded the highest recall values 

than the others, as well.  

 

 

Figure 19. Differences of Precision Depending on Users’ Number of Bookmarks 
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Figure 20. Differences of Precision Depending on Users’ Number of Bookmarks 
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differences are insignificant, the results displayed on Figure 19 and Figure 20 indicated that 
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5.4 CONCLUSION  

In this chapter, I examined the feasibility of watching network as a useful information source 

through 1) the examination of shared interests among watching connections and 2) the empirical 

evaluation of watching network-based recommendations.  

In this study based on Citeulike data set, as the first part of this chapter, the changes of 

information similarities according to the social distances of user pairs were explored.  The direct 

watching connections shared the most similar information. In particular, they favored not only 

the exact same items, but also the items containing similar metadata, such as papers consisting of 

a set of similar keywords, written by similar authors and annotated by similar social tags.  The 

users‟ similarity decreased along with the increase of their social distances. Since I found the 

shared interests existing on the watching network, I tested how the social connections are 

valuable information sources in more details by utilizing them as a part of the personalized 

recommendations.   

The second part of this chapter of which the focus was the evaluation of the 

recommendations based on watching network showed that watching network-based 

recommendations were comparable in the quality to traditional CF recommendations. In terms of 

how the suggestions are accurate and complete, the watching network-based recommendations 

have equivalent quality to the CF recommendations. In addition, when combining users‟ 

watching connections with their anonymous peers, the recommendations significantly improved 

at least regarding the evaluation based on recall. I interpreted these results to mean that Citeulike 

users are connected with their watching partners via their perceived utility of the partners‟ 
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information. Conclusively, users‟ watching connections are useful information sources and a 

feasible foundation for their personalized recommendations.  

Lastly, according to the descriptive statistics, compared with the other users who are 

outside of the watching network, the users engaging in the watching network are more familiar 

with the Citeulike system and more active in using the system. However, there are still cold-start 

users whose bookmark collections are insufficient to represent what they are interested in and 

further, due to the insufficient preferences, it is hard for them to receive reasonably good 

recommendations. For those cold-start users, including users‟ social connections as a part of 

recommendations enhance the quality but it is not enough to use the social connections alone in 

the recommendations. It is more effective to take into account the watching connections as a 

supplementary component of the CF recommendations for cold-start users.    
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6 GROUP MEMBERSHIP-BASED RECOMMENDATIONS 

This chapter aims to recommend favorable items to individual users based on their online group 

memberships. Group activities are usually centered on one recognizable topic, to follow a 

community of interest or practice. The social dynamics in groups also target to distribute or 

contribute topic-relevant information. When a user participates in a group, this membership 

shows his interests or relevancy to the corresponding topic of the group. The first part of this 

chapter substantiates this suggestion through Citeulike group membership data. In particular, as I 

did for watching networks, information similarities of members of the same group will be 

compared in various ways. Regarding users‟ group-based sociality, Citeulike data provides us 

two references to consider – co-members of the same group and groups per se. Citeulike allows 

for users not only to manage their individual personal collections but also to participate in their 

group‟s communal library. Therefore, this part assesses whether either of them is really a good 

information source and which reference is a better information source. The objective of the first 

part is to check whether online group activities, which are targeted at sharing topic-relevant 

information, are really good indicators of users‟ interests on the relevant topic and plausible 

sources to provide users useful information.  

Most of recent studies under the name of „group recommendations‟, however, aggregate 

tastes of a group of people into one set, and suggest recommendations for that group of people, 
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not an individual user. The second part of this chapter attempts to recommend items to individual 

users using their group membership information. The quality of various group-based 

recommendations is compared with traditional CF approach. In addition, there are some users 

having more than one kind of social networks on Citeulike; both watching connections and co-

members. In this section, the quality differences of SN recommendations generated by each 

social network and both social networks will also be compared. 

6.1 DATA SOURCE FOR GROUP MEMBERSHIP: CITEULIKE 

The data source of group membership is the same Citeulike dataset used for watching network, 

which was made by the system administrators on May 15, 2011. The dataset contains the list of 

whole groups and the members of the Citeulike, as of the time when this dataset was made. In 

Citeulike, when users find interesting information, they are able to send the information to their 

group spaces, as well as to save the information in their personal repositories (refer to the Table 

28). Hence, the dataset also provides both bookmark histories of all group members and 

bookmark collections of each group which is jointly contributed by members of the group. When 

a member adds information to their group spaces, all other members can see the newly added 

information and the annotated tags, on the page titled „group library‟. To be short, the Citeulike 

data set regarding group memberships contains group ids, all members of each group, group 

library, and group members‟ personal repositories. The group libraries and members‟ 

repositories are constituted of article ids, social tags and time stamps of bookmarks. Because 

metadata of items (i.e. titles, authors, publication journals, abstracts and publication years) was 
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missing in the data set, I collected the metadata separately. Hence, to summary both group 

libraries and members‟ personal repositories consist of bookmarks of items along with the time-

stamps of bookmarks and the metadata such as, titles, authors, publication years, publication 

journals/conferences, abstracts and social tags of the bookmarked items.  

In this dissertation, I excluded group members having no items in their personal 

collections and groups having a single member. In case of groups having no bookmark on their 

group library, once the members have bookmark(s) in their personal collections, the groups and 

the members were included in the study. As the result, I found 1,870 groups and 8,009 members 

which are 8.5% of the whole Citeulike users. The following Table 12 is the descriptive statistics. 

Figure 21 and Figure 22 show the distributions of groups and group members according to the 

number of bookmarks. These groups and the members have about 1.4 million bookmarks being 

made up of 1,044,393 articles. 22.9% of groups and 35.8% of members have at most 5 

bookmarks. In addition, 77.4% of the articles (n = 808,797) were bookmarked by only one user. 

The bookmark sparsity of this Citeulike data for group memberships is 0.9998. As you can see 

on Table 12, groups have larger collection of information than the members. It seems natural 

because group libraries are collaboratively composed by members.  
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Table 12. Descriptive Statistics about the Dataset of Citeulike Group Memberships 

Groups & the 

Memberships 

No. of Groups 1,870 

No. of Users having at least one group membership 8,009 

No. of Group Membership 11,863 

Avg. No. of Memberships per Group 6.34 (σ = 16.3)  

Avg. No. of Memberships per Member 1.48 (σ = 1.7)  

Information 

Collections 

No. of Distinct Articles in Group Library or Members‟ 

Repositories 

1,044,393  

No. of Distinct Articles in Group Library 260,567 

No. of Distinct Articles in Members‟ Repositories 982,298 

No. of Bookmarks in Group Library or Members‟ Repositories 1,446,607 

Total No. of Bookmarks in Group Library 324,486 

Total No. of Bookmarks in Members‟ repositories 1,122,121 

Avg. No. of Bookmarks Per Group 173.52 (σ = 784.1) 
Avg. No. of Bookmarks Per Member  140.11 (σ = 1133.8) 

Avg. No. of Tags Per Group 704.98 (σ = 7421.7) 

Avg. No. of Tags Per Member 533.65 (σ = 6784.5) 

Avg. No. of Bookmarks Per Articles 1.39 (σ = 1.3) 

Avg. No. of Tags Per Article 5.51 (σ = 8.8) 

 

Figure 23 is the distribution of groups according to the number of members. The groups 

have 6.3 members on average and the number of members per group ranges from two members 

to 588 members. Groups usually have about 174 bookmarks in the group libraries and about 

22.9% of groups have at most five items in the library (n = 428). Figure 24 shows the 

distribution of users according to the number of their group memberships. Users are members of 

1.5 groups, on average. The group members have usually about 140 bookmarks in their personal 

repositories and 21.8% of them have only one item (n = 1,742). Before addressing an in-depth 

study about information sharing patterns of group members, I will examine whether users have 

heterogeneous information usage patterns according their social status.  
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Figure 21. Distribution of Groups according 

to the Bookmark Number of their Group 

Libraries 

 

Figure 22. Distribution of Group Members 

according to the Bookmark Number of their 

Personal Repositories 

 

Figure 23. Distribution of Groups according 

to the Number of Members 

 

Figure 24. Distribution of Users according to 

the Number of Group Memberships 
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Information Usage Patterns of Users according to Their Social Status 

In the descriptive statistics about Citeulike watching network presented at the chapter 5, 

we checked that users in watching relations tend to join the Citeulike system earlier, to use it 

often and for longer period of time than users not in watching relations. The users in watching 

relations also are richer users in terms of their bookmark collections than users outside of the 

watching relations. Then, what about users participating in groups and the others who are not a 

part of group activities? Is there any difference on the information usage patterns between users 

in watching relations and the other users in group memberships? Is there any notable and discrete 

pattern of users who are participating in both watching network and group membership?  

First, information usage patterns of group members were compared with the others who 

in neither group membership or watching network. The users participating in groups joined the 

system earlier (M = 900.6 days ago from the time when this data set was made, σ = 598.3 days 

ago), had used it often (M = 22.19 times on different days, σ = 63.4 times on different days) and 

for longer period of time (M = 312.6 days, σ = 486.2 days) than the other users not engaging in 

any social network (they joined the system 801.4 days ago (σ = 567.7 days ago), had used it 2.6 

times on different days (σ = 6.7 times) and for 52.6 days (σ = 180.2 days)) on average. The users 

in group memberships also possess more than 4 times larger bookmark collections (M = 140.1 

bookmarks, σ = 1133.8) than the other users outside of Citeulike social networks (M = 13.8 

bookmarks, σ = 183.0). Because all differences of the values are so obvious, I didn‟t run a 

separate statistical test for the differences. Hence, group members were more actively using the 

Citeulike, and it is likely that they knew the system functionalities better than users outside of the 
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group membership network. Figure 25 displays the bookmark distribution of group members 

contrasted with the distribution of users outside of group membership network. 

 

Figure 25. Bookmark distribution of users who involve in group membership contrasted 

with the one of users not involved 

The results of the section 5.1 and the above results demonstrate that, users engaging in 
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used as a component of their watching partners‟ recommendations. Therefore, in this 

comparison, I compared three clusters of users – group members who didn‟t watch others (n = 

6,891), users engaging in watching network (both watching users and watched users) and not 

participating groups (n = 8,865), and the others participating in groups and watching others (n = 

1,118). Interestingly, group members joined the system later, had used it less often and for 

shorter period of time than the other two clusters of users, on average. The bookmark collections 

of group members were smaller than the other clusters of users. In addition, the users in both 

group membership and watching network the most actively used the system (joined the system 

the earliest, used it the most often for the longest period of time and possessed the largest 

bookmark collections) than the other two clusters of users. According to One-way ANOVA and 

the Schaffé pairwise test, these differences are significant in the 0.001 significance level (refer to 

Table 13). Figure 26 shows the bookmark distributions according to the clusters of users. In 

summary, the more users are active and familiar with the system, the more likely they participate 

in social networks. Additionally, the more users are active and familiar with the system, the more 

social networks they were engaged in. Actually, it is still unclear about the cause-and-effect 

relationship. Since there is no information about the time when each social link was made, we 

don‟t know whether users‟ engagements of various social networks make it possible for users to 

collect many objects or not and furthermore whether having social networks are helpful for users 

to acquire information yet. The users may collect larger collections of bookmarks, since they 

used the system for a longer period of time.  However, it is clear that users in Citeulike social 

networks know how to use the system and more enjoyed using it than the other users. In 

particular, it seems that users associated with watching networks are more active than group 
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members. Therefore, in following analysis, along with the information similarity between group 

co-members, I execute the comparison of information between a pair of watching connections 

and a pair of group co-members.    

Table 13. Summary of Differences according to Users’ Clusters 

 (* indicates the differences are significant) 

 

Time to join 

Citeulike 

The frequency of 

system usage (by 

different date of 

bookmarks) 

Period of time to 

use Citeulike 

No. of 

Bookmarks 

Group Members 838.3 days ago 107.03 236.4 days 14.03 

Users in Watching 

Network 
934.9 days ago 189.70 392.4 days 27.85 

Users in both 

Networks 
1284.5 days ago 343.99 782.9 days 72.47 

 F = 42.8
*
 F = 694.7

*
 F = 263.9

*
 F = 482.0

*
 

 

Figure 26. Bookmark distributions of three user clusters 
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in, the larger his bookmark collection is, since group activities mainly intend to acquire 

information relevant to a certain topic. The result of Pearson correlation test showed that this 

guess is right. The number of users‟ group memberships is significantly correlated with the size 

of their bookmark collections (r = .08, p < .001). As the next test, the correlation between the 

number of group members and the size of group library is tested. If group members collaborate 

to compose their group library, we can expect a positive correlation, as the result. According to 

Pearson correlation test, there is a significantly positive correlation between the number of group 

members and the size of group library (r = .12, p < .001). That is, the more members a group has, 

the larger the group‟s library is. The more detailed understanding about how group members 

contribute to their group library will be addressed in the section 6.2.1.   

6.2 FEASIBILITY OF GROUP MEMBERS AS A USEFUL INFORMATION 

SOURCE 

In this section, we will explore how co-members of the same group share similar 

information and whether being a member of a group is beneficial to obtain useful information or 

not. Between group library and co-members‟ personal repositories, which one can group 

members more rely on in order to obtain useful information? Do group members refer to both 

group library and co-members‟ repositories? Compared with lurkers who don‟t contribute any 

item to their group library, do users who contribute a lot of items on their group library tend to 

share more similar items with co-members? In the situation where users express their interests in 

simpler way (such as unary rating, presence/absence of bookmark) than numeric ratings (such as 
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5 star or 10 star ratings) as Citeulike system does, what is a proper measurement to express 

shared interests among group members: counts of co-bookmarked items, titles consisting of 

similar sets of keywords, or co-annotated social tags? So as to answer these questions, I define 

the following hypotheses. The feasibility of group memberships as useful information source is a 

critical point we need to investigate before proceeding to the group membership-based 

recommendations, because the recommendations are basically based on the similarity of 

preferences between a target user and his reference peers. As ways to check how group 

memberships are viable to be useful information sources, the following hypotheses were tested. 

H6.1. Information similarity between a pair of co-members is higher than the similarity 

between two users who are randomly paired. 

H6.2 Information similarity between a member and his group is higher than the similarity 

between two co-members of the same group. 

H6.3. The similarity between a user and his co-members of the same group is comparable to the 

similarity between him and his top N anonymous peers who are chosen by traditional CF 

recommendation technology. 

As explained, the data source of this group membership has the same data structure of the 

Citeulike data used for watching network-based recommendations (refer to chapter 5), containing 

the same types of users preferences on information objects – bookmarking interesting items and 

annotating social tags to the items. The metadata of the information objects (i.e., scientific 

articles) is also the same – titles, abstracts, publication journal/conference names, authors and 

social tags. However, as described in the section 5.2.1.4, in the Citeulike data source, the 

abstracts and journal/conference names are missing for many articles. Therefore, based on users‟ 
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bookmarking history and metadata information available for the majority of objects, I computed 

item-based similarity measures and metadata-based similarity measures in the exact same kinds 

as I did for watching network (refer to the section 5.2.1). Figure 27 displays the eight kinds of 

information similarity measures to be explored in this part.  

 

Figure 27. Summary of Similarity Measures 

6.2.1 Members’ Contributions on Group Library   

Before examining information sharing patterns in online groups, we need to consider one 

important point. Citeulike provide communal space of every group, to which all members of that 

corresponding group can contribute. That is to say, it is very likely that a part of a group library 

is posted by a member. The items contributed by the member are literally his bookmarks. In the 

information comparison, thus, the corresponding member‟s contributions need to be excluded. 

Otherwise, members‟ contributed items will be accidentally counted as matches. In addition, if 

the contributed items are included as a part of candidate items, and recommendations are 

generated from the candidate list, it will turn out to be a target leak, which is an unintentional 

bug to provide ground truth in the training data. As a way to pick each user‟s own contributions 
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on his group library, I used the time stamp of each bookmark. When a group member finds an 

interesting item, he is able to post the item to his personal repository and his group library. 

Particularly, the Citeulike interface enables users to add their favorite items into both their 

personal repositories and their group libraries at the same time (refer to Figure 28). When one 

item is posted on both a member‟s personal repository and his group library with less than 60 

second interval, we can assume that the item was posted by that member. If one member copied 

the same item from his group library, there would be amount of time interval larger than 60 

seconds, because he may not refer to the updates of his group library all the time. Therefore, the 

interval of 60 seconds is reasonable time for one user to add interesting items to both personal 

repository and group library. Figure 29 shows the ratio of members‟ contributions on group 

libraries. Put differently, this graph shows that how much percent of group library was 

contributed by each member. If a member‟s contributions reached around 80% or 100%, this 

means that 80 or 100 percent of the group library was contributed by that corresponding member. 

Therefore, we can state that the members whose contributions on their group library are 100% 

totally dominate the libraries. They are the only one who composes the group libraries. I suggest 

that the members‟ contributions in terms of group library show the degree of control over their 

groups and their roles in the group. When a member contributes his group library a lot, he is 

prone to lead the group activities and may be an important member of that group.   

On the other hand, Figure 30 shows members‟ contribution ratio in terms of their 

personal repository. In this graph, if one member‟s contribution ratio is 50%, half of his 

bookmarks were posted to that corresponding group‟s library at the same time. Put differently, 

his contributions on the group came from the half of his personal bookmark collection regardless 
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how much his items occupy the group library. When a user joined multiple groups, in this 

analysis, his contribution to each group was counted separately. I suggest that the contribution 

ratio to members‟ personal repository shows that users‟ perceived importance of their groups. If 

a user posted items on both his repository and group library in many times, it is likely that every 

time he finds an interesting item, he posted it not only on his personal collection but also his 

group library. Therefore, we can interpret this to mean that he has a definite desire to share 

interesting items with their group co-members.  

 

Figure 28. Citeulike interface enabling users to post favorite items to both their personal 

repositories and group libraries simultaneously; For instance, this user is posting an item 

to her personal repository (“your library”) and her two groups (“Adaptive-Web” and 

“Social Web”) according to the A area. Social tags annotated to this item by this user (B 

area) will be shown to both the repository and the group libraries.  
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Figure 29. Ratio of Member’s Contributions 

in terms of the Size of Group Library 

 

Figure 30. Ratio of Members’ Contributions 

in terms of the size of their Personal 

Repository 

When combining these two kinds of contributions, the following Figure 31 shows the 

intertwined distributions. Even though the graph doesn‟t represent any interpretable pattern, I 

suggest that there is a group of users whose group-based recommendations are in question. For 

instance, members in the area A on the Figure 31 contributed their group libraries a lot (more 

than 80%). The contributions are a great part of their personal repositories, as well. Group-based 

recommendations are made from the list of candidate items, which shown on group library and 

the members‟ repositories but not discovered by target users yet. For these users who dominate 

their group libraries, thus, their group libraries hardly provide a list of candidate items, since they 

are mostly made up of the users‟ own items. In addition, unless they share interests with their co-

members of the same group, the group-based recommendation is obsolete to them.  
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Figure 31. Contrast of Members’ Contributions in terms of both Group Library and the 

Members’ Personal Repository 

As the next step, I tested how the members‟ contributions are correlated with the 

information similarity with their co-members (in here, the Jaccard similarity of co-members). I 

computed the information similarity of each member with his co-members and average out the 

similarities. Then I calculated Pearson correlation between members‟ contributions and the 

similarities of co-members. There was a significantly small correlation between members‟ 

contributions in terms of group library and the similarity of the co-members (γ = .08, p < .01). 

However, there was no significant correlation between members‟ contribution ratio to members‟ 

repositories and the similarity of the co-members. In order to examine the correlation of 

members‟ group contributions with the similarity of co-members in more details, I classed 

members into 10 clusters depending on the members‟ contributions to their group library with 

10% unit increases (i.e. 0%, 10%, 20% … 100%). I ran the one-way ANOVA and, like the 

results of the Pearson correlations, there was a significant difference on the similarity of co-

members among the members‟ clusters (F = 14.97, p < .001). In particular, post-hoc pairwise 
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comparison with Schaffe adjustment examined the pattern of differences on the similarity of co-

members among the clusters, in more details. Co-member similarity of two extremes (i.e. 

members‟ contributions <= 20% and >= 90%) are significantly lower than other clusters having 

moderate levels of member contributions (20% < members‟ contributions < 90%). The Figure 32 

is the result.  

 

Figure 32. Members' Contributions vs. Information Similarity of Co-Members 

The graph demonstrates members, who dominate their group activities or who barely 

contribute their group activities (clusters on two extremes), tend not to share similar interests 

with their co-members. Said differently, these dominators and lurkers are not interested in other 

co-members‟ personal repositories. If so, are they interested in items contributed by other co-

members? In order to test this question, after excluding each member‟s own contributions on his 

group library, I computed how much his remaining items in the personal library are similar to the 

library. I ran one-way ANOVA on the similarities of all members using the same classification 

of 10 clusters depending on members‟ contributions. There was also a significant difference on 

the similarity between a member and his group after excluding his contributions among the 
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clusters of contributions. According the Schaffe post-hoc pairwise comparison, like the results of 

the similarity between two co-members, the similarities of two extremes are significantly lower 

than the similarities of other clusters in moderate levels of members‟ contributions. The Figure 

33 is the result.  

 

Figure 33. Members' Contributions vs. the Similarity between a Member and his Group  

without his Own Contributed Items 

The graph demonstrates members, who dominate their group activities or who rarely 

contribute their group activities, tend not to share similar interests with their group library. In 

case of dominators, it is natural to have very low similarity with group library, since their items 

mostly form the group library, and this similarity was measured after getting rid of their own 

items. However, lurkers are uninterested in co-members‟ repository or other members‟ 

contributions on the group. Through these results, we can speculate that group membership-

based recommendations might not work for some users like lurkers and dictators. Therefore, in 

the second part of this chapter, I will examine how the recommendations are useful depending on 

the different degrees of user contributions.  
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6.2.2 Information Similarity of Group Members 

As mentioned, the main objective of this first part is to examine whether engaging in group 

activities is helpful for users to acquire useful information. To achieve this objective, the very 

basic step is to test whether users participating in the same groups are sharing similar interests. In 

this section, I compared whether two co-members of the same group share more similar 

information than other pairs of users who are not socially associated with (H6.1). For this 

comparison, users who are not in any Citeulike social networks (i.e. watching networks and 

group memberships) were chosen. Then, they were randomly paired up, and their information 

similarities were computed for all eight kinds of similarity measures.  

As the first analysis, the item-based similarities were compared between co-member pairs 

and the random pairs. For all kinds of item-based measures, the similarities of co-member pairs 

were significantly different than the similarities of the random pairs (t = 32.22, p <.001 for the 

number of co-bookmarks; t = 58.62, p < .001 for the Jaccard coefficient; t = 32. 24, p <.001 for 

the log-likelihood similarity; t = 54.54, p <.001 for the popularity). Table 14 is the summary of 

the similarity differences. The results partially proved that the hypothesis H6.1 has met for item-

based similarities. 

Table 14. Item-based Similarity of Group Co-members 

 
No. of Co-

bookmarks 
Jaccard 

Log-

Likelihood 
Popularity 

Group Co-Members .26 1.59% .050 8.00 

Users Outside of 

Citeulike Social network 
.04 0.02% .023 6.92 
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I also compared metadata-based similarities between two kinds of user pairs, and Table 

15 is the differences. The results of the metadata-based similarities showed the same pattern with 

the item-based similarities. For all kinds of metadata-based measures, the similarities of group 

co-members were significantly higher than the similarities of random pairs (t = 53.69, p <.001 

for the title vector-based similarity; t = 322.47, p < .001 for author name vector-based similarity; 

t = 178.46, p <.001 for the original tag vector-based similarity; t = 165.71, p <.001 for processed 

tag vector-based similarity). The hypothesis 6.1 is completely accepted for all kinds of similarity 

measure. Apparently, group co-members shared more similar items and their topics of interests 

are also similar than the user pairs without any social connection.  

Table 15. Metadata-based Similarity of Group Co-members 

 
Title Author Name Original Tag Processed Tag 

Group Co-Members .1117 .0222 .0492 .0595 

Users Outside of Citeulike 

Social network 
.0147 .0007 .0012 .0020 

6.2.3 Group Co-members vs. Top N CF Peers 

According to the previous results, users participating in the same groups do share their 

interests. Then is the group network substitutable for anonymous peers selected by CF 

recommendations? As a simple way to answer this question, in this section, the information 

similarities of co-members are compared to the similarities of top N peers with the hypothesis 

H6.3. When our target users share similar interests with their co-members as much as they did 

with the top N peers, it will provide us a good reason to consider the co-members as a 

component of recommendations. For this comparison, using the CF recommendation algorithms 
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based on users‟ bookmark records, top 20, 10 and 5 peers were selected through Jaccard 

coefficient. That means that these top N peers were chosen just because they bookmarked many 

common items with our target users. Since CF recommendation algorithm picks the peers by 

fully automate computations of the nearest neighbor approach, without any consideration of the 

group membership information, the anonymous peers could include the target users‟ co-

members. In the same manner to choose the top N anonymous peers, I chose the three kinds of 

top N social connections (i.e. top 20, 10 and 5 co-members based on Jaccard co-efficient).  

First, I compared the differences on the Jaccard-based similarity between peers and co-

members. Because the top peers were literally the users who bookmarked the most common 

items with our target users, naturally, the Jaccard-based similarities of all three kinds of peers (M 

= .047 for top 20, M = .054 for top 10, M = .063 for top 5) were significantly higher than the 

similarities of the co-members (M = .030 for top 20, M = .042 for top 10, M = .053 for top 5; F = 

408.3, p < .001). Then is the group network unable to substitute for anonymous peers? As 

mentioned, these peers were like-minded peers when we counted the co-bookmarked items. As 

we explored in the chapter 5, bookmarking an item is rather opportunistic. Even though there is a 

favorable item, it is easy for users to miss it. Therefore, in order to check whether target users 

share similar interests with not only their anonymous peers but also their co-members, we need 

to consider other aspects such as contents and authors of their favorite items or their annotated 

tag sets.  

When the popularity of co-bookmarked items is counted, target users tend to share rare 

items with their co-members (M = 15.53 for top 20, M = 19.26 for top 10, M = 25.68 for top 5) 

than their peers (M = 9.12 for top 20, M = 9.19 for top 10, M = 9.27 for top 5). The differences 
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on the popularity of co-bookmarked items were significant. It seems that co-members could be a 

good source to acquire useful and sometimes whimsical information.  

However, the comparisons of other kinds of metadata, unfortunately, demonstrated that 

anonymous peers could be better information sources than co-members. For all four kinds of 

information similarities, the similarities of top N peers were higher than the similarities of co-

members, regardless of the top N ranks. Users even annotated more similar tags with their peers 

than co-members. The Table 16 shows the differences and statistical significance. Consequently, 

although co-members share similar items and interests to each other, co-members might not be 

able to substitute for the anonymous peers and might not be better information sources than 

anonymous peers. The hypothesis H6.3 is rejected and the similarity between a user and his co-

members of the same group is lower than the similarity between him and his top N anonymous 

peers. 

Table 16. Metadata-based Similarity Comparison between Co-members vs. Top N Peers 

  Title Author Name Original Tag Processed Tag 

Top20 Co-members .1978 .0617 .0551 .0710 

Top10 Co-members .2192 .0772 .0597 .0769 

Top5 Co-members .2441 .0950 .0658 .0844 

Top20 Peers .2890 .1268 .0545 .0723 

Top10 Peers .3111 .1439 .0606 .0796 

Top5 Peers .3370 .1649 .0688 .0892 

 

F=2325.10, p < .001 F=2079.31, p < .001 F=75.60, p < .001 F=86.58, p < .001 

6.2.4 Group Library vs. Co-members’ Personal Repository  

The above results showed that users share similar items and interests with their co-

members, but not as much as they did with their anonymous peers. Then what about users‟ group 
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library? Do group members have more similar information with their group library than co-

members‟ personal repositories? Do group members have more similar information with their 

group library than top N peers? As the next step, I will answer these questions based on the 

hypothesis H6.2. Throughout the following comparisons, when computing the information 

similarity between members and their group libraries, I used the group library data where the 

members‟ own contributions were eliminated. 

On the H6.2 assumption (“Information similarity between a member and his group is 

higher than the similarity between two co-members of the same group.”), more weights were 

placed on the similarity with group libraries than group co-members. It is because group library 

is a collection of information collaboratively aggregated by group members who are interested in 

or relevant to the corresponding topics of the group. Additionally, group members can have 

diverse interests and their personal repository reflect their various interests. Therefore, I assume 

that group libraries may be coherent collections which are more relevant to the groups‟ topic 

than members‟ personal collections. According to the results shown on Table 17, this assumption 

is right except the result of the Jaccard coefficient.  When I counted the number of co-

bookmarked items, the results of the independent t-test demonstrated that users shared 

significantly more items with their groups (M = 2.63) than co-members (M = .26, t = 60.39, p < 

.001). Users have more similar item collections and share more rare items with their group 

libraries than their co-members‟ personal repositories (t = 103.34, p < .001 for log-likelihood 

similarity; t = 42.44, p < .001 for popularity weight of co-bookmarked items). However, the 

result of Jaccard coefficient showed that the values of the group library are lower than the values 

of co-members, even though there was no significant difference (t = -1.34, p = 0.18).  
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In case of metadata-based similarities, for all kinds, users have more common interests 

with their group libraries than co-members. Metadata about the item properties like titles and 

author names, group libraries (M = .198 for titles; M = .056 for author names) were significantly 

more similar than co-members (M = .112, t = 56.78, p < .001 for titles; M = .022, t = 31.13, p < 

.001 for author names).  On the other hand, the metadata assigned by users themselves, the 

similarity with groups (M = .082 for original tags; M = .098 for stemmed tags) was significantly 

smaller than the similarity with co-members (M = .049, t = 23.38, p < .001 for original tags; M = 

0.60, t = 26.02, p < .001 for the processed tags). Conclusively, the H6.2 is true for all kinds of 

similarity measures except the Jaccard coefficient. Thus, it is certain that users have common 

interests with their group libraries and their co-members of the same group, compared with 

random pairs. In addition, the group libraries, communal spaces of groups, are better information 

source than group co-members‟ personal repositories.   

Table 17. Comparison of Information Similarity between Group vs. Co-members 

 
Group Co-member 

No. of Co-bookmarks 2.63 .26 

Jaccard 1.46% 1.59% 

Log-likelihood 26.87% 4.98% 

Popularity 28.10 8.00 

Title 19.83% 11.17% 

Author Name 5.58% 2.22% 

Original Tag 8.16% 4.92% 

Processed Tag 9.82% 5.95% 

As the next analysis, I also compared the information similarities of the group libraries 

with the top N anonymous peers. Through this analysis, I check whether users‟ any social 

reference related to their group activities can substitute for their anonymous peers. The results 
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indicated that, in terms of shared items and properties of items, the top N peers are still better 

sources than group libraries. Interestingly, however, users have more similar tag sets with their 

group libraries than the anonymous peers. In this case, of course, when I got rid of users‟ own 

contributions, the related tags were also eliminated before the comparison. Therefore, I suggest 

that group library could be a plausible source to provide users items of their interests, because 

some items consisting of the group library correspond to users‟ interests. In addition, due to the 

strong similarities of top N peers, we need to consider both group library and anonymous peers 

at the same time. Therefore, in the second part of this chapter, I will generate the hybrid 

recommendations by fusing these different kinds of peers as one reference group.  

Table 18. Metadata-based Similarity Comparison between Co-members vs. Top N Peers 

 
Group Library Top20 Peers Top10 Peers Top5 Peers  

Title .198 .289 .311 .337 F= 785.9, p < .001 

Author Name .056 .127 .144 .165 F= 681.9, p < .001 

Original Tag .082 .055 .061 .069 F= 74.0, p < .001 

Processed Tag .098 .072 .080 .089 F= 54.1, p < .001 

6.2.5 Two Social Networks in Citeulike: Watching Network vs. Group Membership 

In chapter 5, we discovered that the watching network has been built based on the shared 

interests. In this chapter, we also found that group co-memberships are rooted on common 

interests. When Citeulike users have two options for users to socially associate to each and the 

purposes of both options are to share and acquire useful information, which option would be 

more helpful for them to collect favorable items? In this section, this question will be answered. 

First, for the 10,114 users who have either group membership or watching relations, the 
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information similarities between group co-members and the similarity between members and 

their groups were compared with the similarities of watching connections.  

Table 19 shows the differences of item-based similarities between group-based relations 

and watching relations. In the situation where all differences are significant, group library scored 

the winner. However, among the rest relations, it is hard to clearly say that which relationship is 

a better source, since the patterns of differences are quite heterogeneous according to the 

similarity measures. In terms of the number of co-bookmarks, co-members shared lower number 

of co-bookmarks than the indirect watching relations with 1 hop distance and this relationship is 

the worst in terms of the log-likelihood similarity. However, other two similarity measures depict 

different pictures. Consequently, when users have two options, group activities are more 

beneficial to collect favorable items and, in particular rather than the information collections of 

the co-members in the same group, group library is a better source.  

Table 19. Comparison of Item-based Similarity between Watching Relations and Group-based 

Relations 

  No. of Co-bookmarks Jaccard Popularity Log-likelihood 

Direct Watch 1.80 0.21% 1.80 20.42% 

1hop Watch .39 0.04% 0.76 9.71% 

2hop Watch .16 0.02% 0.45 6.06% 

Co-members .26 1.01% 8 4.98% 

Group-Member 2.63 1.46% 28.10 26.87% 

 F = 3552.6, p < .001 F = 6845.4, p < .001 F = 1933.7, p < .001 F = 6151.2, p < .001 

However, the results of the metadata-based comparison show more consistent patterns of 

differences as Table 20 displays. For these metadata-based similarities, the group library is a 

definite winner. In addition, co-members also shared more similar interests, specifically such as 

similar authors and tags, than watching relations. In case of watching relations, they shared more 



193 

 

similar keyword sets than co-members but the similarity is lower than group library. Therefore, 

the results explained that users share more resembling interests with their group-based social 

connections than their watching connections.  

Table 20. Comparison of Metadata-based Similarity between Watching Relations and Group-based 

Relations 

  Title Author Name Original Tag Processed Tag 

Direct Watch 14.40% 1.49% 3.62% 5.05% 

1hop Watch 8.14% 0.33% 0.95% 1.68% 

2hop Watch 6.26% 0.20% 0.62% 1.14% 

Co-members 11.17% 2.22% 4.93% 5.95% 

Group-Member 19.83% 5.58% 8.16% 9.82% 

 

F = 17143.6,  

p < .001 

F = 7937.9, p < .001 F = 17894.9, p < .001 F = 18535.7, p < .001 

In spite of the differences between watching relations and group co-members, both 

connections have higher similarities in every measure that we consider. Beyond the item-based 

similarities, the higher values of metadata-based similarities represent that they bookmarked 

items of which the topics are similar and the authors are similar. They also have similar 

conceptual and structural knowledge, in accordance with the higher similarity of their tag sets. 

Therefore, we suggest that users in utility-based social networks are based on similar interests 

and actually influence each other. The connections serve as a useful source of information. 

However, these results about the differences between watching relations and group co-

members are rather general, since I computed the similarities for the whole user population. We 

cannot decide yet which utility-based relations are more effective aids to acquire useful 

information between two social networks. Therefore, for the users who participate in both 

watching network and group activities, I will examine which connections are more similar to 

them. As explained, in our Citeulike dataset, there are 1118 users who are watching users and, at 
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the same time, group members. Their similarities with their group-based relations and watching 

relations will be compared. Then, between their watching connections and co-members in the 

same group, which connections have the higher similarity was explored. On average, each target 

user has 20.4 watched users and 40.9 co-members. According to the results on the Table 21, 

group library is the best information source and their watching relations are the second best 

information source for all kinds of information similarity. On the other hand, they share the 

lowest similarities with their co-members. Specifically, the users share more common but 

relatively rare items with their group library. Additionally, they tend to bookmark items 

containing similar contents and authors, and similar tags with their group library. I interpret this 

result to mean that, as a source to acquire useful information, group activities are more beneficial 

than watching relations. Therefore, rather than collections built by individuals, communal spaces 

jointly contributed by people with underlying common interests are more valuable. Since the 

users didn‟t actively initiate the relations like watching relations, and most of the social 

interactions occur on the group space, users are inclined to pay less attentions on the co-

members‟ library. However, this conclusion is only true when a system provides groups‟ 

communal spaces on which members are able to collaboratively build the group collections.  

Table 21. Similarity Comparison between Watching Connections & Group Co-members for the 

Same Users 

  Watching Co-members Group-Members 

 No. of Bookmarks 2.85 1.29 5.33 F= 188.7, P < .001 

Jaccard .0026 .0018 .0122 F= 567.9, P < .001 

Popularity 26.4251 11.3726 48.6086 F= 2196.2, P < .001 

Log-likelihood .2688 .1848 .4525 F= 639.9, P < .001 

Title .1648 .1203 .2369 F= 1017.4, P < .001 

Author Name .0171 .0111 .0537 F= 1087.4, P < .001 

Original Tag .0370 .0229 .0869 F= 970.6, P < .001 

Processed Tag .0529 .0337 .1077 F= 956.9, P < .001 
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Up to now, we provided evidences that utility-based social networks, both watching 

relation and group co-member, embed critical social properties – homophily and social influence. 

Since there is no timestamp when each user started his watching relations and when he joined a 

group in our dataset, it is hard to draw a clear line between homophily and social influence. 

However, it is evident that users didn‟t collect their utility-based connections just for fun or 

curiosity. They actually referred to the social connections and shared the similar items and 

interests.  Between watching relations and co-members, even though there are some similarity 

differences, both social networks are important references to acquire favorable items. 

6.2.6 The Best Similarity Measures for Watching Network  

Once we determine that the homophily and social influence exist on group membership, it is 

required to consider how to exploit the network on accessing useful information. In this section, I 

will decide the most effective similarity measures to indicate the object-centered sociality. As a 

way to assess the effectiveness, I will check which measure predicts the existing group 

memberships the best. 

For this comparison, we chose the users who participate in group activities as our target 

users – 8009 group members. I examine the comparison with increasing top N ranks such as top 

50, top 20, top 10 and top 5. As the evaluation criteria of this prediction, precision and recall are 

used as I did at the study about watching network. Thus, precision at point N (precision@N) will 

measure the ratio of the number of correctly predicted items in the top-N recommendation list to 

N and recall at point N (recall@N) will measure is the ratio of the number of correctly predicted 
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items in the top-N recommendation list to the total number of relevant items. For the equations 

and the detailed explanation, refer to the section 5.2.5. The accuracy of the predictions will be 

evaluated according to the four different top N ranks. (N = 50, 20, 10, and 5). 

First, for 8009 target users who are members of group(s), we predicted who co-members 

of the same groups are. Figure 34 show the precisions and recall of the predictions made by each 

similarity measure. In all top N lists and for both evaluation criteria, all kinds of metadata-based 

measures significantly outperformed the item-based measures (F = 353.4, p < .001 for precision 

of the top 50; F = 329.9, p < .001 for precision of the top 20; F = 305.9, p < .001 for precision of 

the top 10; F = 289.5, p < .001 for precision of the top 5; F = 897.4, p < .001 for recall of the top 

50; F = 472.2, p < .001 for recall of the top 20; F = 279.4, p < .001 for recall of the top 10; F = 

174.5, p < .001 for recall of the top 5). None of the item-based similarities could defeat the 

metadata-based measures. The group co-members share common interests and common 

conceptual and knowledge structure, rather than exactly same information items. Therefore, all 

metadata-based similarities could predict the existing co-members much better than item-based 

similarities. The number of co-bookmarks, which was the best predictor of the watching 

relations, performed worse than any of the metadata-based similarities for the group co-member 

relations, even though it was the best measures among item-based similarities. Among the 

metadata-based similarities, title vector-based similarities predicted the most correct co-members 

and two tag-based similarities are the second best. Between two tag-based similarities, there was 

no significant difference.  

We also predicted the existing group co-member relations using the combined measures. 

Figure 35 and Figure 36 show the results of precisions and recalls along with the three best 
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individual measures, respectively. Regarding the precisions, as we can expect easily, the 

combinations of metadata-based similarities performed significantly better than any other 

measures combined with item-based similarities (F = 205.7, p < .001 for precision of the top 50; 

F = 136.9, p < .001 for precision of the top 20; F = 116.1, p < .001 for precision of the top 10; F 

= 70.3, p < .001 for precision of the top 5; F = 701.9, p < .001 for recall of the top 50; F = 283.0, 

p < .001 for recall of the top 20; F = 156.9, p < .001 for recall of the top 10; F = 67.2, p < .001 

for recall of the top 5). In particular, fusing the title vector-based similarity and tag vector-based 

similarities was an effective measure in higher ranks. However, the most notable result is that the 

best individual measure, title vector-based similarity, predicted as many correct relations as the 

best combinations or much more correlations than the other kinds of combined measures. This 

best performance of the title vector-based similarity was the same for the recall. Among various 

combinations, the combinations of all metadata-based similarities (i.e. combining titles, tags and 

author names) performed the best. However, title vector-based similarity predicted similarly 

complete suggestions in terms of recall. According to the Scheffé pairwise test, there was no 

significant difference between the individual title vector-based similarity and the combinations 

of the metadata-based similarities for both evaluation criteria.  
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(a) The Results of The Precision 

 

(b) The Results of The Recall 

Figure 34. Results of the Test to Forecast Group Co-members 

 

Figure 35. Precisions of Combined Measures for the Prediction of Group Co-members  

(①= No. of Co-bookmarks; ② = Jaccard; ③= Popularity; ④ = Log-likelihood; ⑤ = Title 

Vector; ⑥ = Original Tag Vector; ⑦ = Processed Tag Vector; ⑧ = Author Name Vector) 
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Figure 36. Recalls of Combined Measures for the Prediction of Group Co-members  

(①= No. of Co-bookmarks; ② = Jaccard; ③= Popularity; ④ = Log-likelihood; ⑤ = Title 

Vector; ⑥ = Original Tag Vector; ⑦ = Processed Tag Vector; ⑧ = Author Name Vector) 

6.3 EVALUATION OF GROUP MEMBERSHIP-BASED RECOMMENDATIONS 

The second part of this chapter aims to check how feasible users‟ group-based social 

connections are as a useful information source in a full scale, through the recommendations 

generated by the co-members‟ preferences. As the previous part demonstrated, users in the same 

group frequently focus on sharing topic-relevant information. Users‟ group-based activities and 

the social associations are one of the typical examples of object-centered sociality, which 

explained that information objects are social interaction triggers and anchors of communications. 

However, interestingly, there have been few recommendation studies considering this sociality. 
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Most of the attempts to utilize users‟ group activities in the recommendations were to suggest 

items which are seemingly favorable to the whole group of people, instead of the suggestions for 

individual members. Therefore, the main objective of this part is to check whether the group-

based sociality is an effective information source for individual group members. Furthermore, I 

will check whether users‟ group co-members possess a comparable quality to their anonymous 

peers as information source by substituting the peers with group co-members in recommendation 

process. The most critical hypothesis to be explored in this part is the following.  

H6.4 Group Membership-based recommendations are better than traditional CF recommendation 

approach.  

In addition, since Citeulike system offers users two kinds of object-centered sociability – 

watching network and group membership network, for the users who are participating in both 

social networks, it will be tested which of the two kinds performed better as a component of 

personalized recommendations.  The overall design of the proposed recommendation algorithms 

are displayed on Figure 37.  
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Figure 37. Overall Design of Group Membership-based Recommendation Algorithms 

The experimental comparison of the group-based recommendations will be performed by 

following three steps of the CF recommendations – selection of peers, computation of prediction 

probability and suggestion of recommendations.  

Selection of Peers 

The results of the previous section showed that group co-members and group libraries 

have different degrees of information similarities. It seems that, rather than group co-members, 

group libraries are more reliable sources of information to the members. In this part, by 

generating recommendations based on group members or (and) group library information, I will 

test this hypothesis is right or not.  

H6.5 Recommendations based on both groups and co-members‟ information collections are 

better than the recommendations solely based on co-members‟ collections.  
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In Citeulike system, along with this group membership network, there is watching 

network which is explored in previous chapter 5. Both of the networks aim to share and 

distribute interesting information, and there are a certain number of users who engage in both 

networks. Therefore, I will compare the quality of the recommendations made by each of the 

networks. Additionally, by aggregating two social networks into one set of social links, I will 

generate the recommendation based on the unified set of social links. Lastly, when I compared 

various kinds of information similarities between users‟ group co-members and their top N peers, 

the top N peers have mostly higher similarities (hence, H6.3 was rejected). In here, it is 

necessary to fuse uses‟ self-defined social networks with their top N anonymous peers and to test 

whether the hybrid recommendations enhance the quality than the situation where 

recommendations take into account each kind of peer separately. For the test, I will examine the 

following hypotheses.  

H6.6 Recommendations based on one social network are better than recommendations based on 

two social networks.  

H6.7 Hybrid recommendations based on users‟ group-based social connection and their top N 

anonymous peers are better than traditional CF recommendation approach.  

Algorithms to compute the prediction probability 

In this step, I will choose better recommendation algorithm to compute the prediction 

probability. K-Nearest Neighbor approach and matrix factorization algorithms will be tested. By 

comparing the performance, better algorithm will be chosen.  

Algorithms to compute the prediction probability 
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The results of the section 6.2.6 indicated that metadata information is more important 

similarity measures for group co-members than item-based similarities. In addition, when we 

consider users‟ bookmarks as preferences, since the bookmarks simply represent users‟ interests 

on the items without any further information such as the degree of preferences, candidate items 

from the same peer have the exactly same prediction probability values. However, each item 

contains different contents and it is very often that users‟ annotated tags vary item-by-item. In 

this study, thus, as one way to incorporate the metadata information in recommendations, when 

the system selects the final list of recommended items, I add content properties of items to the 

recommendation prediction probabilities of the items.  

6.3.1 Recommendation Algorithms 

6.3.1.1 Group-based Recommendations 

My proposed social network-based recommendation algorithms mainly aim that, a target 

user‟s self-defined social connections play a role of the reference peers. The social connections 

substitute for his anonymous peers picked by CF recommendation algorithms, at the step to 

choose the target user‟s reference peers for his recommendation. The group-based 

recommendations were generated in this way. The top N anonymous peers defined by automated 

CF computations were replaced by group and (or) co-members. When considering users‟ group 

memberships, I proposed two strategies: 1) considering co-members‟ personal repositories (i.e. 

GMem) and 2) considering both co-members‟ personal repositories and group library (i.e., 

Group). The former recommendations are intended to utilize so-called „social comparison‟ or 
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„constructuralism.‟ These theories suggest that people use the others who are similar to them as a 

reference group and compare themselves with the references to get information or make a 

decision. As I suggested in the previous section, co-members of the same group share the 

reasonably similar interests. Therefore, they could be good references to each other. The later 

recommendation approach is intended not only to utilize co-members‟ repositories but also to 

utilize mutually aggregated information collection of groups, as the theory of „communal 

sharing‟ suggests.  Since group members collaboratively have built the group library, the 

information on the library could be communal assets to the members. In here, the 

recommendations solely based on group library (not considering group co-members) weren‟t 

considered. The results of the first part (i.e. the section 6.2.1) demonstrated that some users 

devoted themselves so much on composing their group library. Accordingly, they dominated the 

group library and I named the type of users as „dictators‟. When the dictator members‟ 

contributions on the group library were excluded for the recommendations, there is very few or 

no item left on the library. That means that, for this dictator type of members, the 

recommendations only based on the group library are literally impossible.  

In the step to compute the prediction probabilities of recommendations, K-Nearest 

neighbors and matrix factorization approaches were used alternatively. When I use the K-nearest 

neighbor approach, I only considered the information of users‟ group-based connections (i.e. 

GMem and Group). In the execution of the matrix factorization approaches (i.e. GMemSVD and 

GroupSVD), for every target user, I built a separate sub-matrix only being made up of the target 

user‟s bookmarks and his social connections‟ bookmarks. Then the matrix factorization approach 

was applied on that sub-matrix. Due to the small number of bookmarks and less sparse matrix 
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(average sparsity of the matrices), the recommendations could be efficiently generated. The 

standard matrix factorization approach feeds the whole bookmark data onto the computation at a 

time. Therefore, the system requires a huge size of memory and often complains about the heap 

size error. When considering the whole dataset, the algorithm requires a large number of latent 

factors (e.g. > 100 for Netflix dataset [199]) and the large factors are directly connected to the 

computational cost. As explained, because members of the group tend to have a narrow focus on 

a certain topic, it doesn‟t need to compute the large number of factors. In a situation where 

online users‟ participation is getting increase, the large-scale based SVD has a serious scalability 

problem [23, 158, 195]. Therefore, whenever there are modifications on bookmarks of a group‟s 

social connections, we can update the small sub-matrix for them and applied the matrix 

factorization method. 

6.3.1.2 Recommendations based on Two Social Networks and Hybrid Recommendations 

In order to assess the quality of various online social networks as information sources, as 

mentioned, the recommendations based on different social networks will be compared. As 

Citeulike provides users opportunities to participate in watching network and group 

memberships, for the Citeulike users who associate both social networks, I generated the 

recommendations based on both networks (i.e. GMemWatch, GMemWatch_CW, 

GMemWatchSVD, and GMemWatchSVD_CW) and compared the quality with the other 

recommendations using each of them separately.  In the same way to produce the group 

membership-based recommendations, the recommendations consider the bookmarks of users‟ 
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group co-members and watching networks. When there are overlapped social links between two 

social networks, I counted them onlyonce.  

I also produced hybrid recommendations by combining users‟ top N peers and their 

group-based social connections (i.e. Hybrid, Hybrid_CW, HybridSVD, and HybridSVD_CW). 

In here, the variable N is determined as many as each target user‟s group-based social 

connections are. According the experimental evaluation, when peers equaling to the number of 

the target users‟ group-based connections were used in the K-nearest neighbors, the CF 

recommendations produced the best results. A target user‟ top N anonymous peers were 

combined with his co-members of the same group and his group library. In particular, among 

various hybridization strategies, the mixed hybrid strategy was chosen. Put differently, two 

sources of information – one is target users‟ top N anonymous peers and another is their group-

based social connections – were mixed as one set, and then the mixed set was used as a 

foundation of the recommendations.  

6.3.1.3 Adding Metadata Information of Items in Recommendations  

In the first part of this chapter, the similarity of watching connections showed that, rather 

than counting users‟ bookmark records, metadata of items are more critical to represent the 

shared interests. In this group-based recommendation, two strategies were proposed to 

incorporate the metadata information of items in recommendations – content similarity weights 

and metadata-based preferences. I already explained the content similarity weights on the 

5.3.1.2. Briefly, the content similarity weight is to reflect users‟ cognitive understandings on the 

items and contents of items in recommendations at the final selection of recommended items. 
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Particularly, in this content weight similarity, I did not limit the scope of social tags to the users‟ 

group co-members. Put differently, regardless the annotators are socially associated with our 

target users or not, I considered all social tags annotated to items. In the comparison of shared 

interests between group co-members and top N anonymous peers (i.e. the section 6.2.3), our 

target users shared more common metadata with the top N anonymous peers than their co-

members. I interpreted this result to mean that, despite the fact that they are socially 

disconnected in general, like-minded users‟ opinions are still not negligible. In addition, 

according to my own preliminary study [95], content similarity weights performed better than 

content boosted approach or content-based recommendations.  

In previous recommendations with content similarity weight, first it is computed the 

similarity about how much peers in consideration (whether they are anonymous peers or group-

based social connections) are alike to our target users. Then the level of how much candidate 

items are favorable to our target users in terms of the metadata was added. In the 

recommendations based on metadata-based preferences (CP_Group), I computed the suggestions 

in the other way. It is computed first how much our target users‟ bookmarked items are matched 

with their overall tastes and then the degree about how much the peers would like their favorable 

items was applied. As explained, bookmark-based preference is unary rating – a user like this 

item. Therefore, it is hard to generate more elaborate and accurate recommendations. In here, the 

metadata-based preferences represent what target users like derived from their keywords and 

social tags. As I did for content similarity weight, I built target users‟ keyword vector-based 

profiles and processed tag vector-based profiles. In this case, of course, the items in users‟ test 

set were excluded. For the comparison, I also built the keyword vector-based profiles and 
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processed tag vector-based profiles of the target users‟ bookmarked items. Then, the cosine 

similarities indicating how each bookmarked items are similar to the corresponding users‟ whole 

metadata-based profiles were calculated. The cosine similarities altered the bookmark-based 

unary ratings. That is, the cosine similarity between users‟ metadata vectors and other metadata 

vectors of their favorite items is now the numeric ratings showing that how much our target users 

liked the corresponding items. The equation to compute the metadata-based preferences is the 

following. In this equation, the item i is one of the items in user u‟s bookmark history.  

      (
      

  
)  (

      

  
) Eq. 28 

Once the metadata-based preferences are computed, I computed the K-Nearest Neighbor 

recommendations using the Pearson correlation. Since now the metadata-based preference have 

numeric values, the Pearson correlation is applicable. The matrix factorization recommendations 

were also executed using the metadata-based numeric preferences. In this study, the main target 

of the social recommendations is the group-based recommendations. Therefore, I applied the 

metadata-based preferences solely to the recommendations based on group co-members and 

group library. According to the preliminary analysis, this recommendation approach performed 

the best. This metadata-based preference is an attempt to increase the effectiveness of the group-

based recommendations.  

6.3.1.4 Community vote-based Recommendations 

This approach (i.e. Community) is the simplest approach among all proposed algorithms. For 

each target user, I picked the most popular items among his group libraries and his co-members‟ 

repositories. Once items do not appear on target user‟s collection, I counted the bookmark 
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frequency of the items in both group libraries and co-members‟ collections. According to the 

descending order of the frequencies, the items were sorted and suggested as community vote-

based recommendations. Because group members have interests on a certain topic, they gathered 

on the relevant online place (i.e. their group library) to share the topic relevant information. 

Therefore, the popular items among the people whose interests are similar could be of a value to 

be a part of the recommendations. 

6.3.2 Experimental Evaluation of Recommendations 

For the evaluation of the proposed recommendation algorithms, the targets were 8009 users who 

are a member of groups. Their bookmark sets were split into 10 equal sized subsets so as to do 

10 cross validation. For each iteration, one set of the 10 sets were used as a test set and other 9 

sets were used as a training set. This process was repeated with a different test set for 10 times. I 

called this data set as „whole set.‟ In addition, so as to decide various settings or parameters to 

optimize the recommendation algorithms (such as the similarity measures for the N-nearest 

approach and the number of features and value of SVD ALSWR factorizer), I used the first 

iteration of the above 10 subsets and called this small data set as a „probe set.‟ When I use this 

„probe set‟, first subset will be the test set and remaining 9 subsets will be the training data 

without any iteration. As the evaluation criteria, because Citeulike dataset doesn‟t contain 

numeric ratings, traditional evaluation methods for information retrieval were used; precision 

and recall.   
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6.3.3 Social Network-based Recommendations using Various Settings 

As the evaluation, through H6.4, I plan to compare the quality of group membership-based 

recommendations with baseline CF recommendations. Additionally, as depicted on Figure 37, 

depending on the scope of social links, I considered five types of peers including peers with 

anonymity and social associations. Through the various scopes of social links (i.e. group co-

members only, group co-member and group library, group co-members and watching 

connections, and anonymous peers and group-based social links), it is designed to assess the 

quality of social recommendations across the various scopes. However, before the comparisons, 

it is required to find a good setting for each kind of social recommendations. In K-Nearest 

Neighbor based recommendations, as demonstrated on the first part of this chapter, there are 

several similarity measures and top N numbers to consider. We need to decide a good similarity 

measure and N number produces the best results, thereof. In matrix factorization, we also need to 

determine the optimal number of latent factors and λ values to the weighted regularization. 

Therefore, as a pre-analysis before the full-scale comparison, I try to find the best algorithmic 

settings within each kind of social recommendations.   

As the first step of the analysis, I tested the good similarity measures of K-Nearest 

Neighbor approaches and the optimal settings for matrix factorization approaches. In this 

analysis, the smaller probe data set was used and the F1 was the evaluation method. For K-

Nearest Neighbor approach, three sorts of similarity measures – the number of co-bookmarks, 

Jaccard co-efficient, and log-likelihood similarity – and four numbers of N – top 100, 50, 20 and 

N equaling to the number of target users‟ social connections – were tested. The detailed results 
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were explained on the Appendix A.2.1. In case of matrix factorization, several numbers of latent 

factors and multiple kinds of λ regularization value were tested. The detailed test settings and 

results were explained on the Appendix A.2.2. The following Table 22 shows the final results. 

Since there are no significant differences, even though Jaccard coefficients were generally 

selected, it is hard to conclude that one item-based similarity outperformed the others.  

Table 22. The Optimal Setting of Each Recommendation Approach 

Kinds of Recommendations Optimal Settings 

KNN-based CF Jaccard Coefficient with the same number of peers as much as 

the target users‟ social connections exist 

GMem Jaccard Coefficient with the top 50 similar social connections 

Group Jaccard Coefficient with the top 50 similar social connections 

GMemWatch Loglikelihood similarity with the top 20 similar social 

connections 

Matrix 

Factorization-

based 

CFSVD 50 factors with λ=0.15 

GMemSVD 16 factors with λ=0.15 

GroupSVD 16 factors with λ=0.15 

GMemWatchSVD 20 factors with λ=0.15 

The next analysis is to check whether adding metadata information of items can enhance 

the recommendation quality or not. Table 23 and Table 24 display the precisions and recalls of 

top N results including the statistical significance. The results showed that even though some 

differences are not statistically significant, adding content property of items to the 

recommendations are generally helpful to increase the accuracy and completeness of the 

recommendations, except one case – community vote-based recommendations. I have one more 

strategy to utilize the metadata information of items in recommendations – metadata-based 

preferences. In the next section, I will compare the recommendation quality between two 

strategies –content similarity weight and metadata-based preferences. Due to the improved 

performance, in the next analysis, I considered the all recommendations with content similarity 



212 

 

weight except the community vote-based recommendations. Both community and 

community_CW  will be considered in the next analysis. 

Table 23. Differences of Recommendation Precision Depending on Metadata Properties of Items 

 
Top10 Top5 Top2  

CF 1.10% 2.21% 1.72% t = -8.42, p < .001 for top 10; 

t = -2.95, p = .003 for top 5; 

t = -7.96, p < .001 for top 2 CF_CW 2.00%* 2.75% 3.95%* 

CFSVD 0.91% 1.17% 1.58% t = -8.63, p < .001 for top 10; 

t = -7.91, p < .001 for top 5; 

t = -6.42, p < .001 for top 2 CFSVD_CW 1.62%* 2.14%* 2.92%* 

GMem 1.20% 1.63% 2.53% t = -7.92, p < .001 for top 10; 

t = -8.03, p < .001 for top 5; 

t = -6.94, p < .001 for top 2 GMem_CW 1.95%* 2.80%* 4.55%* 

GMemSVD 1.29% 1.64% 2.18% t = -6.44, p < .001 for top 10; 

t = -6.31, p < .001 for top 5; 
t = -5.61, p < .001 for top 2 GMemSVD_CW 1.86%* 2.44%* 3.30%* 

Group 0.94% 1.20% 1.72% t = -9.33, p < .001 for top 10; 

t = -9.76, p < .001 for top 5; 
t = -8.72, p < .001 for top 2 Group_CW 1.70%* 2.42%* 3.67%* 

GroupSVD 1.61% 2.18% 3.18% t = -4.45, p < .001 for top 10; 

t = -4.36, p < .001 for top 5; 
t = -3.83, p < .001 for top 2 GroupSVD_CW 2.08%* 2.85%* 4.09%* 

GroupWatch 1.15% 1.28% 1.47% t = -6.12, p < .001 for top 10; 

t = -6.91, p < .001 for top 5; 
t = -7.13, p < .001 for top 2 GroupWatch_CW 2.64%* 3.52%* 4.98%* 

GroupWatchSVD 1.98% 2.57% 3.46% t = -4.54, p < .001 for top 10; 

t = -3.07, p < .001 for top 5; 
t = -2.26, p =.024 for top 2 GroupWatchSVD_CW 3.48%* 3.98%* 5.11% 

Hybrid 0.76% 1.00% 1.49% t = -8.82, p < .001 for top 10; 

t = -8.66, p < .001 for top 5; 
t = -7.15, p < .001 for top 2 Hybrid_CW 1.48%* 2.15%* 3.19%* 

HybridSVD 0.74% 0.91% 1.39% t = -12.67, p < .001 for top 10; 

t = -13.02, p < .001 for top 5; 
t = -10.73, p < .001 for top 2 HybridSVD_CW 2.08%* 2.90%* 4.18%* 

Community 0.86% 1.24% 1.69% t = -1.92, p = .054 for top 10; 

t = -2.20, p = .027 for top 5; 
t = -3.60, p < .001 for top 2 Community_CW 0.95% 1.39% 2.13%* 

(* indicates that the differences are statistically significant) 
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Table 24. Differences of Recommendation Recall Depending on Metadata Properties of Items 

 
Top10 Top5 Top2  

CF 3.01% 3.01% 1.17% t = -3.81, p < .001 for top 10; 

t = -0.99, p = .31 for top 5; 

t = -4.47, p < .001 for top 2 CF_CW 4.43%* 3.35% 2.36% 

CFSVD 3.53% 2.48% 1.41% t = -2.32, p = .02 for top 10; 

t = -1.49, p = .13 for top 5; 

t = -1.75, p = .07 for top 2 CFSVD_CW 4.27% 2.87% 1.77% 

GMem 4.07% 2.81% 1.80% t = -2.96, p = .003 for top 10; 

t = -3.33, p < .001 for top 5; 
t = -3.35, p < .001 for top 2 GMem_CW 5.44% 4.13%* 2.96%* 

GMemSVD 3.78% 2.68% 1.70% t = -2.63, p = .008 for top 10; 
t = -1.77, p = .075 for top 5; 

t = -0.81, p = .41 for top 2 GMemSVD_CW 4.58% 3.15% 1.87% 

Group 3.63% 2.35% 1.30% t = -4.63, p < .001 for top 10; 

t = -5.20, p < .001 for top 5; 

t = -4.98, p < .001 for top 2 Group_CW 5.50%* 4.14%* 2.64%* 

GroupSVD 4.78% 3.47% 2.34% t = -2.52, p = .012 for top 10; 

t = -2.47, p =.013 for top 5; 

t = -1.38, p = .175 for top 2 GroupSVD_CW 5.65% 4.21% 2.69% 

GroupWatch 1.03% 0.67% 0.27% t = -2.74, p = .006 for top 10; 

t = -2.94, p = .003 for top 5; 
t = -4.02, p < .001 for top 2 GroupWatch_CW 1.89% 1.42% 0.87%* 

GroupWatchSVD 1.88% 1.27% 0.81% t = -1.89, p = .058 for top 10; 
t = -0.98, p = .324 for top 5; 

t = -0.13, p = .889 for top 2 GroupWatchSVD_CW 2.77% 1.60% 0.85% 

Hybrid 2.60% 1.81% 1.09% t = -4.87, p < .001 for top 10; 

t = -5.07, p < .001 for top 5; 

t = -4.04, p < .001 for top 2 Hybrid_CW 4.30%* 3.37%* 2.05%* 

HybridSVD 1.81% 1.26% 0.91% t = -11.17, p < .001 for top 10; 

t = -10.18, p < .001 for top 5; 

t = -7.85, p < .001 for top 2 HybridSVD_CW 5.63%* 4.28%* 2.84%* 

Community 4.79%* 3.61%* 1.91% t = 6.04, p < .001 for top 10; 

t = 4.87, p < .001 for top 5; 
t = 1.54, p = .123 for top 2 Community_CW 3.17% 2.47% 1.64% 

(* indicates that the differences are statistically significant) 

The next analysis is to determine a better algorithm to compute the recommendation 

probability between K-Nearest Neighbor and matrix factorization algorithms within each 

recommendation approach. Since the approaches with content similarity weights produced 

generally better results, the comparison was made on the center of those approaches.   
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Table 25 and Table 26 show the results of precisions and recalls respectively. Unlike the 

distinct patterns of differences on the recommendations depending on the absence and presence 

of the content similarity weights, there is no clear winner. In the recommendations based on 

anonymous peers and group co-members, the quality of K-Nearest Neighbors approach was 

more accurate and complete. In particular, for the recommendations using metadata-based 

preferences, the K-Nearest Neighbor approach was better than matrix factorization. According to 

the better performance of each proposed recommendation algorithms, the overall design of the 

recommendation approaches shown on Figure 37 can be revised in a summarized form as the 

following Figure 38. 

 

Figure 38. Revised Design of Group Membership-base Recommendation Algorithms 
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Table 25. Differences of Recommendation Precision depending on Probability Computation 

Algorithms 

 
Top10 Top5 Top2  

CF_CW 2.00%* 2.75%* 3.95%* t = 3.56, p < .001 for top 10; 
t = 3.66, p < .001 for top 5; 

t = 3.66, p < .001 for top 2 CFSVD_CW 1.62% 2.14% 2.92% 

GMem_CW 1.95% 2.80% 4.55%* t = 0.77, p = .441 for top 10; 

t = 2.29, p = .022 for top 5; 

t = 4.76, p < .001 for top 2 GMemSVD_CW 1.86% 2.44% 3.30% 

Group_CW 1.70% 2.42% 3.67% t = -3.57, p < .001 for top 10; 

t = -2.76, p = .005 for top 5; 

t = -1.64, p = .100 for top 2 GroupSVD_CW 2.08%* 2.85% 4.09% 

GroupWatch_CW 2.64% 3.52% 4.98% t = -2.59, p = .009 for top 10; 

t = -1.04, p = .296 for top 5; 
t = -0.18, p = .853 for top 2 GroupWatchSVD_CW 3.48% 3.98% 5.11% 

Hybrid_CW 1.48% 2.15% 3.19% t = -4.78, p < .001 for top 10; 
t = -4.00, p < .001 for top 5; 

t = -3.11, p = .001 for top 2 HybridSVD 2.08%* 2.90%* 4.18% 

CP_Group 1.48%* 2.05%* 2.55% t = 6.07, p < .001 for top 10; 

t = 5.79, p < .001 for top 5; 

t = 2.92, p = .003 for top 2 CP_GroupSVD 0.76% 1.03% 1.61% 

Table 26. Differences of Recommendation Recall depending on Probability Computation 

Algorithms 

 
Top10 Top5 Top2  

CF_CW 4.43% 3.35% 2.36% t = 0.46, p = .64 for top 10; 

t = 1.57, p = .114 for top 5; 

t = 2.32, p = .020 for top 2 CFSVD_CW 4.27% 2.87% 1.77% 

GMem_CW 5.44% 4.13% 2.96%* t = 2.18, p = .028 for top 10; 

t = 2.95, p = .003 for top 5; 

t = 3.85, p < .001 for top 2 GMemSVD_CW 4.58% 3.15% 1.87% 

Group_CW 5.50% 4.14% 2.64% t = -0.38, p = .696 for top 10; 

t = -0.21, p = .831 for top 5; 
t = -0.15, p = .878 for top 2 GroupSVD_CW 5.65% 4.21% 2.69% 

GroupWatch_CW 1.89% 1.42% 0.87% t = -2.07, p = .038 for top 10; 
t = -0.62, p = .529 for top 5; 

t = 0.09, p = .922 for top 2 GroupWatchSVD_CW 2.77% 1.60% 0.85% 

Hybrid_CW 4.30% 3.37% 2.05% t = -3.10, p = .001 for top 10; 

t = -2.39, p = .016 for top 5; 

t = -2.58, p = .009 for top 2 HybridSVD 5.63% 4.28% 2.84% 

CP_Group 3.83% 2.97%* 1.41% t = 3.19, p = .001 for top 10; 

t = 3.84, p < .001 for top 5; 

t = 1.14, p = .254 for top 2 CP_GroupSVD 2.43% 1.59% 1.09% 
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6.3.4 Comparison of Various Recommendation Approaches 

Once the optimal setting for each recommendation approach is decided, it is the stage to compute 

the quality of social recommendations among the various recommendation approaches including 

the CF recommendations. Figure 39 and Figure 40 display the precision and recall results, 

respectively. According to the One-way ANOVA, the quality of these recommendation 

approaches are significantly different (F = 122.79, p < .001 for top 10 precision; F = 90.24; p < 

.001 for top 5 precision; F = 63.55, p < .001 for top 2 precision; F = 29.32, p < .001 for top 10 

recall; F = 23.55; p < .001 for top 5 recall; F = 15.41, p < .001 for top 2 recall). For the specific 

patterns of the differences, I executed the Schaffé pairwise comparison.  

First, I compared two approaches utilizing different methods to incorporate metadata 

information of items in recommendations – content similarity weight (i.e. GroupSVD_CW) and 

recommendations utilizing metadata-based preferences (i.e. CP_group). In the tests base on 

precision and recall, the approach adding content similarity weight outperformed the 

recommendation utilizing metadata-based preferences. Therefore, rather than taking into account 

the metadata properties of items in modeling users‟ preferences, it is more effective to apply the 

information at the final step to choose the recommended items.  

Second, I compared all recommendations utilizing group membership network (i.e. 

GMem_CW, GroupSVD_CW, Community and CP_Group) in order to discover proper scope of 

group-based social connections as a foundation of users‟ personalized recommendations. Among 

them, the matrix factorization recommendations based on co-members and group library 

(GroupSVD_CW) and another recommendation based on group co-members (GMem_CW) was 
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better than the others in the perspective of both precision and recall. Between the two 

approaches, there was no significant difference. Therefor the relevant hypothesis 6.5 is rejected. 

On the other hand, the community vote-based recommendations performed the poorest among 

the four proposed approaches in the respect of precision and recall. Even though group co-

members share similar interests to each other, the detailed preferences of the individual members 

were different to each other and require more sophistication personalization tactics like group 

membership-based recommendations.  

 

Figure 39. Differences of Recommendation Precision depending on the Approaches 
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Figure 40. Differences of Recommendation Recall depending on the Approaches 
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recommendations based on the combined peers generate better recommendations? I generated 

hybrid recommendations by taking into account the preferences of both anonymous peers and 

group membership-based connections. Regardless of the evaluation criteria (whether it is 

precision or recall), the hybrid recommendations were always the worst in all ranks. This 

personalized recommendation approach was worse than community vote-based 

recommendations which are non-personalization approach. Therefore, the hypothesis 6.7 is 

rejected. Rather than mixing up different groups of peers, it is better to take into account 

individual kinds of peers separately.  

6.3.5 Comparison of Group Membership-based Recommendations with other Social 

Recommendation Approaches 

In the previous section, one approach on the Figure 39 and Figure 40 – the recommendation 

considering two kinds of Citeulike social networks into one set of peers (i.e. 

GMemWatchSVD_CW) – wasn‟t mentioned. The results showed the recommendation approach 

outperformed in the perspective of precision but not so good in the results of the recall. However, 

not every target user was able to receive this recommendation. In Citeulike, there are two social 

networks – watching network introduced in the chapter 5 and group membership explored in this 

chapter. With their own choice, Citeulike users are able to participate in both networks. In the 

Citeulike dataset, I found 1118 users who are engaging in both networks. For these 1118 users, 

the recommendations considering two kinds of social networks were available. In this section, 

between two possible socialities of these target users, I assessed which sociality is a better 

information source. These 1118 target users can receive three kinds of social recommendations – 
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group membership-based recommendations (i.e. GroupSVD_CW), watching network-based 

recommendations (i.e. ReciWatch_CW) and both network-based recommendations (i.e. 

GMemWatchSVD_CW). Within each recommendation approach, I selected the algorithm 

yielded the best results. Along with CF recommendations for these target users, the quality of the 

three social recommendations was compared.  

Figure 41 shows the comparison results in terms of precision, recall and F1 measure. The 

differences of precision and recall were insignificant (F = 1.17, p = .310 for top 10 precision; F = 

.64; p = .526 for top 5 precision; F = 2.63, p = .072 for top 2 precision; F = 3.09, p = .046 for top 

10 recall; F = .38; p = .678 for top 5 recall; F = .28, p = .753 for top 2 recall). Despite of the 

insignificance, there are contrasting patterns between precision and recall. Watching network-

based recommendations produced better recommendations than the other two approaches 

including regarding the precision. However the result of recall displayed that the performance of 

watching network-based recommendations was worse than the others. In order to decide the best 

performing social recommendations, F1 measures were computed. The F1 Measure also showed 

no significant difference (F = 2.71, p =.067 for top 10 F1 value; F = 23.55; p = .001 for top 5 F1 

value; F = .123, p = .885 for top 2 F1 value). In addition, I failed to find any consistent patterns 

of differences in all ranks. Therefore, at least for 1118 Citeulike users, combining multiple social 

networks didn‟t improve the quality, compared with the recommendations using individual social 

networks separately. Additionally, for this 1118 target users, social network-based 

recommendations are as good as the traditional CF recommendations. Therefore, the hypothesis 

6.6 is rejected. All three kinds of social recommendations and CF recommendations performed 

equally.  
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Figure 41. Comparison of Various Citeulike Social Recommendations 
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group-based recommendations produce the different levels of quality for each cluster or not. We 

can reckon that the most desirable user cluster is the moderator type of users. However, for the 

users in other two clusters, the group network-based recommendations are in question. For this 

analysis, first I classified group members into the three clusters. Since users are able to 

participate in multiple groups and have different degree of contributions per group, the 

classification was made by the median value of the corresponding member‟s contributions over 

his all groups. The contributions usually have skewed distributions. Hence, the median value is a 

more suitable „representative value‟ than mean value. By following the same classification 

schema used in the section 6.2.1, when a member‟s median contribution is less than 20%, he is a 

lurker. When another members‟ median contribution is more than 90%, he is a dictators. The 

remaining users whose median values are more than 20% and less than 90% are moderators. 

Among 8009 target users, the majority was the lurkers (84.8%, n = 6788 users) and their number 

of groups were 1.47 (σ= 1.58) on average. 216 users were the dictators (2.7%) and their groups 

were 1.62 (σ= 3.80). 1005 users (12.6%) were moderators and joined 1.51 groups (σ= 1.32).  

Figure 42 and Figure 43 display the results of precision and recall. There are significant 

differences on the quality of various recommendations depending on the user clusters (F = 16.61, 

p < .001 for top 10 precision; F = 12.81, p < .001 for top 5 precision; F = 8.41, p < .001 for top 2 

precision) in terms of precision. However, in the results of recall, the quality of various 

recommendations was not significantly different according to the user clusters (F = 2.09, p = 

.009 for top 10 recall; F = 1.37, p = .157 for top 5 recall; F = .33, p = .990 for top 2 recall). As 

the next analysis, I find the patterns of difference on the various recommendation approaches 

within each cluster of users.  
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First, for lurkers, the differences of the various recommendation approaches are 

significant (F = 81.07, p < .001 for top 10 precision; F = 62.66, p < .001 for top 5 precision; F = 

44.89, p < .001 for top 2 precision; F = 27.59, p < .001 for top 10 recall; F = 21.98, p < .001 for 

top 5 recall; F = 13.51, p < .001 for top 2 recall). In particular, for this cluster of users, the 

recommendations combining their group membership-based social connections with their 

watching partners yielded significantly higher precisions than the other approaches. Group 

membership-based recommendations (i.e. GMem_CW and GroupSVD_CW) were the second 

best approaches followed by CF recommendations. Among the group membership-based 

recommendations and CF recommendations, there is no significant difference in the precision. In 

terms of recall, two group membership-based recommendations produced significantly higher 

recall than the others. Due to the rare contributions on the group library and uncommon interests 

with their co-members, the lurkers are regarded to be uninterested in their group related social 

activities. However, the recommendation results indicated that their group libraries and co-

members are valuable sources of information and they are participating group activities with 

genuine interests on the corresponding topic and for acquiring information of their interests. 
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Figure 42. Differences of Precision according to Users’ Contribution Patterns 

 

Figure 43. Differences of Recall according to Users’ Contribution Patterns 
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Next, I assessed the best recommendation algorithms for moderators. The precision 

differences of the various recommendation approaches are significant (F = 36.47, p < .001 for 

top 10 precision; F = 26.11, p < .001 for top 5 precision; F = 15.77, p < .001 for top 2 precision). 

However, the differences of recall are insignificant except the recall of the lowest rank (F = 5.32, 

p < .001 for top 10 recall; F = 3.40, p = .001 for top 5 recall; F = 2.00, p =.051 for top 2 recall). 

In the test based on precision, like the results of lurkers, in lower ranks, the recommendations 

combining users‟ group-based connections with watching connections are significantly better 

than the others.  However, in the highest rank where the most accurate predictions are supposed 

to be place, the recommendations based on group co-members (i.e. GMem_CW) was 

significantly the best. In the test based on recall, even though there are no statistical 

significances, group membership-based recommendations (i.e. GMem_CW and 

GroupSVD_CW) always produced the highest recall values in all ranks.  

Lastly, for the dictators, it is hard to expect the good performance of group membership-

based recommendations. In their group library, after excluding their contributions, very little 

information has left. They are seldom alike to their co-members. Like the result of the lurkers 

where group membership-based recommendations performed well despite of the uncommon 

interests with the co-members, can we expect the same improvement of the group membership-

based recommendations for these dictators? While the precision differences of the various 

recommendation approaches are significant (F = 5.13, p < .001 for top 10 precision; F = 5.12, p 

< .001 for top 5 precision; F = 5.51, p < .001 for top 2 precision), the differences of recall are 

insignificant (F = .91, p = .491 for top 10 recall; F = .41, p = .89for top 5 recall; F = 1.34, p =.22 

for top 2 recall). According to the test based on precision, the recommendations based on their 
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group co-members were the best recommendation algorithms than CF recommendations. 

However, the recommendations utilizing both group co-members and group libraries performed 

poorly. In the test based on recall, the results of the lowest rank indicated that CF 

recommendations were better than the others. However, as the rank is getting higher, the 

recommendations based on their group co-members became the best recommendation algorithms 

than CF recommendations. Interestingly, the second best recommendations in the highest rank is 

community vote based recommendations, which consist of items popularly favored by their co-

members. I interpreted this result to mean that, even though the dictators didn‟t pay attention to 

their co-members, people whose interests are relevant to the topics of their groups gathered 

together in the dictators‟ groups. Therefore, the group co-members are now a beneficial source of 

information to the dictator users.  

6.3.7 Group Membership-based Recommendation for Cold-start Users 

In this dataset, 32.33% of our target users (2,589 users) have less than 5 bookmarks. 

Usually, in recommendations, users having this amount of bookmarks or ratings are hard to 

receive reasonably good recommendations since the numbers of bookmarks are insufficient to 

present what they like properly. Therefore, these users are called as cold-start users. One 

weakness of the CF recommendations is this cold-start user problem. Since the recommendations 

rely on the overlapped interests or tastes among users, when users have insufficient information 

about interests or tastes, it is difficult to suggest presumably favorable items. As explained in the 

chapter 2, some researchers suggest that social network-based recommendations could be a good 

solution to solve this cold start user problem. Hence, in this subsection, I test whether the best 
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recommendation approach differ according to target users‟ bookmark numbers and whether 

group network-based recommendation is a good approach for cold-start users. For this test, I 

classified users into three clusters according to their number of bookmarks – cold-start users (n < 

5), user having medium level of bookmarks (5 <= n < 200) and users having large number of 

bookmarks (n >= 200). There are 2,589 users, 4408 users and 1012 users in each cluster, 

respectively. For the users belonging to each cluster, I compared the recommendation 

algorithms.  

Figure 44 and Figure 45 display the results of precision and recall. The differences on the 

quality of various recommendations are significant depending on the user clusters (F = 16.87, p 

< .001 for top 10 precision; F = 10.25, p < .001 for top 5 precision; F = 4.66, p < .001 for top 2 

precision; F = 16.37, p < .001for top 10 recall; F = 12.74, p < .001for top 5 recall; F = 10.27, p < 

.001 for top 2 recall).  

As the next analysis, I investigated the patterns of difference on the various 

recommendation approaches within each cluster of users. First, for users having large 

information collection, the differences of the various recommendation approaches are significant 

(F = 9.02, p < .001 for top 10 precision; F = 9.52, p < .001 for top 5 precision; F = 11.37, p < 

.001 for top 2 precision; F = 6.83, p < .001 for top 10 recall; F = 7.21, p < .001 for top 5 recall; F 

= 8.74, p < .001 for top 2 recall). In both tests based on precision and recall, the 

recommendations based on group co-members and watching connections and another kind of 

recommendations based on group co-members generated the better recommendations than CF 

recommendations.   



228 

 

Second, for users having medium number of bookmarks, the differences of the various 

recommendation approaches are significant (F = 64.01, p < .001 for top 10 precision; F = 55.40, 

p < .001 for top 5 precision; F = 38.63, p < .001 for top 2 precision; F = 40.15, p < .001 for top 

10 recall; F = 31.39, p < .001 for top 5 recall; F = 19.80, p < .001 for top 2 recall). In both tests 

based on precision and recall, the group membership-based recommendations based on group co-

members and group library (i.e. GroupSVD_CW) generated improved suggestions than CF 

recommendations for all ranks. In addition, the recommendations based on group co-members 

and watching connections were also good way to suggest items. 

 

Figure 44. Differences of Precision according to Users’ No. of Bookmarks 
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Figure 45. Differences of Recall according to Users’ No. of Bookmarks 
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6.4 CONCLUSION 

In this chapter, I examined the feasibility of users‟ group based social connections as a useful 

information source through 1) the examination of shared interests among co-members of the 

same group and the overlapped interests between a member and his group library and 2) the 

empirical evaluation of group membership-based recommendations.  

In the first part of this study, the information similarities of co-member pairs were 

significantly higher than the values of the random pairs. Rather than the co-members of the same 

group, however, users share more common interests with their group library. I suggest that group 

library is a collection of information collaboratively aggregated by group members who are 

interested in or relevant to the corresponding topics of the group. Therefore, group libraries are 

coherent collections which are more relevant to the groups‟ topic than members‟ personal 

collections. The group libraries are also better information source than watching networks. 

Regardless whether the similarity was measure by shared items or shared metadata, the similarity 

between group members and their group libraries was higher than the similarities of two group 

co-members or two watching connections. In addition, between group co-members and watching 

connections, watching connections is a better information source than group co-members in 

terms of both item-based similarities and metadata-based similarities.   

The comparison of recommendation quality among various recommendation approaches 

demonstrated that the social recommendations based on group membership network can generate 

quality suggestions equivalent to or sometimes better than CF recommendations. In group 

membership-based recommendations, group co-members and group‟s communal spaces are 
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equally important information sources. However, the hybrid recommendations combining users‟ 

group membership network with their anonymous peers are ineffective and harm the quality of 

group-based social recommendations. In addition, for the users participating in both the watching 

network and group membership network on the Citeulike system, the best social 

recommendation approach was tested. The result showed by combining two object-centered 

sociality wasn‟t effective to enhance the recommendation quality. Regardless whether the 

recommendations were generated by one kind of social network or two kinds of social networks, 

the predictions were equivalent level.  

In the analysis about users‟ contributions on their group libraries, I found that the group 

membership-based recommendation might not work well for every group member. Some users 

didn‟t contribute their group activities at all nor have common interests with their co-members. 

Some other users contribute their group activities too much but didn‟t pay attentions to the other 

co-members. Therefore, I tested whether we need to consider different kinds of recommendation 

approach depending on users‟ patterns about distributing and sharing information with group co-

members. The results showed that we don‟t need to. For all group members, regardless of their 

social interaction patterns, the group membership-based recommendations were better than the 

other recommendations.  

Finally, in order to solve the cold-start problem, I tested which recommendation method 

is the most suitable for the users whose bookmarks are insufficient. For them, group 

membership-based recommendations are significantly the best than the other recommendation 

options. In addition, unlike other users having sufficient number of bookmarks, the 

recommendations utilizing the metadata-based preferences worked well. Therefore, for the users 
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don‟t have enough data to represent their interests or tastes, it is wiser to utilize the metadata 

information of items.  
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7 COLLABORATION NETWORK-BASED RECOMMENDATIONS 

This chapter aims to explore the feasibility of recommendations based on users‟ research 

collaboration network. Compared with the era when people collaborated mainly offline, with the 

development of a wide variety of computer-supported cooperative work applications, we are able 

to work together online without any limitation on time and regions. In addition, in respect of the 

major cost savings through computer-supported cooperative works, when people find other 

experts whose interests are matched with theirs, they can more easily cooperate with them. Even 

though the current collaboration networks are prosperous in online spaces and are based on 

shared interests and expertise, there are very few attempts to utilize the collaboration network as 

a component of users‟ personalized recommendations. Therefore, I will investigate patterns 

about how research collaborators share information and how to generate users‟ recommendations 

based on their collaborators‟ preferences. 

In particular, the target system of this study is a conference navigation system. Academic 

conferences provide exciting opportunities for researchers. They can attend many interesting 

presentations and panels to learn about works of others and to place their own works in a broader 

context. Frequently the ultimate goal of attending talks is to meet other researchers who are 

doing similar or relevant research, to share opinions about their works, and in many cases, to 

look for a chance of interesting research collaborations. However, finding interesting talks to 
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attend is a real challenge. In conferences, several sessions are typically held at a time, and there 

are a lot of research-related activities, such as tutorials, industrial discussion, social events, 

keynote speech, etc., for a short period of time. Therefore, there is little time for attendees to 

analyze all alternatives and decide where to go. It is easy for them to miss important talks and 

further to miss important opportunities of future collaborations. A recommender system that 

suggests attendees which talks are worthy to attend could be of real help in this context. This 

chapter aims to examine patterns about how conference attendees share interesting research talks 

with their collaborators and propose recommendation algorithms to suggest interesting talks for 

conference attendees. Particularly, this domain requires harmonizing information items with 

social context in recommendations. Research collaborators share overlapped research interests 

and topics. Hence, when researchers attend conferences with their collaborators, talks caught 

their attentions could also interest their collaborators. This is the first attempt to generate 

personalized recommendation for conference talks. 

As mentioned, collaborators tend to share similar research interests. In order to generate 

recommendations of research talks based on the shared research interests, what is the best way to 

represent their similar interests? When there is another kind of social network existing on our 

target system, which social network is better information source? In the first part of this chapter, 

these questions will be answered. Therefore, the objectives of this first part are to understand 

information sharing patterns among research collaborators in the context of attending research 

conferences and the comparison of information similarity between two social networks existing 

on our target system – one is a collaboration network and another is a personal acquaintance 

network. In particular, in this system, since the collaboration network was built based on users‟ 
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own publication records and their co-authorship history, the collaboration network is co-

authorship network. In this chapter, collaboration network and co-authorship network will be 

used interchangeably. 

However, the conference context is not typical for recommender systems. The majority of 

recommendation algorithms were created for a large-scale and long-term context where user 

actions (such as ratings) are collected from many users over a long period of time. On the other 

hand, at conferences, the time to collect data and the number of users are severely limited. Users 

usually pay attentions on papers presented on conference right before and during the 

conferences. The users are also from a specific research community of the corresponding topic. 

In this unusual context, what kind of recommendation approaches could work best? To answer 

this question, the second part of this study will study various recommendation algorithms to 

suggest interesting talks.   

In this chapter, I will check whether this suggestion is right or not; collaboration network 

is a feasible information source to acquire useful research talks in the first part and a viable 

foundation for users‟ personalized recommendations of conference talks in the second part. 

7.1 DATA SOURCE FOR COLLABORATION NETWORK: CONFERENCE 

NAVIGATOR 3 

This study about the research collaboration network is based on a social adaptive 

navigation system. The system is „Conference Navigator‟ which aims to support conference 
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attendees‟ navigations and effective scheduling. The system was introduced in 2006 by the 

Personalize Adaptive Web Systems Lab, the University of Pittsburgh. Since then, three versions 

of the system were used at 16 conferences up to July, 2012. The most recent third version of the 

system (that is, Conference Navigator 3, CN3 in abbreviation) is available at 

http://halley.exp.sis.pitt.edu/cn3. In its essence, as Figure 46 shows, CN3 displays all talks in a 

conference with navigation supports. It also provides various information access methods from 

navigations via titles, presentation types, and authors‟ names to advanced search and 

personalized recommendations. Whenever users find interesting talks, they are able to bookmark 

them, and then the bookmarked items are added to their schedule automatically. For more 

detailed information of this Conference Navigator, please refer to [27, 188]. In conferences, talks 

are usually to present conferences papers. Hence, hereafter, talks and conference papers will be 

used interchangeably. 

 

Figure 46. Main Page of Conference Navigator 

http://halley.exp.sis.pitt.edu/cn3
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For this study, with my own privilege to access the system, the system was backed up on 

November 30, 2011. This dataset covers bookmark history from July, 2008 to November, 2011 

of 13 conferences („Hypertext 2008, 2009, 2011‟, „Adaptive Hypermedia 2008‟, „UMAP 2009, 

2010, 2011‟, „EC-TEL 2009, 2010, 2011‟, „ASIS&T 2010 Annual Meeting‟, „iConference 2011‟ 

and „TPRC 2011‟). The data in this source contains user information (i.e. name, email address, 

affiliation and job title, and user id) and users‟ bookmarks (i.e. the time when each bookmark 

was created), conference names, venues, conference talks (including detailed talk information 

such as titles, abstracts, and authors of the talks), and the date and times when each talk was held. 

This dataset originally has about 2,200 users, 1,878 talks and 6658 bookmarks of 13 conferences. 

However, as described this data is for academic conferences and in conferences, the organizers 

usually offer several social events, such as social dinner and lunch, coffee break, 

opening/welcoming reception, etc. In particular, I classified keynote speeches also as social 

events. It is because most of conference attendees attend the keynote speeches and the 

bookmarking activities really don‟t represent users‟ real interests. I got rid of all records about 

the social events and the bookmarks. In addition, only 24.3% of whole user population (n = 532) 

bookmarked at least one talk. Hence, I excluded all other users who didn‟t bookmark any talk or 

who did bookmark only social events. I also removed talks which were not bookmarked at all. 

Lastly, I excluded administrative users, developers and test users. The final dataset has now 454 

users, 1,000 talks and 5,094 bookmarks. About 37% of the users (n = 171) have at most 5 

bookmarks and 30% of the talks (n = 298) were bookmarked by only one user.  The bookmark 

sparsity of this dataset is 0.9886.  
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CN3 system enables the users to get socially connected with other users on the system. 

There are two kinds of CN3 social networks; following and connections. The following network 

is characteristic of unilateral relation, like watching relations introduced in the section 3.1 and 

chapter 5 and doesn‟t require obtaining the followed party‟s consent. The latter network is a 

reciprocally agreed-upon relation between two social parties, which is equivalent to the online 

friendships on Facebook or mySpace. Among 454 users in this dataset, 21 friendships (consisting 

of 30 users) and 123 follower relations (consisting of 48 distinct followers and 80 distinct 

followees) were found. In spite of the way to initiate the relations and the different degree of 

reciprocity, from interface point of view, there isn‟t any marked difference between two social 

networks. Both social networks aim to help users acquire useful talk information through their 

social partners. From users‟ point of view, the system shows the same social navigations and 

provides the social interaction functions for both kinds. There are 16 identical pairs (being made 

up of 25 users) between two social networks. That means 25 users in 16 friendships are also 

associated with the same social partners as following relations and it remains only 5 unique 

friendships in CN3. It seems that separating friendships and following relations is meaningless. 

Therefore, in this paper, these networks are consolidated as one kind of directed social network, 

as a „CN3 social network.‟ Following network is originally a directed network but friendship 

network is originally an undirected network. Therefore, the links were counted twice with 

different directions. For instance, when user A is following user B, there is one CN3 social 

network from user A to user B. When user A is befriending with user C, there are two CN3 

social networks from user A to user C and vice versa. In this way, I found 143 CN3 social links 

consisting of 105 users (some users followed each other reciprocally, even though they were 
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friends on CN3, which are reciprocal relationships). After excluding followees, 57 users are 

actually self-defined their CN3 social connections.  

The users selected their CN3 social partners explicitly, but the relations are not 

necessarily based research collaborations. On the other hand, this study aims to exploit shared 

interests among users‟ research collaborators as a component of users‟ recommendations. 

Basically, the CN3 users are attendees of conferences. They are mostly research scientists or 

students and have records of their research publications to represent what their expertise and 

interests are. Furthermore, their publication records indicate who their colleagues are. When a 

pair of users has worked together, their research interests are largely overlapped or highly co-

related. Hence, when a user bookmarked a conference talk, it is plausible to expect that the talk 

also interests his collaborators. In addition, users‟ publication records will be another important 

source to deduce users‟ interests. Accordingly it would be able to generate better 

recommendations. In order to build the users‟ collaboration network and to infer users‟ research 

interests, thus, their publication records were collected. Users‟ publication history and the 

resultant collaboration network were gathered not only from the conference talks and the 

authorship information existing on CN3 system, but also from two external data sets; DBLP 

(Digital Bibliography & Library Project) and publications of iSchool faculty members and 

graduate students. The first data source, CN3 dataset has accumulated publication records of 13 

conferences. We expect that CN3 users attended the conferences so as to present their works. 

Therefore, titles, abstracts and author names of CN3 conferences talks were used. As the second 

data source for publication history, the DBLP is a bibliography Website for computer science 

and information science discipline. This site, operated by Universität Trier, Germany, provides 
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bibliographic information of numerous conference papers, journal articles and books of several 

publishers (e.g. ACM digital library, IEEE computer society digital library, computer science-

related conference and journal list on Wikipedia, and so forth). Since this Website covers wide 

range of topics, the data contains huge amount of publications (more than 1.3 million articles in 

January, 2010). Since all conferences on CN3 are about information science, the DBLP is one of 

the best sources to acquire users‟ publication history [175, 187]. The developer team of CN3 

system obtained the DBLP backup dataset directly from the Website. It contains 2,103,480 

articles and the authorship information. It also has brief metadata of each article such as title, 

journal/book/conference name, publication year, DOI (digital object identifier) and publisher. As 

the final source for users‟ publication history, all publication information of iSchool faculty 

members and graduate students (For more information about iSchool, refer to 

http://www.ischools.org/site/about/) is collected by Dr. Jungsun Oh, who is an assistant professor 

of the University of Pittsburgh. She first collected the names of all faculty members and graduate 

students at every iSchool (registered in iSchools organization, http://www.ischools.org/) and 

crawled their publications.  This dataset contains 9315 people and their 5962 publications.  

In order to build CN3 users‟ collaboration network, first, the users‟ real names were 

manually disambiguated on the center of the last names. Hence, when their last names are too 

common to disambiguate the corresponding user with the other users such as Kim, Johnes, Lee, 

Liu, Lim, Scott, Wu, Xie, etc., the users were excluded. As the next step, duplicated publications 

in three sources of publications (i.e. CN3 conference talks, DBLP articles, and publications of 

iSchool faculty and graduate students) were eliminated. Through this process, among 454 users 

in this CN3 dataset, I found 362 users‟ publications. Out of these author users, I found 189 co-

http://www.ischools.org/site/about/
http://www.ischools.org/
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authorship pairs being made up of 163 CN3 users, which is 35.7% of the CN3 user population. 

Among 362 users having publication record(s), however, I found only 7 CN3 social links. Table 

27 is the descriptive statistics. Figure 47 and Figure 48 are the distributions of users and articles 

according to the number of bookmarks, respectively.   

Table 27. Descriptive Statistics of Conference Navigator Dataset 

Social 

Networks 

Collaboration 

Network 

No. of users engaging in this network 163 

No. of social connections 189 

Avg. No. of social connection per User 2.32 (σ = 2.1) 

CN3 Social Network No. of users engaging in this network 105 

No. of users after excluding followees  57 

No. of social connections 143 

Avg. No. of social connection per User 2.42 (σ = 2.7) 

Information 

Collections 

No. of distinct conference talks 1,000 

No. of users who have bookmark(s) 454 

No. of users who have at least one own publication 362 

No. of bookmarks 5,094 

Avg. No. of bookmarks per user 11.72 (σ = 10.9) 

Avg. No. of bookmarks per talk 5.04 (σ = 6.2) 

Avg. No. of publications per user found on three publication 

sources  

16.45 (σ = 28.0) 
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Figure 47. Distribution of Users according 

to the Number of their Bookmarks 

 

Figure 48. Distribution of Articles according 

to the Number of their Bookmarks 

Figure 49 shows the distribution of collaboration networks. 50.31% of them have one 

collaborator.  Actually, this collaboration network only counted the existing connections among 

CN3 users.  These users also have other collaborators who are not CN3 users. Figure 49 shows 

the contrast of users‟ collaborators in CN3 with their total numbers of collaborators. On average, 

collaboration connections existing on CN3 is 13.1% of their total collaborators (σ = 11.8%). 

Figure 50 is the distribution of publication numbers per user. Among 362 users who have 

publication records, 50% of them have 5 or less publications. 

I also examined the time points when users usually bookmarked items. In a research 

conference context, there are three possible temporal divisions: before a conference begins, 

during a conference is held and after a conference ends. If users collected similar amount of 

bookmarks in each temporal division, it would be worthy to consider this temporal information 

in recommendations. Among 454 users whose average number of bookmarks is 11.7, 345 users 

made 10.8 bookmarks on average before conferences began (σ = 9.6). 160 users added 8.1 
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bookmarks (σ = 7.6) while conferences were being held. After conferences ended, 27 users 

added a few bookmarks (n = 3.4, σ = 3.7). This result means that users used the conference 

navigation system mainly before they attend conferences and prepared the schedule of research 

talks to attend. While they were attending conferences, users also bookmarked some talks, but 

not as much as they did once the conferences ended.  Thus, it seems that recommending 

interesting talks is of a real help before conferences are started.  

 

Figure 49. Distribution of Users’ 

Collaborators 

 

Figure 50. Distribution of Users’ 

Publications 

Lastly, I performed a textual clustering method in order to discover how many topics 

CN3 data consists of.  Even though all conferences in CN3 are about information science 

discipline, specific focus of each conference is quite different. When meaningful clusters are 

discovered, it might possible to compute item-to-user similarity based on the results of this topic 

clustering. In addition, when a user has bookmarks of two or more conferences and topics of the 

conferences are distinctively different, it might require taking the bookmarks of different 

conferences individually. I ran K-means clustering from 2 to 5 of variable k with canopy 
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centroids and Latent Dirichlet Allocation (LDA) from 2 to 5 topics [19]. However, the results of 

both tests produced only one topical cluster. Although specific focuses of the conferences were 

defined differently, contents of the papers are similar to one another.  

7.2 FEASIBILITY OF RESEARCH COLLABORATORS AS A USEFUL 

INFORMATION SOURCE 

Since research collaborators have worked together, they are familiar with each other‟s expertise 

and research interests. In addition, their collaborations are usually based on shared interests or 

highly relevant expertise. Therefore, when we attend a conference with our colleagues, I suggest 

that, because research talks of conferences are highly correlated with the attendees‟ research 

interests and expertise. In this part, I will prove that research collaborators sharing similar 

research interests are a viable information source to acquire interesting research talks. However, 

as explained in the above 7.1 section, CN3 data has another social network – CN3 social 

network. According to the descriptive statistics of their co-authorship records, most of them are 

not associated with each other as collaborators. As the system intended, however, users chose 

their social connections as one kind of information source of talks to attend (when a user 

bookmarks a certain talk, CN3 system showed the bookmark record to his social partners). 

Collaboration network is based on users‟ shared interests and expertise but doesn‟t necessarily 

aim to share interesting talks in CN3. On the other hand, CN3 social network is mainly to share 

talk information in CN3. With the purpose to find interesting and favorable talks, which social 

network is a better information source? When the collaboration network bears a high degree of 
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interest similarity, does CN3 social network share comparably similar interests? Are the 

collaborators really good sources for talk information? Among various types of data expressing 

users‟ interests and preferences, which one does express the shared interests among collaborators 

and CN3 social connections better? In the first part of this chapter, I will answer these questions 

through in-depth study focusing on users‟ information sharing. The second part of this chapter 

will answer these questions through the evaluation of recommendations based on these social 

networks. The hypotheses to explore regarding these questions are the following.   

H7.1. Information similarity between a pair of collaborators is higher than the similarity of a 

randomly coupled pair who is not in the collaboration network or in the CN3 social 

network.  

H7.2. Information similarity between a pair of collaborators is higher than the similarity of a user 

pair who is in a CN3 social relation.  

H7.3. Metadata-based similarity is better than item-based similarity to represent collaborators‟ 

shared interests.  

7.2.1 Data Analysis Methods 

CN3 data set has quite similar data structure to the Citeulike watching network and group 

membership dataset. The information objects are conference papers, and users expressed their 

preferences through bookmarking the objects. However, one difference is that users‟ tags are 

unavailable. Actually, while the CN3 system enables users to add their tags when they bookmark 

an article, users are not quite active to use the function. The system doesn‟t have enough tags to 

be used in personalized recommendations. Therefore, I excluded users‟ tags in this study. 
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Because of the resembling data structure, the same types of similarity measures are used. For the 

detailed description of the similarity measures, refer to the section 5.2.1.  

First, as item-based similarity measures, I consider the number of co-bookmarks, Jaccard 

coefficient and log-likelihood similarity. Since the number of items and the number of users are 

too small to take into account of the item popularity, popularity weight of co-bookmarked items 

was not considered.  

Second, as metadata-based similarity measures, I consider keyword vector-based 

similarity and author name-based similarity, of which both are using the vector space model. For 

keyword vector-based similarity, in this study using CN3 data, both titles and abstracts of items 

were taken into account, since all of the items have the information. As I did for the Citeulike 

datasets, all words in titles and abstracts of each user‟s favorite articles were aggregated together 

into a bag of keywords. That is, each bag of keywords is made up of all keywords appearing in 

one user‟s favorite items. For an effective comparison, text processing methods were applied to 

the bag of keywords – case normalization, stop words removal and stemming. Then the 

processed bag of keywords was transformed into keyword vector consisting of keywords and the 

TF/IUF (Term Frequency/Inverse User Frequency) values. Therefore, each keyword vector 

corresponds to each user. In this case, one document represents one user‟s keyword set, thus the 

user frequency shows how many users bookmarked papers of which the titles or abstracts contain 

the keywords. As the final comparison, I computed how two given keyword vectors are far from 

each other using the Cosine similarity.  

In case of author name-based similarity, since they are proper nouns, I didn‟t apply any 

text processing method. In the same way with the keyword vector-based similarity, all names of 
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authors who wrote each user‟s favorite items were aggregated into one bag of names. The bag of 

names was transformed into an author name vector. Then, I computed how much two users 

favored items written by the same authors using the same Cosine similarity.  

Along with these two preferences, one extra similarity was considered for CN3 data. 

Unlike Citeulike datasets, the CN3 dataset contains additional information about users‟ 

preferences; users‟ publication records. Users‟ own publications represent their research 

expertise and topics of interests. The items of interests in CN3 dataset are also scientific 

publications. Therefore, it is legitimate, as one way to measure the similarity of users‟ 

preferences, not only to count how many bookmarks two collaborators share, but also to compare 

how similar their expertise and research interests are through their own publications. It is to 

know how much two collaborators‟ works are correlated with their favorite items and further to 

conjecture whether users‟ professional records are useful to be used as a part of their preferences 

for recommendations. In order to measure users‟ research interests, „research profile-based 

similarity‟ was compared. As users‟ research profiles, keywords in titles and, if possible, 

abstracts of one user‟s publications were aggregated, text-processed and transformed into a 

research profile vector. In particular, each user‟s research profile was built in two ways – one 

prolife is based on his whole publications and another profile is based on his recent publications 

which are published since 2008. The similarity based on the former profile is the „research 

profile-based similarity‟ and the similarity based on latter profile is „recent research profile-based 

similarity.‟ Recent publications could represent their current expertise and research interests 

better than the whole list, especially if users have a long list of publications. In addition, all 
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conferences for which CN3 system was used were recently held. Therefore, it is expected that 

the profiles based on users‟ recent publications would be more effective.  

 

Figure 51. Summary of Similarity Measures 

7.2.2 Relevance of Users’ Research Profiles with Contents of their Favorite Talks 

Before the comparison of users‟ information similarity, I examined how a user‟s research profile 

representing his expertise and interests is semantically alike with his favorite items. If users‟ 

research profiles are similar to their bookmarks, then we may be able to utilize the profiles in 

their recommendations as a part of user preferences. In addition, if we discover a high level of 

relevance between a user‟s research profile and his bookmarks, and pairs of collaborators share 

highly overlapped research profiles, we will be able to positively utilize collaborator‟s bookmark 

information in the recommendations for their colleagues. As explained above, users‟ publication 

records and bookmarks were already aggregated and transformed into research profiles and 

keyword vectors, respectively. Using the Cosine similarity, thus, I compared how one vector 

corresponding to a user‟s research profile is close to another vector corresponding to his 

bookmark keywords. In particular, since there are two kinds of research profiles – one profile 
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made up of users‟ whole publications (i.e. research profile) and another profile made up of their 

recent publications (i.e. recent research profile), the comparison was performed using both kinds 

of research profiles. Users‟ research profiles are alike to their keyword vectors to a moderate 

level (similarity = 0.31 on average). When I calculated how users‟ recent research profiles are 

similar to their keyword vectors, the similarity was also a moderate level (similarity = 0.34 on 

average). It was expected that users‟ research profiles (whether they are based on users‟ whole 

publications or recent publications) would be highly similar to their keyword vectors. The 

profiles are similar to their keywords, but not as highly as expected. Even though recent 

publications reflected the users‟ expertise and interests of the time when the conferences were 

held, the recent research profiles were alike to their keyword vectors to a moderate level. Figure 

52 shows the distribution of the similarities according to their number of bookmarks and articles.  

 

(a) The distribution of similarity according to 

users‟ number of bookmarks 

 

(b) The distribution of similarity according to 

users‟ number of bookmarks 

Figure 52. Similarity between Users’ Research Profiles and their Keyword Vectors 
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7.2.3 Information Similarity of User Pairs according to the Kinds of their Social Links 

This section is to test whether pairs of users in collaboration relations share more similar 

information than the other pairs of users in CN3 social network or the remaining users who are 

not socially engaged at all (H7.1 and H7.2). Both research collaborators‟ network and CN3 

social network are quite small networks, because one is consisting of less than 200 edges and 

another is consisting of less than 150 edges. Therefore, it is unreasonable to compare information 

similarity with direct social connections and indirect connections having 1 hop or more hop 

distances, as I did in chapter 5. Instead, the information similarities of different social networks 

in the CN3 system are compared.   

For this test, the number of co-bookmarked items between every user pair was computed. 

The results of the one-way ANOVA results represent that information similarities of the three 

kinds of social links (collaborators, CN3 social network, and random pairs) are significantly 

different (F = 405.7, p < .001). According to the Scheffe post-hoc pairwise test, collaborators 

shared significantly larger co-bookmarked items than random pairs. However, the co-bookmarks 

of collaborators are significantly smaller than the ones of CN3 social connections. 

The comparison of Jaccard efficient and log-likelihood similarity also showed the same 

results. There are significant differences on the Jaccard coefficient (F = 423.7, p < .001) and log-

likelihood similarity (F = 391.7, p < .001) depending on the types of social links. In particular, 

both similarities of collaborator pairs were significantly higher than random pairs, but 

significantly lower than pairs of CN3 social links. Figure 53 displays the comparison of 

similarities and the average similarity values. 
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These results show that the first hypothesis, H7.1 is accepted for item-based similarities. 

All item-based information similarities of the collaborators are higher than random pairs. On the 

other hand, the above result showed that H7.2 hypothesis is rejected for item-based similarities. 

All item-based information similarities of the collaborators are lower than the CN3 social 

relations.   

 

Figure 53. Comparison of Item-based Similarities according to the Kinds of Social Links 

The next analysis performs the comparison of metadata-based similarities according to 

the social status of a given user pair. In this study, as explained, four kinds of metadata-based 
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similarities were explored – keyword vector-based, author name vector-based, research profile-

based and recent research profile-based.  

First, the comparison of keyword vector-based similarity displayed that users share 

significantly different level of similarities according to how they are socially associated to other 

users (F = 359.0, p < .001). According to the post-hoc pairwise test, the keyword-based 

similarity of CN3 social network was significantly higher than the similarity of co-authors. Like 

the results of item-based similarities, the keyword-based similarity of random pairs was the 

significantly lowest.  

The results of author name vector-based similarity showed the exactly same pattern. The 

differences of author name-based similarities were significant across the three types of social 

status (F = 830.7, p < .001). The similarity of CN3 social network was the highest, and the value 

of co-authors was the second highest. The similarity of random pairs was the lowest. The 

differences of these pairwise comparisons were also significant.  

The results of the similarity comparisons based on research profiles, nevertheless, 

displayed different patterns. As expected, the co-authors have more similar research profiles than 

pairs of CN3 social connections or randomly coupled pairs regardless whether the profiles are 

based on users‟ whole publications or recent publications.  These differences are statistically 

significant (F = 84.1, p < .001 for research profiles; F = 74.2, p < .001 for recent research 

profiles).  Figure 54 shows the comparison of similarities depending on how they are socially 

associated.   
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Figure 54. Comparison of Metadata-based Similarities according to the Kinds of Social 

Links 

Therefore, for all item-based similarities and all metadata-based similarities, the first 

hypothesis H7.1 is accepted. The similarities of collaborators are larger than randomly coupled 

users. However, in case of the hypothesis H7.2, depending on the types of similarities, the results 

are different. For all item-based similarities, keyword vector-based similarities and author name 

vector-based similarities, the hypothesis is rejected. However, for the similarities based on 

research profiles, the hypothesis is accepted. The relatively higher similarity of collaborators‟ 

research profiles seems natural, since users‟ collaboration network has been built on the center of 

their publications.  

To summary, collaborators share similar expertise and research interests. Compared with 

the other users who are not socially engaged at all, they also favored similar talks. However, 

CN3 social network of which the main purpose is to share useful information on CN3 is better 

source than collaborators. Therefore, in the second part of this chapter, I will consider both kinds 

of social networks as components of the CN3 recommendations.  
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7.2.4 The Best Similarity Measures for Collaboration Network 

In above section, various kinds of information similarities were compared according to 

the social status between two users. The results showed that, depending on the social status, the 

best similarity measure reflecting the shared interests was different. For instance, recent research 

profile-based similarity is better than the others for collaborators. However, the best similarity 

measure for CN3 social network is still unclear, since most of the measures performed the 

highest for this social network. Moreover, the individual measures can be combined into another 

kind and could represent users‟ common interests better. Therefore, this section aims to test 

which measure indicate the similarity of collaborators and the similarity of CN3 social 

connections the most effectively. The aforementioned 7 similarity measures are assessed by 

comparing which measure predicts the existing relations the best. For collaboration network, I 

chose 163 target users who have colleagues in CN3 system. I computed all seven similarity 

measures of a target user with every other users, regardless whether they are collaborators or not. 

Then the top N similar peers of the target user were chosen and among them, it is counted how 

many peers were actually collaborators. In the same way, I computed combined similarity 

measures for the target users. The comparison was executed with increasing top N ranks such as 

top 20, top 10, top 5 and top 2.  

As the evaluation criteria of this prediction, precision and recall were used. Precision at 

point N is the ratio of the number of correctly predicted users in the top N predictions to the rank 

N. Recall at point N is the ratio of the number of correctly predicted users in the top N 
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predictions to the total number of real social connections. For more detailed way of calculation 

and the equations, refer to the section 5.2.5. 

Figure 55 is the result of collaborator predictions using individual similarity measures. 

According to the one-way ANOVA test, the differences of the precisions were significantly 

different depending on the kinds of similarity (F = 54.3, p < .001 for top 20, F = 64.6, p < .001 

for top 10, F = 68.9, p < .001 for top 5, F = 71.1, p < .001 for top 2). The post-hoc pairwise test 

showed that research profile-based similarities are significantly better than other measures. 

However, between two research profiles-based similarities, there is no significant difference, 

even though recent research profile-based similarity produced higher precision. Overall, 

metadata-based similarities were better than item-based similarities. Among the item-based 

similarities, despite of the statistical insignificance, the Jaccard coefficient was better than the 

other two, and log-likelihood similarity was the worst among all individual measures. The results 

of recall were also the same. The differences of the recalls were significantly different depending 

on the kinds of similarity (F = 68.4, p < .001 for top 20, F = 61.4, p < .001 for top 10, F = 59.8, p 

< .001 for top 5, F = 49.4, p < .001 for top 2). In terms of recall, the research profile-based 

similarities were also significantly better than the others. The recalls also displayed that most of 

the metadata-based similarities are better than item-based similarities. Among item-based 

similarities, the Jaccard coefficient was the best to depict the common interests. 



256 

 

 

(a) The Precision Results 

 

(b) The Recall Results 

Figure 55. Results of the Test to Predict Collaborator Relations using Individual Similarity 

Measures 

Figure 56 shows the results collaborator predictions using combined similarity measures. 

Since recent research profile-based similarity was insignificantly different to another kind of 

research profile-based similarity, the former was only considered in this collaborator prediction. 

According to the one-way ANOVA test, the differences of the precisions were significantly 

different depending on the kinds of similarity (F = 100.8, p < .001 for top 20, F = 94.3, p < .001 

for top 10, F = 81.0, p < .001 for top 5, F = 60.0, p < .001 for top 2). The post-hoc pairwise test 

showed that, when research profile-based similarity was fused with author name vector-based 

similarity, the precision was significantly the highest. The similarity combining all three 

metadata-based similarities yielded the second best precision. Whether it is individual measure 

or combined measure, item-based similarities didn‟t represent the shared interest of collaborators 

very well. The results of recall were also the same. The differences of the recalls were 

significantly different depending on the kinds of similarity (F = 140.0, p < .001 for top 20, F = 

92.4, p < .001 for top 10, F = 72.7, p < .001 for top 5, F = 53.5, p < .001 for top 2). The 
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similarity combining research profiles with author name vector-based similarity produced the 

highest recall, and the similarity combining all three metadata-based similarities produced the 

second highest recall, as well. The recalls also displayed that most of the metadata-based 

similarities are better than item-based similarities.  

Consequently, in order to present collaborators‟ common interests, the similarity 

combining metadata-based similarities is better than individual measures or the similarity 

combining item-based similarity. In particular, the research profile-based similarity fused with 

users‟ favorite author information is the best similarity measure. Therefore, the relevant 

hypothesis H7.3 is accepted.  

 

(a) The Precision Results 

 

(b) The Recall Results 

Figure 56. Results of the Test to Predict Collaborator Relations using Combined Measures  

(①= No. of Co-bookmarks; ② = Jaccard; ③= Log-likelihood; ④ = Keyword Vector; ⑤ 

= Author Name Vector; ⑥ = Recent Research Profile. The data series is displayed in the 

order of the legend) 

As the next analysis, I predicted CN3 social links for 57 target users. I computed the 

seven individual similarity measures and six combined similarity measures of the target users 
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with every other users and, in the same way as I did for the predictions of collaborators, I chose 

the top N similar peers of the target users. Among them, it is counted how many peers were 

actually CN3 social links. The comparison was also executed with increasing top N ranks such as 

top 20, top 10, top 5 and top 2.  

The results of the predictions based on individual similarity measure are shown on Figure 

57. The differences of the precisions were not significantly different depending on the kinds of 

similarity (F = 0.39, p = .88 for top 20, F = 3.37, p = .003 for top 10, F = 1.05, p = .38 for top 5, 

F = 2.43, p = .03 for top 2). In spite of the statistical insignificance, top5 and top 2 results 

indicated that author name vector-based similarity is better than the other individual measures. In 

this prediction of CN3 social networks, the differences between item-based similarities and 

metadata-based similarity weren‟t distinct. While item-based similarities performed worse than 

metadata-based similarities, in the highest rank, the number of co-bookmarks was the second 

best. The differences of recalls were not significantly different, either (F = 0.42, p = .87 for top 

20, F = 1.14, p = .34 for top 10, F = 1.32, p = .25 for top 5, F = 2.72, p = .013 for top 2). 

However, top 10, top5 and top 2 results of recalls indicated that author name vector-based 

similarity performed the best. In this recall, the number of co-bookmarks performed the best 

among item-based similarities.  
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(a) The Precision Results 

 

(c) The Recall Results 

Figure 57. Results of the Test to Predict CN3 Relations using Individual Similarity 

Measures 

Figure 58 shows the results collaborator predictions using combined similarity measures. 

The differences of the precisions were not significantly different depending on the kinds of 

similarity (F = 2.22, p = .05 for top 20, F = .71, p = .614 for top 10, F = 1.0, p = .413 for top 5, F 

= 2.43, p = .19 for top 2). In spite of the statistical insignificance, the results of all ranks 

indicated that the similarity combining research profile-based similarity and author name vector-

based similarity is the best. The differences of recalls were not significantly different, either (F = 

1.81, p = .11 for top 20, F = .63, p = .34 for top 10, F = .90, p = .48 for top 5, F = 1.52, p = .18 

for top 2). However, top 10, top5 and top 2 results of recalls indicated that author name vector-

based similarity performed the best. For CN3 social network, the combined similarities fusing 

item-based similarities were not good measure. For this reason, in order to present CN3 social 

connections‟ common interests, the similarity combining the research profile-based similarity 

with users‟ favorite author information is also the best similarity measure.  
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(a) The Precision Results 

 

(b) The Recall Results 

Figure 58. Results of the Test to Forecast CN3 Relations using Combined Similarity 

Measures (①= No. of Co-bookmarks; ② = Jaccard; ③= Log-likelihood; ④ = Keyword 

Vector; ⑤ = Author Name Vector; ⑥ = Recent Research Profile.  The data series is 

displayed in the order of the legend) 

7.3 EVALUATION OF COLLABORATION NETWORK-BASED 

RECOMMENDATIONS 

This section aims to check how viable users‟ collaborators are as a useful information source in a 

full scale, through the recommendations generated by the collaborator‟s preferences. As 

mentioned, recommending conference talks is a special domain. Even though the final outputs of 

this recommendation are simply talks, the talks embed implicit metadata such as authorship, 

abstract, title, etc. These items can be extended to social context, as well. They are core objects 

which users‟ social interactions in a conference are usually initiated with and centered on. Put 

differently, conference attendees usually start their conversations with other attendees regarding 
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the papers they presented at the conference and share the related research interests through the 

papers. The users also have important metadata such as their publication records. Therefore, 

there are various aspects we need to consider in recommendations.  

I considered three aspects – users‟ preferences on information items, social network of 

users and content of items – and generated recommendations using one of these aspects or hybrid 

approaches fusing all of them. Figure 59 summarizes the space of the recommendation 

approaches considered in this part. 

 

Figure 59. Overall Design of CN3 Talk Recommendation Algorithms 

As explained in previous chapters, collaborative filtering (CF) systems typically perform 

in three steps – selection of peers, computation of prediction probability and suggestion of 

recommendations. In this part, I specified one more step – expression of users‟ preferences. 

Therefore, the recommendations will be tested in the following step.  

 Modeling users‟ preferences 

 Selection of peers  
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 Algorithms to compute prediction probability of each candidate item 

  Selection of recommendations among candidate items 

Modeling Users’ Preferences 

The recommendations based on K-Nearest Neighbors are generated using two different users‟ 

preferences. The results of the section 7.2.4 displayed that rather than item-based similarities, 

metadata-based similarities can be better similarity measure for both social networks. In 

particular, the combined similarity fusing users‟ recent research profiles and their favorite author 

information could be the best similarity measure for both kinds of social networks. Therefore, 

this comparison will check which one is a better preference between bookmark-based similarity 

(i.e. Jaccard coefficient) and the combined similarity. 

Selection of peers 

In previous section, we found that users not only share similar research interests but also favored 

similar talks with their collaborators. It seems that collaborators are useful sources to provide 

favorable talk information to our target users. In CN3 system, along with the collaboration 

network, there is CN3 social network of which main purpose is to share interesting talk 

information. The results of the above section showed that users‟ interests about talks are closer to 

their CN3 social connections than their collaborators, in spite of the collaborators‟ highly 

relevant research expertise and interests. Therefore, I will produce two kinds of 

recommendations based on each kind of social network and compare the performance. In 

addition, when users have both kinds of connections in CN3 system, do the recommendations 

based on the information of both kinds of social links perform better than the recommendations 

based one kind? In order to answer this question, the following hypotheses will be tested.  
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H7.4. Recommendations based on collaboration network perform better than the 

recommendations based CN3 social network.  

H7.5. Recommendations based on both kinds of social network perform better than the 

recommendations based one kind of social network.  

Algorithms to compute the prediction probability 

Once the better method to model users‟ preference is decided, based on the resultant preference, 

I will choose the better algorithm to compute the prediction probability. As proposed, I tested the 

K-Nearest Neighbor approach and matrix factorization algorithm. By comparing the 

performance, better algorithm will be chosen.  

Suggestion of recommendations 

The recommendations of talks mainly based on bookmark records which reflect users‟ unary 

rating. When a user bookmarks a certain item, the action of bookmarking showed his interest on 

the item. When the user didn‟t bookmark another item, it doesn‟t necessarily represent he dislike 

it or has no interest on it. Due to the simple unary ratings, when some candidate items belong to 

the same set of peers, the recommendation probabilities of the items are exactly same, even 

though they are different items and contain different contents. It is because, in the choice of 

recommendable items, the recommendation probability is computed by aggregating the 

similarities of the peers who have the corresponding items. As one solution of this problem, this 

study added extra information in the final step of the recommendations. When choosing 

candidate information, content properties of each candidate item were considered.  

As the final and the most critical hypotheses, I will test the following.  
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H7.6. Recommendations based on users‟ own social networks perform better than the 

traditional CF recommendations. 

7.3.1 Recommendation Algorithms 

7.3.1.1 Basic Recommendation Approaches 

The first three recommendations take advantage of the three information sources, respectively – 

preferences of conference attendees, contents of conference talks and the attendee‟s social 

context information. While „CF recommendations‟ are based on preferences of the whole 

population of the CN3 dataset regardless whether the users are socially associated with our target 

users or not, „SN recommendations‟ are solely based on users‟ own social connections (i.e. their 

research collaborators and their CN3). „Content-based recommendations‟ are based on the 

content properties of talks and the descriptions of users‟ interests.  

As the first recommendation algorithm and the base line recommendations of this study, 

CF recommendations are based on all preferences of the whole population in the CN3 dataset. 

The CN3 system doesn‟t provide numeric rating mechanism when users bookmark conference 

talks. However, the system enables the users to express their interests on certain talks by 

bookmarking them. Hence, users‟ preferences of talks were encoded as binary ratings; 0 (i.e. no 

interest) or 1 (i.e. interest). For CF recommendations, I used the exactly same algorithm to the 

Citeulike recommendations. For the detailed recommendation algorithm, refer to the chapter 4 

and the section 5.3.1. For CF recommendations using K-Nearest Neighbors approach (CF, 

hereafter), the Jaccard coefficient was used to compute bookmark similarities among users [99]. 
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Based on this Jaccard coefficient, we picked the most like-minded 20 users who have the highest 

bookmark similarity with our target users. The like-minded users are called as top 20 anonymous 

peers. That is to say, the CF recommendations take into account the preferences of 20 the most 

similar anonymous users. After computing the similarities, we chose candidate items in peer 

users‟ bookmarks, which are not bookmarked by our target user. Then in order to select the most 

presumably favorable items, we aggregated the similarities of the peers to whom each candidate 

item belongs. In case of CF recommendations using matrix factorization (i.e. CFSVD; for 

detailed description of matrix factorization algorithm, refer to the chapter 4), I don‟t need to limit 

the top peers. Instead, it is required to determine the optimal number of factors.  

As another baseline recommendation algorithms, content-based recommendation aims to 

recommend items which are similar to those users liked in the past in terms of contents of target 

items. Hence, the first stage of the recommendation is for the systems to comprehend what users 

liked in the past through users‟ bookmarked items. In the empirical evaluation of the 

recommendation, I used cross-validation evaluation strategy. That means users‟ partial 

bookmarks will be taken into account as a set of test items. By excluding the set of test items of 

the corresponding round, thus, I iteratively built keyword vector of each user‟s all bookmarks 

using the titles and abstracts for 10 times. All terms in the titles and abstracts of the bookmarked 

papers were aggregated into a bag of words. Then, after case normalization and stop words 

removal, the bag of words was pre-processed through Porter stemmer. As the next step, the bag 

of words was transformed into a keyword vector consisting of all terms and the TF-IDF values, 

as a user‟s keyword vector-based preference. In the same way, I also built keyword vector of 

each item (i.e. conference talks), having all terms appearing in the title and the abstract and the 
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TF-IDF values. Then, the similarity between the user profile and each item vector was computed 

using the cosine similarity. Using the resultant similarity, the system made a ranked list of 

candidate items (Lops et al. 2011). In the final selection of recommendation items, of course, the 

users‟ bookmarked items were excluded. 

7.3.1.2 Collaboration Network-based Recommendations 

The SN recommendations consider the attendee‟s social context information. For SN 

recommendations, how to generate the recommendations is almost the same with CF 

recommendations. However, one distinguishing feature of the proposed approach is that users‟ 

top anonymous peers were substituted by their social connections. In collaboration network-

based recommendations (i.e. SN_Coll, SNCW_Coll, SNP_Coll, SNPCW_Coll, SNSVD_Coll 

and SNSVD_Coll_CW), the preferences of the target users‟ collaborators were only considered. 

After computing the similarities between our target users and their collaborators, candidate items 

were chosen among the collaborators‟ bookmarks, which are not bookmarked by the target user. 

When we suggest CN3 social network-based recommendations (i.e. SN_CN3, SNCW_CN3, 

SNP_CN3, SNPCW_CN3, SNSVD_CN3 and SNSVD_CN3_CW), the recommendations took 

into account only the bookmarks of the target users‟ all CN3 social networks. For the users who 

have both kinds of social networks, the recommendation taking into account both social links 

were produced as well. In this recommendation algorithm, their duplicated social links between 

two social networks were eliminated.  

In the SN recommendations using K-Nearest Neighbors, it is critical to use a good 

similarity measure to pick the best set of the neighbor neighbors. According to the results of the 
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previous section 7.2, two preferences were tested for collaboration network-based 

recommendations – the bookmark-based preferences (i.e. Jaccard coefficient) and the combined 

similarity fusing users‟ recent research profiles and their favorite author information. The 

similarity based on the bookmark-based preferences (i.e. SN, and SNCW) is to compute how 

much two given users (a target user and one of his colleagues) bookmarked the same items. The 

similarity based on the combined preferences (i.e. SNP and SNPCW) is to suggest how much 

two given users‟ research profiles are alike and they favored the same authors‟ talks. When I 

combine the recent research profile-based similarity with the author name vector-based 

similarity, the similarity values were normalized using the Standard Score (SS) like the 

following.  

    
    

 
 Eq. 29 

where x is one similarity value, and µ and σ is the mean and standard deviation of the 

corresponding similarity measure, respectively. These two kinds of similarities have the same 

range of values, but the distributions of the similarities are different. Therefore, the normalized 

similarity values were summed together. Along with the K-Nearest Neighbor approach, I also 

calculated the collaboration network-based recommendations using the matrix factorization 

approach (i.e. SNSVD and SNSVD_CW). When the matrix factorization approach is used, for 

every target user, I built a separate sub-matrix only being made up of the target users‟ bookmarks 

and his collaborators. In the same way as I did for collaboration network-based 

recommendations, the recommendations based on CN3 social network or both kinds of social 

networks are calculated.  
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7.3.1.3 Content Similarity Weights 

In above CF recommendations, the recommender system computed the Jaccard similarity or 

combined similarity between a target user and his peers. In the choice of recommendable items, 

the similarities of the peers who bookmarked the corresponding items were aggregated and 

averaged out as the recommendation probability. When some candidate items belong to the same 

set of peers, the recommendation probabilities of the items are exactly same, even though they 

are different items and contain different contents. The same problem occurs in the SN 

recommendations. In order to resolve this problem, another source of information - content 

weights (i.e. CW) - was added at the final stage of recommendation (i.e. in the selection of 

recommended items) for CF and SN recommendations.  

Once candidate items were selected from anonymous peers‟ or social connections‟ 

bookmarks, the system compared how the contents of these candidates are similar to a target 

user‟s keyword vector-based profile, which is built in the content-based recommendations. The 

content similarity between a target user and the candidate item was computed using the same 

way with the content-based recommendation. Each candidate paper‟s keyword-based vector was 

compared with user‟s keyword-based vector using the cosine similarity.  

 

Eq. 30 

Equation 30 shows CF recommendation using K-Nearest Neighbor and content similarity 

weight (i.e. CFCW) of items i for a target user u. For every candidate item i, the system 

calculated cosine similarity of user u‟s keyword profile U and keyword vector of item I. This 

content similarity value is multiplied with the Jaccard similarity of user u with peer v, who is one 
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of user u‟s top peers (pu) and has the candidate item i in his bookmark. V is the number of peers 

who bookmarked the candidate item i.  

             
∑                

 
 

   

‖ ‖‖ ‖
 Eq. 31  

Equation 31 shows CF recommendations using matrix factorization algorithm and 

content similarity weight (i.e. CFSVD_CW) of item i for a target user u. In here, as the 

prediction probability, the resultant values of matrix factorization algorithm were used. SN-based 

recommendations using content similarity weight (i.e. SNCW and SNSVD_CW) are also similar. 

At the last stage of the recommendation, content of candidate items which were picked from the 

target user‟s social connections were compared with the target user‟s content profile. 

7.3.1.4 Profile-based Recommendations 

The results of the section 7.2.2 showed that users‟ research profiles are similar to their favorite 

items to a moderate degree. When their research profiles indicating the expertise and research 

interests are similar to their bookmarked items to a certain degree, is it useful to use the profiles 

as users‟ preferences for recommendations? In order to answer this question, profile-based 

recommendations (i.e. SNP and SNPCW) were computed. First, I selected all research talks 

presented at conference(s) which a target user attended, as candidate items.  Then, I computed 

how the contents of these candidates (i.e. keyword-based vectors of the items which are 

computed in the content-based recommendations) are similar to the target user‟s recent research 

profile using the cosine similarity. The strength of this recommendation is that, once the system 

collects a target user‟s publication records, it is possible to generate the profile-based 

recommendations, without any users‟ input data.  
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7.3.1.5 Community Vote Recommendations 

The last recommendation approach simply takes into account item popularity among conference 

attendees, so-called „community vote (i.e. Community)‟. Conferences focus on one research 

topic, area or discipline. Hence, conference attendees tend to form a community around the topic 

or research area. If many attendees bookmarked a certain item, that item could have reasonably 

good quality appreciated by many researchers. Therefore, rather than considering individual 

user‟s personal preferences, the system recommended top 10, 5 and 2 popular items per 

conference. Particularly, for each test user, his own bookmarked items were excluded, and the 

top N popular items for the conference he attended were suggested. The reason why these three 

specific N numbers were selected is that, for other aforementioned recommendation algorithms, 

the same N recommendations were generated. 

7.3.2 Experimental Evaluation of Recommendations 

For the evaluation of recommendation algorithms, I selected 203 target users who have either 

their colleagues or CN3 social connections in the system. 163 target users and 57 target users 

have colleagues and CN3 social connections, respectively. Among them, 17 users participate in 

both social networks. These target users 12.7 bookmarks on average (σ = 12.4).   

In order to assess the proposed recommendations, this paper used the N cross-validation 

strategy (in this paper, the value N is 10). Among the whole collection of each user‟s bookmarks, 

this strategy splits items into N sets randomly. It uses one set per iteration as a test set and the 

remaining sets as training set and generates recommendations. For the uses of which the 



271 

 

bookmark number is less than 10, I split their data into equal-sized set, even though the N is less 

than 10. To assess the quality of the recommendation, it was checked whether the test items 

appeared in the suggested recommendation or not. If recommendations contained test items, the 

recommendations was counted as hits (value of 1) and otherwise, counted as no-hit (value of 

zero). This process was iterated with a different test set for N times, and the recommendation 

quality was average out. In order to compute the accuracy of the recommendations, the number 

of hits scored from the lists of top 10, 5 and 2 recommendations was counted respectively.  

Note that each recommendation approach generates a ranked list. Items with the higher 

ranks are expected to be more important than items in lower ranks. Therefore, it is critical to 

place correct recommendations in a higher rank. The position of correct recommendations is a 

critical evaluation criterion of recommendations. Therefore, precision at point N (precision@N) 

and Recall at point N (recall@N) are used as the evaluation criteria in this party.   

7.3.3 Social Network-based Recommendations using Various Settings 

Before testing whether collaboration network-based recommendations produce better quality 

than baseline CF recommendations, we need to find good settings for each recommendation 

approach. As explained, the recommendations can be generated through different strategies in 

every step of the way. They can be based on different kinds of user preferences, be generated by 

different groups of peers and different algorithms to compute the prediction probability and 

consider extra information such as content properties of each items at the final step to decide 

recommendable items. Therefore, before comparing the recommendation performance with other 
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kinds of recommendations, we need to determine good settings for the social recommendation 

algorithm.    

First, how to compute the information similarity between our target users and their social 

partners is a critical determinant of the recommendation quality, especially when the 

recommendation algorithm is the K-Nearest Neighbors. The results of the chapter 7.2 showed 

that metadata-based similarity, specifically when users‟ recent research profiles are fused with 

the information about their favorite authors, is better to represent the shared interests between 

collaborators and CN3 social links than the preferences solely based on users‟ bookmark records. 

Therefore, before comparing the performance of collaboration network-based recommendations 

with typical CF recommendations, I test whether users‟ recent research profiles and their favorite 

author‟s information are really a good way to present users‟ shared interests and further to 

improve the recommendation quality. Therefore, as shown on Figure 60, the KNN algorithms are 

using two kinds of user preferences – one is based on the similarity of users‟ bookmark records 

and another is based on the similarity of users‟ recent research profiles and list of their favorite 

authors.   
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Figure 60. KNN Recommendations using Different Kinds of User Preferences 

The statistical test to see the differences of the recommendation quality according to the 

kind of preferences showed that there is no consistently predominant preference. The Table 28 

and Table 29 show the results and none of the differences were statistically significant. 

Therefore, I just determined the preferences yielding better precisions and recalls. According to 

the results, Figure 60 was revised as the following Figure 61.  

 

Figure 61. KNN Recommendations using Better User Preferences 

Second, in order to increase the accuracy of the suggestions, recommendations can 

consider content property of each item at the final stage of the recommendation. For every kind 



274 

 

of recommendations, except non-personalized community and content-based approaches, I 

multiplied the content weight to the recommendation probability of every candidate items. As the 

results, adding content property is definitely helpful to enhance the recommendation quality. 

According to the results of Table 30 and Table 31, the differences of many recommendations are 

statistically significant regardless whether the quality was evaluated by precision or recall.  Even 

for the recommendations of which the differences are not statistically significant, the suggestions 

with the content weights yielded higher mean precision or mean recall values.   

Table 28. Differences of Recommendation Precision according to the Kind of Preferences 

  Top10 Top5 Top2   

Collaborator

-based 
SN_Coll 3.08% 4.04% 6.11% t = -1.05, p = .29 for top 10;  

t = -1.26, p = .209 for top 5;  

t =-0.18, p =.85 for top 2 SNP_Coll 3.54% 5.00% 6.40% 

SNCW_Coll 5.39% 8.40% 14.89% t =1.40, p = .16 for top 10;  

t = 1.00, p = .32 for top 5;  

t = 1.01, p =.31 for top 2 SNPCW_Coll 4.59% 7.36% 12.53% 

CN3 Social 

Network-

based 

SN_CN3 3.63% 3.97% 4.00% t =.32, p = .75 for top 10;   

t =.94, p =.35 for top 5;  

t = .39, p = .70 for top 2 SNP_CN3 3.44% 3.33% 3.57% 

SNCW_CN3 5.96% 8.83% 12.61% t =.63, p =.53 for top 10;  

t =.44, p =.66 for top 5;  

t =.46, p =.65 for top 2 SNPCW_CN3 5.43% 8.22% 11.27% 

Both 

Network-

based 

SN_All 3.09% 4.14% 5.28% t =-1.26, p =.21 for top 10;  

t =-0.87, p =.38 for top 5;  

t =-0.40, p =.69 for top 2 SNP_All 3.55% 4.68% 5.80% 

SNCW_All 5.48% 8.22% 13.31% t =1.45, p =.15 for top 10;  

t =.96, p =.34 for top 5;  

t =.75, p =.45 for top 2 SNPCW_All 4.78% 7.41% 11.88% 
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Table 29. Differences of Recommendation Recall according to the Kind of Preferences 

  Top10 Top5 Top2   

Collaborator-

based 
SN_Coll 23.81% 16.30% 10.22% t = -1.35, p = .18 for top 10;  

t = -1.41, p = .16 for top 5;  
t = -0.37, p = .71 for top 2 SNP_Coll 29.47% 21.64% 11.43% 

SNCW_Coll 39.12% 31.03% 22.65% t = .83, p = .41 for top 10;  

t = .58, p = .56 for top 5; 
t = .84, p = .40 for top 2 SNPCW_Coll 35.23% 28.48% 19.27% 

CN3 Social 

Network-

based 

SN_CN3 21.25% 12.07% 5.71% t =.14, p = .89 for top 10;  

t =.54, p =.59 for top 5;  
t = .37, p = .71 for top 2 SNP_CN3 20.60% 10.52% 4.94% 

SNCW_CN3 33.34% 26.83% 18.37% t =.38, p =.70 for top 10;  

t =.24, p =.81 for top 5;  
t =.36, p =.72 for top 2 SNPCW_CN3 31.32% 25.55% 16.40% 

Both 

Network-

based 

SN_All 22.35% 15.76% 8.35% t =-1.76, p =.08 for top 10;  

t =-1.29, p =.20 for top 5;  
t =-0.73, p =.47 for top 2 SNP_All 28.43% 19.78% 10.21% 

SNCW_All 37.00% 28.90% 20.37% t =.57, p =.57 for top 10;  

t =.33, p =.74 for top 5;  
t =.60, p =.55 for top 2 SNPCW_All 34.82% 27.73% 18.37% 

Table 30. Differences of Recommendation Precision Depending on Content Properties of Items 

 
Top10 Top5 Top2 

 
CF 2.44% 2.55% 3.71% t =-5.90, p < .001 for top 10; 

t =-5.90, p < .001 for top 5; 
t =-4.14, p < .001 for top 2 CFCW 4.64%* 5.89%* 8.78%* 

CFSVD 1.63% 1.66% 2.08% t =-2.20, p = .028 for top 10; 

t =-3.45, p = .001 for top 5; 
t =-3.21, p = .001 for top 2 CFSVD_CW 2.28% 3.16%* 4.39%* 

SNP_Coll 3.54% 5.00% 6.40% t =-3.63, p < .001 for top 10; 

t =-3.72, p < .001 for top 5; 
t =-4.21, p < .001 for top 2 SNCW_Coll 5.39%* 8.40%* 14.89%* 

SNSVD_Coll 4.71% 7.12% 10.75% t =-0.71, p = .47 for top 10; 

t =-1.13, p = .25 for top 5; 
t =-1.80, p =.07 for top 2 SNSVD_Coll_CW 5.13% 8.31% 15.11% 

SN_CN3 3.63% 3.97% 4.00% t =-3.50, p = .001 for top 10; 

t =-4.61, p < .001 for top 5; 
t =-4.15, p < .001 for top 2 SNCW_CN3 5.96%* 8.83%* 12.61%* 

SNSVD_CN3 4.92% 5.74% 7.69% t =-0.43, p = .66 for top 10; 

t =-2.15, p =.03 for top 5; 

t =-2.39, p = .019 for top 2 SNSVD_CN3_CW 5.25% 8.39% 14.02% 

SNP_All 3.55% 4.68% 5.80% t =-4.45, p < .001 for top 10; 
t =-4.68, p < .001 for top 5; 

t =-4.59, p < .001 for top 2 SNCW_All 5.48%* 8.22%* 13.31%* 

SNSVD_All 4.81% 6.21% 9.47% t =-0.69, p =.49 for top 10; 
t =-2.48, p =.014 for top 5; 

t =-2.57, p =.010 for top 2 SNSVD_All_CW 5.15% 8.24% 14.32% 

(* indicates that the differences are statistically significant) 
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Table 31. Differences of Recommendation Recall Depending on Content Properties of Items 

  Top10 Top5 Top2   

CF 17.42% 9.45% 6.06% t =-5.23, p < .001 for top 10;  

t =-4.84, p < .001 for top 5;  

t =-3.35, p < .001 for top 2 CFCW 32.55%* 22.06%* 14.07%* 

CFSVD 11.16% 5.46% 2.84% t =-2.14, p = .033 for top 10;  

t =-3.55, p < .001 for top 5;  

t =-2.95, p =.003 for top 2 CFSVD_CW 16.10% 11.75%* 6.37% 

SNP_Coll 29.47% 21.64% 11.43% t =-2.10, p < .001 for top 10;  

t =-2.21, p < .001 for top 5;  

t =-3.01, p = .001 for top 2 SNCW_Coll 39.12%* 31.03%* 22.65%* 

SNSVD_Coll 33.52% 26.31% 16.26% t =-0.78, p =.43 for top 10;  

t =-0.99, p = .33 for top 5;  

t =-1.58, p = .116 for top 2 SNSVD_Coll_CW 37.01% 30.43% 22.62% 

SN_CN3 21.25% 12.07% 5.71% t =-2.61, p = .010 for top 10;  

t =-3.60, p < .001 for top 5; 

t =-3.24, p = .002 for top 2 SNCW_CN3 33.34% 26.83%* 18.37% 

SNSVD_CN3 28.92% 17.61% 10.09% t =-0.13, p = .89 for top 10;  

t =-1.49, p = .14 for top 5;  

t =-1.97, p = .052 for top 2 SNSVD_CN3_CW 29.56% 24.75% 18.89% 

SNP_All 28.43% 19.78% 10.21% t =-2.27, p = .024 for top 10;  

t =-2.62, p = .009 for top 5;  

t =-3.32, p = .001 for top 2 SNCW_All 37.00% 28.90% 20.37%* 

SNSVD_All 32.93% 22.49% 13.96% t =-0.53, p = .59 for top 10;  

t =-1.85, p =.066 for top 5;  

t =-2.29, p =.022 for top 2 SNSVD_All_CW 34.84% 28.67% 21.26% 

(* indicates that the differences are statistically significant) 

Lastly, I compared the recommendations based on K-Nearest Neighbors with the 

recommendations generated by matrix factorization algorithm. Since the approaches with content 

weights produced always better results, the recommendation quality was compared on the center 

of those approaches. Before this comparison, the matrix factorization with an optimal setting was 

selected (refer to Appendix A.3).  

Table 32 and Table 33 show the results. The t-test statistical test showed that K-Nearest 

Neighbor worked significantly better than matrix factorization approach for CF 

recommendations. However, for other social recommendations, the differences were not 

significant and distinct in precision and recall. For instance, for the recommendations based on 
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collaborators, the precision result showed that matrix factorization (SNSVD_Coll_CW) is better 

than K-Nearest Neighbor in the highest rank. However, the recall result showed the opposite. 

Therefore, additionally, I computed F-1 measure to determine the better approach. For all three 

kinds of social recommendations, recommendations generated using matrix factorization 

algorithm performed better than K-Nearest Neighbor approach. By following from the results of 

the best settings up to now, the overall design of cn3 talk recommendation algorithms (i.e. Figure 

59) was modified as Figure 62.   

 

Figure 62. Modified Design of CN3 Tal Recommendation Algorithms 

Table 32. Differences of Recommendation Precision Depending on Probability Computation 

Algorithms 

  Top10 Top5 Top2 

 
CFCW 4.64%* 5.89%* 8.78%* t =6.67, p < .001 for top 10;  

t =4.77, p < .001 for top 5;  

t =3.85, p < .001 for top 2 CFSVD_CW 2.28% 3.16% 4.39% 

SNCW_Coll 5.39% 8.40% 14.89% t =.43, p =.67 for top 10;  

t =.08, p = .93 for top 5;  

t =-0.08, p= .93 for top 2 SNSVD_Coll_CW 5.13% 8.31% 15.11% 

SNCW_CN3 5.96% 8.83% 12.61% t =.95, p =.34 for top 10;  

t =.34, p = .74 for top 5;  

t =-.50, p= .62 for top 2 SNSVD_CN3_CW 5.25% 8.39% 14.02% 

SNCW_All 5.48% 8.22% 13.31% t =.70, p =.49 for top 10;  

t =-.025, p = .98 for top 5;  

t =-.52, p= .60 for top 2 SNSVD_All_CW 5.15% 8.24% 14.32% 

(* indicates that the differences are statistically significant) 
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Table 33. Differences of Recommendation Recall Depending on Probability Computation 

Algorithms 

 
Top10 Top5 Top2 

 
CFCW 32.55% 22.06% 14.07% t =5.83, p < .001 for top 10;  

t =4.08, p < .001 for top 5;  

t =3.62, p < .001 for top 2 CFSVD_CW 16.10% 11.75% 6.37% 

SNCW_Coll 39.12% 31.03% 22.65% t =.46, p = .65 for top 10;  

t =.14, p = .89 for top 5;  

t =.007, p = .994 for top 2 SNSVD_Coll_CW 37.01% 30.43% 22.62% 

SNCW_CN3 33.34% 26.83% 18.37% t =.79, p = .43 for top 10;  

t =.42, p = .67 for top 5;  

t =-0.10, p = .92 for top 2 SNSVD_CN3_CW 29.56% 24.75% 18.89% 

SNCW_All 37.00% 28.90% 20.37% t =.60, p = .55 for top 10;  

t =.07, p = .95 for top 5;  

t =-.26, p = .79 for top 2 SNSVD_All_CW 34.84% 28.67% 21.26% 

7.3.4 Comparison of Social Recommendations with Typical Approaches 

Once the optimal setting for each recommendation approach is decided, it is the stage to compare 

the quality of social recommendations with typical approaches including CF recommendations 

and content-based recommendations. First, Figure 63 and Figure 64 display the precision and 

recall results, respectively. The quality of these seven recommendation approaches are 

significantly different (F = 8.65, p < .001 for top 10 precision; F = 8.37, p < .001 for top 5 

precision; F = 6.10, p < .001 for top 2 precision; F = 8.65, p < .001 for top 10 recall; F = 8.37, p 

< .001 for top 5 precision; F = 6.10, p < .001 for top 2 precision).  
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Figure 63. Differences of Recommendation Precision Depending on the Approaches 

 

Figure 64. Differences of Recommendation Recall Depending on the Approaches 

For the specific patterns of the differences, I executed the Schaffé pairwise comparison.  

According to the results, CF and content-based recommendations, which are considered as 

baseline recommendations performed the worst. Interestingly, in lower rank (i.e. top 10), the 

quality of the recommendations utilizing users‟ recent research profiles were as bad as the 
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baseline recommendations. However, as the rank is getting higher, the quality became better and 

better. Thus, in the top 2 results, the profile-based recommendation performed significantly 

better than baselines. However, other two kinds of recommendations – community and social 

recommendations – were significantly better than these baseline approaches and the profile-

based approach. Therefore, the hypothesis 7.6 is accepted. The recommendations based on users‟ 

own social networks performed better than the traditional CF recommendations.   

In social recommendations, whatever kinds of social networks the recommendations 

utilized, there was no significant difference. Put differently, whether the recommendations are 

based on the collaboration network (i.e., SNSVD_Coll_CW), CN3 social network (i.e., 

SNSVD_CN3_CW) or both of them (i.e., SNSVD_All_CW), the qualities were similar level. 

Therefore, the relevant two hypotheses H7.4 and H7.5 are rejected. Despite of the insignificant 

difference, according to the F-1 measure, for all ranks, the recommendations based on the 

collaboration network (F-1 value of the top 10 is 8.71%; F-1 value of the top 5 is 12.50%; F-1 

value of the top 2 is 17.29%) tend to yield better suggestions than the recommendations based on 

CN3 social network (F-1 value of the top 10 is 8.54%; F-1 value of the top 5 is 11.82%; F-1 

value of the top 2 is 15.13%) or both social networks (F-1 value of the top 10 is 8.63%; F-1 value 

of the top 5 is 12.16%; F-1 value of the top 2 is 16.26%). Another interesting result is that in the 

lower rank, the non-personalized recommendation – community vote-based recommendations – 

performed the best (for top 10) or as good as the social recommendations (for top5). On the other 

hand, in the top 2 result where the most accurate recommendations should be placed, all three 

kinds of social recommendations significantly outperformed the community vote-based 

recommendations. This pattern is identical for both precision and recall. That means that in order 
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to generate recommendations for conference talks, the suggestions based on users‟ own social 

connections (whether the social connections are collaborators or CN3 social connections) is the 

best option to consider. In addition, unexpectedly good performance of community vote-based 

recommendations is also impressive. This result can be interpreted to mean that conference 

attendees understand conference talks in the similar manner. Because they usually have 

background knowledge about the conference topics or areas, they have insights to discover 

interesting or good papers. Thus their insights are helpful to other attendees when their opinions 

were aggregated as a form of collective intelligence (i.e. community vote-based 

recommendations).  

The quality of social recommendations was tested for the 203 users who are participating 

at least one kind of social network. Then, is being a part of the social networks beneficial to get 

better recommendations?  For this comparison, for the remaining 251 users who don‟t engage in 

any social network, I computed four kinds of recommendations – CF with content weight (i.e. 

CFCW), community vote-based, content-based and their profile-based recommendations. 

Between the two groups of users, according to the t-test with a 0.001 significance level, the 

numbers of bookmarks are not significantly different (t = .013, p < .001). Users engaging in 

social network have 12.63 bookmarks (σ= 12.40) and users not in engaging in any social 

network have 10.06 (σ= 8.77) on average. Among various recommendation approaches, different 

kinds of recommendation were the best for these two groups of users. The above showed that, for 

lower rank, the community vote-based recommendations were the best for the users in social 

networks. Notwithstanding this result, in higher ranks, social recommendations were better than 

community-based approaches. For the users outside of the social network, as expected, 
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community vote-based recommendation approach is always significantly the best for the 

precision and recall-based evaluations (F = 8.26, p < .001 for top 10 precision; F = 5.14, p = .002 

for top 5 precision; F = 2.98, p = .031 for top 2 precision; F = 7.21, p < .001 for top 10 recall; F 

= 3.98, p =.008 for top 5 precision; F = 1.61, p = .185 for top 2 precision). Then the best 

approach for users in social network was compared with the community vote-based 

recommendations of the users outside of the social networks. In case of the top 10 results, since 

the community vote-based recommendations was the best option for both groups of users, 

naturally, there is no significant difference between two users (t = -3.26, p = .002 for the 

precision; t = -2.39, p = .017 for the recall). For higher ranks (i.e. top 5 and top 2), as explained, 

the social recommendation approach based on users‟ collaborators was the best option for the 

users having social connections and the community vote-based recommendation was still the 

best top option for the users not participating any social network. Hence, I compared the quality 

differences of two recommendation approaches according to their social status. Figure 65 shows 

the results. In case of the top 5 result, there is no significant difference between collaborator-

based recommendations for the users in social network and community vote-based 

recommendations for the users outside of the social networks (t = -2.66, p =.008 for the 

precision; t = -2.45, p = .015 for the recall). However, in the highest rank, the recommendations 

of the users in social network yielded significantly better suggestions (t = -4.11, p < .001 for the 

precision; t = -3.82, p < .001 for the recall). We can interpret this result to mean that being 

engaging in social networks is more beneficial to receive more accurate and better information 

recommendations.  
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(a) Comparison of Precision 

 

(b) Comparison of Recall 

Figure 65. Comparison of Recommendation Quality according to Users’ Social Status 

7.3.5 Collaboration Network-based Recommendations for Cold-start Users  

Lastly, in spite of the good popularity, one well-known shortcoming of CF is cold-start user 

problem. Until users rated or bookmarked sufficient number of items, it is hard for them to get 

any CF recommendations or to receive reasonable quality of recommendations. We can think 

about several solutions about this problem. First available solution is to utilize their research 

profile. Research profile is built from users‟ own publication records, thus without any users‟ 

input, the system already know what they may be interested in. Second, when the information 

objects have various content or metadata information, content-based recommendations are 

available even with a small number of bookmarks or ratings. The last solution is to take 

advantage of users‟ social connections. A series of my own studies [93, 99, 95] have provided 

some empirical evidences that adding online friends is more helpful for cold start users to receive 

good recommendations rather than adding a few more bookmarks or ratings. Therefore, to cope 
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with this cold-start user problem, several recommendations will be assessed. I compared the 

precisions and recalls of each recommendation depending on how many items each user 

bookmarked. Firs users were divided into three groups: cold start users (n ≤ 4), users having 

moderate number of items (n ≤ 15) and users having relatively larger number of items (n > 15). 

63, 73 and 67 users belong to each group, respectively.  

Figure 66 and Figure 67 displays the differences of recommendation precisions and 

recalls according to the user groups. Two way ANOVA test demonstrated that the differences on 

the recommendations precisions according to different recommendation approaches were not 

statistically significant among the user groups (F = 2.49, p = .003 for the top10 precision; F = 

2.13, p = .013 for the top 5 precision; F = 2.45, p = .004 for the top2 precision; F = 1.89, p = 

.032 for the top10 recall; F = 2.12, p = .014 for the top 5 recall; F = 2.51, p = .003 for the top2 

recall). However, within each group of users, the differences of recommendation precisions were 

significantly different according to the kinds of recommendation approaches (F = 9.056, p < .001 

for the top10 precision; F = 8.43, p < .001 for the top 5 precision; F = 7.62, p <.001 for the top2 

precision; F = 7.73, p < .001 for the top10 recall; F = 7.06, p < .001 for the top 5 recall; F = 6.61, 

p <.001 for the top2 recall). All social recommendations, regardless of the social network kinds, 

outperformed other kinds of recommendations in terms of both precision and recall. 

Interestingly, the next best-performing approach for these cold-start users is CF 

recommendations. However, other content-based, profile-based and community vote-based 

recommendations didn‟t perform well. In particular, for cold-start users who have insufficient 

bookmarks, the community votes, which are made up of collective intelligence of the conference 

attendees and produced generally good results for other two groups of users, were not useful. 
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Instead, cold-start users tend to follow their social partners‟ opinions when looking for 

interesting papers. For other two groups of users, nonetheless, community vote-based 

recommendations produced the best or second best suggestions depending on the ranks. 

Therefore, for richer users who have sufficient number of bookmarks, the opinions of the 

majority are important source of information. For these users, the social recommendations were 

the second best.  

 

Figure 66. Differences of Precision Depending on Users’ Number of Bookmarks 
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Figure 67. Differences of Recall Depending on Users’ Number of Bookmarks 

7.4 CONCLUSION 

This chapter was to explore patterns about how research collaborators share information and how 

to generate users‟ recommendations based on their collaborators‟ preferences.  This chapter 

consists of two parts – 1) the examination of shared interests among collaborators and 2) the 

empirical evaluation of collaboration network-based recommendations. The target information 

objects of this study were conference talks. Compared with other product recommendations, at 

conferences, the time to collect data and the number of users are severely limited. In order to 

cope with this unusual context, it requires harmonizing information items with social context in 

recommendations. Research collaborators share overlapped research interests and topics. Hence, 

when researchers attend conferences with their collaborators, talks caught their attentions could 
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also interest their collaborators. To our best knowledge, this is the first study related to the 

problem of recommending conference talks. 

In the first part to examine shared interests among collaborators, the information 

similarity between collaborators is higher than other pairs who are not socially associated. 

However, the similarity was lower than another kind of social network, CN3 social network. 

Because the collaborators are social connections built around their research achievement, the 

collaborators‟ similarities based on their publications were higher than the other users. Except 

this similarity about users‟ own publications, users shared less common information with their 

collaborators than their CN social connections. The analysis to find the optimal measurement to 

show the collaborators‟ relevant interests demonstrated that users‟ research profiles consisting of 

their own publications are the most effective. This research profile-based similarity is also an 

effective way to represent the common interests of CN3 connections.  

In the second part, the usefulness of the collaboration network as an information source 

was tested by utilizing the social connections as a component of the recommendations. The 

evaluation using the 10 cross-validation test, I found that social network-based approach always 

performed the best regardless whether the evaluation was done by precision or recall. While the 

social network-based recommendations performed better than traditional CF recommendations, 

the recommendations based various users‟ social networks generated equally good suggestions. 

Put differently, whether the base of the recommendations is collaborators, CN3 social 

connections or a combined set of both social networks, the social recommendations were 

equivalently good. In addition, community vote-based recommendations were the second best. 

Even though the community vote-based recommendations couldn‟t produce as accurate and 
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complete as the social recommendations are, I interpreted the good performance of the 

community vote-based approach to mean that majority of conference attendees understand 

conference talks/papers in the similar manner as a research community. For the cold-start users 

who have insufficient number of bookmarks to receive reasonable recommendations, the social 

network-based recommendations were always the most effective way to personalize the 

information. On the other hand, the community vote-based approach wasn‟t helpful for the cold-

start users. Cold-start users don‟t have enough bookmarks to follow and form the votes of the 

majority. Conclusively, when generating personalized recommendations of conference talks, the 

most critical source to rely on is users‟ own social connections.  
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8 CONCLUSION AND DISCUSSION 

This dissertation aims to check the value of users‟ various online social connections as 

information sources and to explore how to include the social connections as a foundation for 

personalized recommendations. In spite of the widely available and diversified online sociability, 

most recent social network-based recommendations have concentrated on limited kinds of online 

sociality (i.e., trust-based networks and online friendships). Thus, this study tried to prove the 

expandability of social network-based recommendations to more diverse and less explored social 

networks. The online social networks considered in this dissertation include: 1) a watching 

network, 2) a group membership network, and 3) an academic collaboration network (i.e. co-

authorship network). The preceding three chapters described the findings regarding these three 

kinds of online social networks, respectively. Particularly, each chapter was made up of two 

parts – the feasibility of social networks as a useful information source and the evaluation of 

social network-based recommendations.   

The first part was to understand how users‟ social network structure is correlated to their 

information collections, to precede an investigation regarding personalized recommendations 

based on the social networks. This first part was designed to find answers to the research 

questions proposed in the introduction, which were the following:  
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 Q1. Compared with pairs of users who are not socially associated, do socially connected 

users share more common interests?  

 Q2. What is a proper measurement for information similarity between two socially connected 

people? 

 Q3. Do users have an equivalent degree of common interests with their social connections as 

they do with their top N anonymous peers, which are chosen by conventional CF 

recommendations?  

The second part then goes on to develop and evaluate recommendation algorithms using 

various social networks. The viability of multiple online social networks was demonstrated as a 

means to gather useful information and as having potential for developing more diverse social 

network-based recommendations. Thus, this part was designed to find the answers to the 

following research questions proposed in the introduction:  

 Q4. Do social network-based recommendations produce better suggestions than traditional 

CF recommendations? 

 Q5. For the given three types of social network, are all of them useful sources of information?  

 Q6. Can SN recommendations solve the cold-start user problem?  

The research results were summarized and concluded as responding to the research 

questions to address how each question was answered and what were the major findings of this 

study.   
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8.1 FINDINGS OF RESEARCH QUESTIONS  

8.1.1 Findings of the First Part: Feasibility of Social Networks as Useful Information 

Source  

Q1. Compared with pairs of users who are not socially associated, is it true that socially 

connected users share more common interests? 

As explained, three types of online social networks were investigated in this dissertation. 

For all types, our target users shared common interests with their self-defined social partners. In 

particular, the information similarity of direct watching connections was the largest and the 

similarities decreased incrementally along with an increase in social distance. The similarity 

between two co-members of the same group was also larger than random pairs. Group members, 

however, share more resembling interests with their group library. The group library is a 

communal space collaboratively composed by group members. That means that the group library 

is a more coherent collection of information relevant to the topic of the corresponding group. 

Therefore, group members who are interested in the group‟s topic tend to refer to their group 

library more than the individual spaces of group co-members. In addition, when a user 

participates in both watching network and group membership network, he tends to share the most 

similar interests with his group library followed by his watching connections. The user didn‟t 

share common interests with his co-members of the same group, as much as with the group 

library and watching connections.  

Information similarities between two collaborators are higher than randomly coupled 

pairs as well. However, the similarity was lower than another kind of social network that exists 
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on the CN3 system (i.e., CN3 social network), that primarily aims to share useful information. 

Because the collaborator relations were built around their achievements, i.e., their own 

publications, similarity in research profiles was higher than with another CN3 social network. 

However, from the perspective of shared bookmarks and common metadata, the similarities 

between collaborators were lower than the similarities between the CN3 social connections.  

Q2. What is a proper measurement for information similarity of two socially connected 

people? 

In this study, two data sources were used. For the watching network and group 

membership, Citeulike data source was used. For the collaboration network, CN3 data source 

was used. Both Citeulike and CN3 data consist of users‟ bookmark records and metadata 

information of items. Since the target objects of both data sources were academic papers, the 

available metadata information consisted of titles, author names, abstracts, publication 

journal/conference names, and the most importantly, users‟ social tags. When calculating 

information similarity solely based on bookmark records, the calculation of the similarity 

between our target users and their peers (whether the peers are anonymous or social connections) 

simply relies on what they like. Therefore, in order to model users‟ preferences in a more 

sophisticated format and to better understand the social interactions around users‟ information 

spaces, it requires to consider more varying aspects, such as why users are interested in certain 

items, what are the contents of users‟ favorite items and authors of the favorite items. In the 

analysis based on the Citeulike and the CN3 data source, the effectiveness of the various 

similarity measures to indicate the object-centered sociality was investigated.  

For the watching connections based on Citeulike data source, the number of common 

items and metadata information of items such as keywords derived from titles and users‟ social 
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tags are good ways to represent the shared interests between two social connections. Rather than 

those individual similarity measures, the combination of these well-working measures was the 

best way to represent the common interests between watching connections. In case of the group 

membership network based on the same Citeulike data source, metadata-based similarity was 

significantly better than all kinds of item-based similarity. Like the results of the watching 

network, the combinations of the best individual measures (such as all four kinds of metadata-

based similarities) performed best. However, the performance of the best individual measure – 

the keyword vector-based similarity – was as good as the combination. The analysis on the 

collaboration network also showed a better performance of metadata-based similarity than the 

similarity using bookmark records. In particular, collaborator‟ research profiles and author 

names of their favorite items were the most well-working individual measures, and the 

combination of these two measures was the best measure to present the shared interests of 

collaborators, and also the common interests of CN3 social connections.  

To conclude, in the data sources consisting of users‟ bookmark records, along with the 

bookmark records, the metadata of items is critical, or sometimes better, information to measure 

the shared interests of online social networks.  

  

Q3. Do users have an equivalent degree of common interests with their social connections 

as they do with their top N anonymous peers, which are chosen by conventional CF 

recommendations?  

The main purpose of this dissertation is to test whether users‟ various online social networks are 

substitutable for their top N anonymous peers. Actually, in the second part of this dissertation, 

this is addressed in a comprehensive manner. However, in the first part, as a preceding and 
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simpler test, the information similarity of social networks was compared to the similarity of top 

N anonymous peers. The results showed that the similarity of social networks was lower than the 

similarity of top N anonymous peers. When counting the similarity based on metadata, users in a 

watching relation have more common interests than their anonymous peers. However, this result 

is only unique for this watching network. For the other social networks, users‟ shared interests 

with their social connections were less common than top N anonymous peers. However, this 

analysis is based on a simple comparison of information similarities. A more in-depth and 

sophisticated examination about how users‟ social networks are substitutable for the top N 

anonymous peers was explored in the second part of this dissertation. 

8.1.2 Findings of the Second Part: Evaluation of Social Network-based Recommendations  

Q4. Do SN recommendations produce better suggestions than traditional CF 

recommendations? 

 The main purpose of this dissertation is to test whether users‟ self-defined social networks have 

a comparable value to their anonymous peers as a useful information source and whether the 

social connections are substitutable for their anonymous peers picked by the fully-automated CF-

based computation. For this test, the recommendations based on users‟ social networks were 

compared with CF recommendations.  

The results showed that it is worthwhile to utilize users‟ self-defined social networks as 

an alternative or a complementary mechanism to anonymous peers. According to the test of the 

recommendations based on various social networks, the social networks have better or 

sometimes equivalent quality as a useful information source. That means, the recommendations 
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based on online social networks performed better than CF recommendations, and according to 

the domain, the performance of the social network-based recommendations was as good as CF 

recommendations.  

In terms of how the suggestions are accurate (i.e. precision) and complete (i.e. recall), the 

watching network-based recommendations have equivalent quality to the CF recommendations. 

In addition, when combining users‟ watching connections with their anonymous peers, the 

hybrid recommendations significantly improved at least regarding the evaluation base on the 

completeness (i.e. recall). The social recommendations based on group membership network 

generated quality suggestions equivalent to or sometimes better than the CF recommendations. 

Specifically, in the results of precision, the quality of group membership-base recommendations 

was not significantly different with the traditional CF recommendations. However, the 

differences of the recall demonstrated that group membership-based recommendations 

significantly outperformed the CF recommendations. That is, the recommendations based on 

group membership-based social links can produce as accurate suggestion as CF 

recommendations can and more complete suggestions than CF approach. Finally, collaboration 

network-based recommendations always performed best regardless whether the evaluation was 

done by precision or recall in all ranks. 

Q5. For the given three social networks types, are all of them useful sources of 

information?  

The answer to this question is yes. All three types of social networks are useful sources of 

information and when we take into account the social networks as a part of the recommendations, 

the quality of recommendations was better than or as good as conventional CF recommendations. 

In particular, watching network-based recommendations are comparable to the CF 
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recommendations. In addition, when users‟ watching connections were fused with their top N 

anonymous peers, the recommendations were significantly improved. Therefore, users‟ watching 

connection alone has value as a useful information source and further in hybrid 

recommendations, it has a complementary ability to CF recommendations.  Next, group-based 

social connections are also useful sources of information. The social recommendations based on 

group membership network generated quality suggestions equivalent to or sometimes better than 

the CF recommendations.  In group membership-based recommendations, group co-members 

and group‟s communal spaces are equally important information sources. However these group 

membership-based connections don‟t have complementary power to the CF recommendations 

like the watching connections. The hybrid recommendations combining users‟ group 

membership network with their anonymous peers were ineffective. Finally, collaboration 

network is also important information source. The collaboration network-based 

recommendations always outperformed the CF recommendations. Particularly, the results of the 

social recommendations indicated that collaborators, CN3 social connections or a combined set 

of both social networks were equally useful information sources. 

Since each social network is based on different data source and the recommendations 

were generated for different target users, it was impossible to compare the quality of the social 

recommendations network-by-network. In studies such as those based on Citeulike, however, 

since the system provided two kinds of object-centered sociality (i.e. watching network and 

group membership), I was able to compare the quality of recommendations based on the two 

kinds for the same target users. The result showed that combining two kinds of object-centered 

sociality wasn‟t effective in enhancing the recommendation quality. Regardless whether the 
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recommendations were generated by one kind of social network or two kinds of social networks, 

the predictions were at an equivalent level. Therefore, the watching connections and group-based 

social connections are equally useful information sources.  

Q6. Can social network-based recommendations solve cold-start user problem?  

First and foremost, the answer is yes. For all social network types and data sources considered in 

this study, the recommendation algorithm that worked best for the cold-start users was the social 

network-based recommendations. The social network-based recommendations were always the 

most effective for personalizing the cold-start users‟ information. Therefore, we can conclude 

that in order for cold-start users to receive reasonably good recommendations, it is more 

effective to be socially associated with other users, rather than collecting a few more items. 

8.1.3 Conclusion 

With the proliferation of online social networking applications and the abundant Web-based 

sociability, this study explored the expandability of social network-based recommendations to 

more diverse kinds of online social networks, especially having high degree of object-centered 

sociality and greatly information centered. This study investigated three different types of online 

sociality and two kinds of data sources. The results showed that the online social connections 

were built based on shared interests and thus have a significant value as a legitimate source for 

users to acquire interesting information. This study demonstrated that different social networks 

of a novelty value can improve conventional personalized technology. Watching network-based 

recommendations are as good as the CF recommendations. The group membership-based 

recommendations and collaboration network-based recommendations enhanced the quality of the 
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personalization of users‟ information spaces over the traditional collaborative filtering approach. 

This dissertation contributed to the body of knowledge by comprehensively identifying the 

nature of various social networks relating to information similarity among members of the 

network.  

It also demonstrated how these less focused and information-centered social networks are 

viable as a means for gathering useful information and proved that there is potential for the 

application of social network-based recommendations on various collective intelligence 

applications. In particular, I suggest that collective intelligence applications, focusing on one 

solid kind of information items and of which the main social dynamics are to share information 

items, are beneficial to use these information-centered social networks in personalized 

recommendations. As we can witness in our daily lives, we cannot agree with and be influenced 

by our social connections in every perspective. We maintain our preferences to every social 

connection in a difference aspect. For example, in order to buy a car, we can ask an opinion to 

Bob who is a mechanic. However, his opinions about movies may not necessarily be valuable as 

much as his car-related advice. On Web 2.0 applications mainly focusing on users‟ social 

networking (i.e. social networking sites, in short, SNS), users tend to share all possible types of 

information in inconsistent manners. On these SNSs, we cannot guarantee that shared interests 

among social connections on one kind of information are analogous with the other kinds of 

information. For instance, it is hard to say that a friend pair sharing similar movie tastes always 

has common preferences about restaurants. In addition, for recommendations, it is not easy to 

compute users‟ preference models for the wide spectrum of information and utilize the models in 

recommendations. Recommender system cannot generate reasonably good recommendations of 
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restaurants based on users‟ book preferences [159]. Therefore, rather than SNSs which mostly 

promote online social networking and encourage sharing a variety of information about users‟ 

daily lives such as Facebook, Twitter, LinkedIn, MySpace, Google Plus, Cyworld, etc., 

collective intelligence systems to manage and share one solid kind of information such as 

Flixster, Delicious, Flicker, Youtube, Yelp, SlideShare, etc. are better system to consider social 

network-based recommendations. 

8.2 LIMITATIONS OF THE STUDY AND FURTHER RESEARCH DIRECTION  

In the design of this dissertation, some limitations were encounted. First, even though I pointed 

that existing studies did not use diverse data sources, in this study, only two data sources were 

used. For watching network and group membership network, I even used the same data source. 

According to domain properties and unique characteristics of sociability existing on various 

online applications, although the sociability is the same kind, it is hard to guarantee that the 

results of this study will be universally identical for all applications. That means that it is 

immature to generalize the results of this study for other applications yet. Therefore, in future, 

the study will be executed using more diverse datasets. For instance, in order to explore watching 

network-based recommendations, a Delicious data set has been collected. Further, to generate 

collaboration network-based recommendations, publication records of biomedical researchers 

were collected.  

Another limitation of this study is the lack of user study. Even though the evaluation is 

based on users‟ bookmarks, the points of evaluation were how much the predictions were 
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accurate and complete. However, in the recommendation discipline, there are various points of 

evaluations such as novelty, diversity, satisfaction, perceived usefulness of the recommended 

items, trustworthiness of the recommender system, etc. Initially I designed these social network-

based recommendations as one way to let users get involved in their own recommendations and 

give users some controls over the personalization of their information spaces. With the cross 

validation test, however, it was impossible to assess whether the recommendations based on 

users‟ self-defined social networks can give users some feelings of control. In order to fill this 

gap, as the future direction, I plan to do a user study about the perceived quality of the social 

network-based recommendations proposed in this study. I‟ve already developed a cultural event 

recommender system with a purpose of allowing users to share interesting cultural events with 

their online social links. The user study will be executed via this application.  

While studying the recommendations based on online social networks, I found that one 

problem of the social recommendation is lower coverage ratio than the CF recommendations. On 

the center of the top 10 precision results, recommendation based on the collaboration network 

produced at least one correct prediction just for 25.3% of the whole user population. However, 

the CF recommendations produced at least one correct prediction for 70.7% of the whole user 

population. One big assumption of this social network-based recommendation is that users have 

to have their social partner(s). On CN3 system which was the data source for collaboration 

networks, for instance, the number of the users having at least one social connection was 44.7% 

of the whole user population. For the remaining 55.3% users, that means the recommender 

system cannot suggest any social network-based recommendations. In case of the other two 

recommendations (i.e. watching network-based recommendations and group membership-based 
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recommendations), I didn‟t compare the recommendation quality between the users having social 

connection(s) and the other users not having any social connection, as I did for CN3 system. 

Therefore, I cannot compare the hit ratio between social network-based recommendations and 

CF recommendations. However, as mentioned, for watching network-based recommendations, 

users who cannot receive any social recommendations, since they don‟t have any social link, 

were 96.6% of the whole user population and for group network-based recommendations, they 

were 91.5% of the whole population. In order to address this problem, in future, I plan to explore 

the solution. I will explore recommendations based on implicit social networks. As explained in 

the section 2, there are various studies about how to build implicit social networks mainly by 

utilizing users‟ rating/bookmarking patterns.  

Throughout this dissertation, I executed two parts of studies. The first part was to find 

information sharing patterns to prove the significance of the social networks. As the results, I 

found that users shared significantly overlapped interests with their social connections. The 

second part was to generate and evaluate the personalized recommendation based on the online 

social networks and I discovered that these social connections could be feasible sources of useful 

information. My original intension was to utilize the information sharing patterns of the first part 

in the second part as one component of recommendation process. However, I admit that I fail to 

connect these two parts together. In addition, there could be some disagreements on the results of 

the first part with the second part results. For instance, in the first part of the chapter 5 which was 

to explore watching connections, the results showed that watching connections have significantly 

higher information similarities than the other random pairs who are not socially associated, at all. 

Hence we can reckon that the watching network-based recommendations performed better than 
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CF recommendations, since watching network-based recommendation actively utilizes users‟ 

social links but CF recommendations don‟t count users‟ social links. In the second part of the 

chapter 5, nonetheless, the results showed that recommendations based on watching connections 

and CF recommendations based on anonymous peers equally good. There could be two reasons. 

One reason is that the anonymous peers could include target users‟ watching connections. The 

CF recommendation algorithm picks the most like-minded peers solely based on the degree of 

information similarity regardless of the social connections between anonymous peers and the 

target users. Another reason is that the random pairs used in the first parts targeted on the whole 

user population but the CF recommendations targeted on a limited set of like-minded peers. 

Conclusively, in future, I will concentrate on how I can adopt users‟ information sharing patterns 

with their social partners and social networking properties as a component of the social 

recommendations so as to improve the quality of social network-based recommendations. 

Lastly, a weakness of this study is that the quality of overall social recommendations was 

not evidently better than other social network-based recommendation studies.  The main focus of 

this study is to pick the best performing approaches among social and non-social 

recommendations. Hence, how to increase the performance of social network-based 

recommendation per se was out of the focus. Therefore, the next step of the social network-based 

recommendations will be how to take into account users‟ information more effectively and how 

to generate more improved social recommendations.  
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Appendix A 

FINDING GOOD SETTINGS FOR RECOMMENDATIONS 

A.1 FINDING GOOD SETTINGS FOR WATCHING NETWORK-BASED 

RECOMMENDATIONS 

A.1.1 Good Similarity Measures for K-Nearest Neighbor Recommendations 

Similarity Measure for KNN Recommendations based on Anonymous Peers (CF) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on anonymous peers (i.e. CF). In this experiment, I computed the KNN 

recommendations with varying number of peers (top 100, top 50, top 20 and the equal number of target 

users‟ social connections) and three different kinds of similarity measures (i.e. log-likelihood similarity, 

the number of co-bookmarks and Jaccard co-efficient). First, the recommendation quality was compared 

according to the varying number of peers. The results of the recommendations based on Log-likelihood, 

the suggests considering the number of peers equal to each target user‟s watching connections (i.e. 

Loglikelihood_All) significantly performed better than others based on top N peers (F = 31.1, p < .001 for 

top 10; F = 17.9, p < .001 for top 5; F = 4.0, p =.007 for top 2). For the recommendations based on the 

number of co-bookmarks also showed that the recommendations based on the number of anonymous 

peers equal to the target users‟ watching connections  (i.e. Cobmk_All) performed significantly better 

than the others (F = 24.7, p < .001 for top 10; F = 12.5, p < .001 for top 5; F = 2.9, p = .033 for top 2).  

The result of recommendations based on Jaccard co-efficient also showed the same results.  The 

recommendations based on the number of anonymous peers equal to the target users‟ watching 

connections  (i.e. Jaccard_All) performed significantly better than the others (F = 62.4, p < .001 for top 

10; F = 41.7, p < .001 for top 5; F = 15.6, p < .001 for top 2).  Lastly, the differences on the 
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recommendation quality according to the similarity measures were compared. Among three kinds of 

similarities, the recommendations based on Jaccard co-efficient produced significantly better suggestion 

than the other two kinds of recommendations (F = 11.9, p < .001 for top 10; F = 8.3, p < .001 for top 5; F 

= 2.6, p = .08 for top 2). Figure 68 shows the results of KNN recommendations based on anonymous 

peers. Thus, as KNN recommendations using anonymous peers, I selected KNN recommendation using 

the Jaccard co-efficient based on as many anonymous peers as the target user‟s watching relations exist 

(i.e. Jaccard_All). 

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

 
(c) F1 Measure of Top 2 

Figure 68. Comparison of KNN Recommendations based on Anonymous Peers (CF) 

Similarity Measure for KNN Recommendations based on Direct Watching Relations (Watch) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ direct watching connections (i.e. Watch). In this experiment, I 

computed the KNN recommendations with varying number of connections (top 100, top 50, top 20 and 

each target user‟s all social connections) and three different kinds of similarity measures (i.e. log-

likelihood similarity, the number of co-bookmarks and Jaccard co-efficient). First, the recommendation 
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quality was compared according to the varying number of peers. The results of the recommendations 

based on Log-likelihood showed that, regardless of how many social connections the recommendation 

algorithm considered, the qualities were not significantly different (F = .02, p =.99 for top 10; F = .01, p 

=.99 for top 5; F = .00, p =1.00 for top 2). However, in lower ranks evaluations (i.e. top 10 and top 5), the 

recommendations generated by each target user‟s all watching users produced slightly better results. The 

recommendations based on the number of co-bookmarks also demonstrated that there is no significant 

difference on the quality according to the different numbers of connections (F = .04, p =.99 for top 10; F 

= .06, p =.99 for top 5; F = .012, p =.99 for top 2). The result of recommendations based on Jaccard co-

efficient also showed the same results (F = .03, p =.99 for top 10; F = .02, p =.99 for top 5; F = .02, p 

=.99 for top 2). Due to the insignificance, I chose the recommendations based on the all connections of 

target users and compared the quality according to the similarity measures. Among three kinds of 

similarities, there was no significant difference on the performance of recommendations according to the 

similarity measures (F = .03, p =.99 for top 10; F = .02, p =.99 for top 5; F = .02, p =.99 for top 2). Figure 

69 shows the results of KNN recommendations based on users‟ direct watching connections. Due to the 

insignificant difference, the highest values on the graph were selected. For all ranks, the similarity 

measure yielded the highest F1 value was the log-likelihood similarity. Thus, as KNN recommendations 

using users‟ direct watching connections, I selected KNN recommendation using the log-likelihood 

similarity based on the target user‟s all watching relations (i.e. Loglikelihood_All). 

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 
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(c) F1 Measure of Top 2 

Figure 69. Comparison of KNN Recommendations based on Direct Watching Relations (Watch) 

Similarity Measure for KNN Recommendations based on Relations in both Directions (reciWatch) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ both watching and watched relations (i.e. reciWatch). In this 

experiment, I computed the KNN recommendations with the same setting to the above KNN 

recommendations based on direct watching connections. First, the recommendation quality was compared 

according to the varying number of peers. The results of the recommendations based on Log-likelihood 

showed that, regardless of how many social connections the recommendation algorithm considered, the 

qualities were not significantly different (F = .007, p =.99 for top 10; F = .001, p =.99 for top 5; F = .001, 

p =.99 for top 2). The recommendations based on the number of co-bookmarks also demonstrated that 

there is no significant difference on the quality according to the different numbers of connections (F = 

.04, p =.99 for top 10; F = .105, p =.96 for top 5; F = .001, p =.99 for top 2). The result of 

recommendations based on Jaccard co-efficient also showed the same results (F = .007, p =.99 for top 10; 

F = .006, p =.99 for top 5; F = .001, p =1.00 for top 2). Due to the insignificance, I compared the quality 

of recommendations including four types of social connection numbers according to the similarity 

measures. Among three kinds of similarities, there was no significant difference on the performance of 

recommendations according to the similarity measures (F = 1.4, p =.26 for top 10; F = 2.3, p =.10 for top 

5; F = 1.4, p =.25 for top 2). Figure 70 shows the results of KNN recommendations based on target users‟ 

both watching and watched relations. Due to the insignificant difference, the highest values on the graph 

were selected. For all ranks, the recommendations based on the Jaccard co-efficient with the 50 nearest 

connections yielded slightly higher F1 value. Thus, as KNN recommendations using users‟ both watching 

and watched relations, I selected KNN recommendation using the Jaccard co-efficient based on the target 

user‟s top 50 similar connections (i.e. Jaccard_50). 
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(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

 
(c) F1 Measure of Top 2 

Figure 70. Comparison of KNN Recommendations based on Watching and Watched Relations 

(ReciWatch) 

Similarity Measure for KNN Recommendations based on Direct and Indirect Relations (1hopWatch) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ direct and indirect relations (i.e. 1hopWatch). In this experiment, 

I computed the KNN recommendations with the same setting to the above KNN recommendations based 

on direct watching connections. First, the recommendation quality was compared according to the varying 

number of peers. The results of the recommendations based on Log-likelihood showed that, regardless of 

how many social connections the recommendation algorithm considered, the qualities were not 

significantly different (F = .02, p =.99 for top 10; F = .02, p =.99 for top 5; F = .03, p =.99 for top 2). The 

recommendations based on the number of co-bookmarks also demonstrated that there is no significant 

difference on the quality according to the different numbers of connections (F = .01, p =.99 for top 10; F 

= .04, p =.99 for top 5; F = .02, p =.99 for top 2). The result of recommendations based on Jaccard co-

efficient also showed the same results (F = .09, p =.96 for top 10; F = .08, p =.97 for top 5; F = .01, p 
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=.99 for top 2). Among three kinds of similarities, there was no significant difference on the performance 

of recommendations according to the similarity measures (F = 2.70, p =.07 for top 10; F = .71, p =.49 for 

top 5; F = .53, p =.59 for top 2). Figure 71 shows the results of KNN recommendations based on target 

users‟ direct and indirect watching relations. Due to the insignificant difference, the highest values on the 

graph were selected. For all ranks, the recommendations based on the Jaccard co-efficient with the 20 

nearest connections yielded slightly higher F1 value. Thus, as KNN recommendations using users‟ direct 

and indirect watching relations, I selected KNN recommendation using the Jaccard co-efficient based on 

the target user‟s top 20 similar connections (i.e. Jaccard_20). 

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

  
(c) F1 Measure of Top 2 

Figure 71. Comparison of KNN Recommendations based on Direct & Indirect Watching Relations 

(1hopWatch) 

A.1.2 Finding Optimal Setting for Matrix Factorization Recommendations 

Settings for SVD Recommendations based on Anonymous Peers (CFSVD) 
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Figure 72 shows the results of matrix factorization recommendations based on users‟ anonymous users 

(i.e. CFSVD). According to the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, 

there was no significant difference in the F1 measure across all settings (F = 1.34, p = .23 for top 10;  F 

=.86, p = .54 for top 5; F = .43, p =.88 for top 2). Due to the statistical insignificance, as the graph shows, 

the recommendations having 50 factors with λ=0.15 which yielded the highest F1 value were selected.  

 
Figure 72. Comparison of Matrix Factorization Recommendations based on Users’ Anonymous 

Peers (CFSVD) 

Settings for SVD Recommendations based on Direct Watching Relations (WatchSVD) 

Figure 73 shows the results of matrix factorization recommendations based on direct watching relations (i.e. 

watchSVD). According to the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, there were no 

significant differences in the F1 measure across all settings (F = .37, p = .99 for top 10;  F = .24, p = .99 for top 5; F 

= .22, p = 1.0 for top 2). Due to the statistical insignificance, as the graph shows, the recommendations having 24 

factors with λ=0.15 which yielded the highest F1 value were selected. 
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(c) F1 Measure of Top 2 

Figure 73. Comparison of Matrix Factorization Recommendations based on Direct Watching 

Relations (WatchSVD) 

Settings for SVD Recommendations based on Relations in Watching and Watched Connections 

(reciWatchSVD) 

Figure 74 shows the results of matrix factorization recommendations based on watching relations in 

both directions (i.e. reciWatchSVD). According to the One-way ANOVA and Scheffé pairwise test, 

regardless of the ranks, there were no significant differences in the F1 measure across all settings (F = 

.32, p = 1.00 for top 10;  F = .35, p = .99 for top 5; F = .30, p = .99 for top 2). Due to the statistical 

insignificance, as the graph shows, the recommendations having 20factors with λ=0.15 which yielded the 

highest F1 value were selected. 

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

8 10 12 14 16 18 20 22 24
T

o
p

2
_
F

1
 M

e
a
su

r
e
 

No. of Factor 

λ=0.1 

λ=0.15 

0.60%

0.62%

0.64%

0.66%

0.68%

0.70%

0.72%

0.74%

0.76%

0.78%

0.80%

8 10 12 14 16 18 20 22 24

T
o
p

1
0
_
F

1
 M

e
a
su

r
e
 

No. of Factor 

λ=0.1 

λ=0.15 

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

8 10 12 14 16 18 20 22 24

T
o
p

5
_
F

1
 M

e
a
su

r
e
 

No. of Factors 

λ=0.1 

λ=0.15 



311 

 

 
(c) F1 Measure of Top 2 

Figure 74. Comparison of Matrix Factorization Recommendations based on Relations in both 

Directions (reciWatchSVD) 

Settings for SVD Recommendations based on Direct and Indirect Relations (1hopWatchSVD) 

Figure 75 shows the results of matrix factorization recommendations based on watching relations in 

both directions (i.e. 1hopWatchSVD). According to the One-way ANOVA and Scheffé pairwise test, 

regardless of the ranks, there were no significant differences in the F1 measure across all settings (F = 

1.05, p = .40 for top 10;  F = .90, p = .57 for top 5; F = .60, p = .88 for top 2). Due to the statistical 

insignificance, as the graph shows, the recommendations having 24 factors with λ=0.15 which yielded the 

highest F1 value were selected. 
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(c) F1 Measure of Top 2 

Figure 75. Comparison of Matrix Factorization Recommendations based on Relations in Direct and 

Indirect Social Connections (1hopWatchSVD) 

A.2 FINDING GOOD SETTINGS FOR GROUP MEMBERSHIP-BASED 

RECOMMENDATIONS 

A.2.1 Good Similarity Measures for K-Nearest Neighbor Recommendations 

Similarity Measure for KNN Recommendations based on Anonymous Peers (CF) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ anonymous peer (i.e. CF). Since the recommendations based on 

watching connections and group co-members targeted on different sets of users, I tested the traditional CF 

recommendations, separately. These CF recommendation settings were tested for the situation where the 

target users are group members. In this experiment, I computed the KNN recommendations with varying 

number of peers (top 100, top 50, top 20 and the equal number of target users‟ social connections) and 

three different kinds of similarity measures (i.e. log-likelihood similarity, the number of co-bookmarks 

and Jaccard co-efficient). First, the recommendation quality was compared according to the varying 

number of peers. The results of the recommendations based on Log-likelihood, the suggestions 

considering the number of peers equal to each target user‟s group co-members (i.e. Loglikelihood_All) 

significantly performed better than the others based on top N peers in lower ranks (F = 12.72, p < .001 for 

top 10; F = 8.24, p < .001 for top 5; F = 2.97, p =.03 for top 2). For the recommendations based on the 

number of co-bookmarks also showed that the recommendations based on the number of anonymous 
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peers equal to the target users‟ group co-members (i.e. Cobmk_All) performed significantly better than 

the others (F = 10.7, p < .001 for top 10; F = 5.40, p = .001 for top 5; F = 1.23 p = .30 for top 2).  The 

result of recommendations based on Jaccard co-efficient also showed the same results.  The 

recommendations based on the number of anonymous peers equal to the target users‟ group co-members 

(i.e. Jaccard_All) performed significantly better than the others (F = 25.38, p < .001 for top 10; F = 15.08, 

p < .001 for top 5; F = 5.47, p = .001 for top 2).  Lastly, the differences on the recommendation quality 

according to the similarity measures were compared. Among three kinds of similarities, the 

recommendations based on Jaccard co-efficient produced significantly better suggestion than the other 

two kinds of recommendations (F = 11.05, p < .001 for top 10; F = 6.76, p =.001 for top 5; F = 3.3, p = 

.04 for top 2). Figure 76 shows the results of KNN recommendations based on anonymous peers. Thus, as 

KNN recommendations using anonymous peers, I selected KNN recommendation using the Jaccard co-

efficient based on as many anonymous peers as the target user‟s group co-members exist (i.e. 

Jaccard_All). 

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

  
(c) F1 Measure of Top 2 

Figure 76. Comparison of KNN Recommendations based on Users’ Anonymous Users (CF) 
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Similarity Measure for KNN Recommendations based on Group Co-members (GMem) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ co-members of the same group (i.e. GMem). In this experiment, I 

computed the KNN recommendations with varying number of peers (top 100, top 50, top 20 and the equal 

number of target users‟ social connections) and three kinds of similarity measures (i.e. log-likelihood 

similarity, the number of co-bookmarks and Jaccard co-efficient). First, the recommendation quality was 

compared according to the varying number of peers. The results of the recommendations based on Log-

likelihood showed that, regardless of how many social connections the recommendation algorithm 

considered, the qualities were not significantly different (F = .16, p =.92 for top 10; F = .18, p =.91 for 

top 5; F = .16, p =.92 for top 2). The recommendations based on the number of co-bookmarks also 

demonstrated that there is no significant difference on the quality according to the different numbers of 

connections (F = 3.3, p =.02 for top 10; F = .96, p =.41 for top 5; F = .18, p =.91 for top 2). The result of 

recommendations based on Jaccard co-efficient also showed the same results (F = .25, p =.86 for top 10; 

F = .17, p =.92 for top 5; F = .17, p = .92 for top 2). Due to the insignificance of the quality, I compared 

the quality according to the similarity measures including all numbers of N peers. Among three kinds of 

similarities, there was no significant difference on the performance of recommendations according to the 

similarity measures (F = 1.06, p =.35 for top 10; F = .96, p =.38 for top 5; F = .20, p =.82 for top 2). 

Figure 77 shows the results of KNN recommendations based on target users‟ co-members. Due to the 

insignificant difference, the highest values on the graph were selected. For all ranks, the recommendations 

based on the Jaccard co-efficient with the 50 nearest connections yielded slightly higher F1 value. Thus, 

as KNN recommendations using users‟ group co-members, I selected KNN recommendation using the 

Jaccard co-efficient based on the target user‟s top 50 similar connections (i.e. Jaccard_50). 

 
(d) F1 Measure of Top 10 

 
(e) F1 Measure of Top 5 
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(f) F1 Measure of Top 2 

Figure 77. Comparison of KNN Recommendations based on Users’ Group Co-members (GMem) 

Similarity Measure for KNN Recommendations based on Users’ Co-members and their Group Library 

(Group) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ co-members of the same group and the group library (i.e. Group). 

In this experiment, I computed the KNN recommendations with the same setting to the above KNN 

recommendations based on users‟ co-members. First, the recommendation quality was compared 

according to the varying number of peers. The results of the recommendations based on Log-likelihood 

showed that, regardless of how many social connections the recommendation algorithm considered, the 

qualities were not significantly different (F = .04, p =.99 for top 10; F = .22, p =.89 for top 5; F = .15, p 

=.93 for top 2). The recommendations based on the number of co-bookmarks also demonstrated no 

significant difference on the quality according to the different numbers of connections (F = .86, p =.46 for 

top 10; F = .26, p =.86 for top 5; F = .04, p =.99 for top 2). The result of recommendations based on 

Jaccard co-efficient also showed the same results (F = .15, p =.96 for top 10; F = 2.96, p =.02 for top 5; F 

= 2.62, p = .03 for top 2). Due to the insignificance of the quality regardless of the number of social 

connections, I compared the quality according to the similarity measures including all numbers of N 

peers. Among three kinds of similarities, however, there were significant differences on the performance 

of recommendations according to the similarity measures, especially in lower ranks (F = 9.25, p <.001 for 

top 10; F = 7.22, p =.001 for top 5; F = 6.33, p =.002 for top 2). According to the pairwise test, the 

recommendations based on Jaccard co-efficient and log-likelihood similarity performed significantly 

better than the recommendations based on the number of co-bookmarks, even though there was no 

difference between the Jaccard co-efficient and log-likelihood similarity. Figure 78 shows the results of 

KNN recommendations based on target users‟ co-members and their group library. Due to the 

insignificant difference between the Jaccard and log-likelihood simialrity, as KNN recommendations 
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using users‟ co-members and group library, I selected KNN recommendation using the Jaccard co-

efficient based on the target user‟s top 50 similar connections (i.e. Jaccard_50), which produced 

relatively higher F-1 value.  

 
(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

  
(c) F1 Measure of Top 2 

Figure 78. Comparison of KNN Recommendations based on Co-members and Group Memberships 

(Gmem) 

Similarity Measure for KNN Recommendations based on Watching Networks and Group Memberships 

(GMemWatch) 

This section is to find a good similarity measure and optimal number of peers for KNN 

recommendations based on target users‟ direct watching connections and their co-members of the same 

group (i.e. GMemWatch). In this experiment, I computed the KNN recommendations with the same 

setting to the above KNN recommendations based on users‟ co-members. First, the recommendation 

quality was compared according to the varying number of peers. The results of the recommendations 

based on Log-likelihood showed that, regardless of how many social connections the recommendation 

algorithm considered, the qualities were not significantly different (F = .00, p =1.00 for top 10; F = .009, 
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p =.99 for top 5; F = .018, p =.99 for top 2). The recommendations based on the number of co-bookmarks 

also demonstrated that there is no significant difference on the quality according to the different numbers 

of connections (F = .03, p =.99 for top 10; F = .04, p =.99 for top 5; F = .06, p =.98 for top 2). The result 

of recommendations based on Jaccard co-efficient also showed the same results (F = .02, p =.99 for top 

10; F = .01, p =.99 for top 5; F = .03, p = .99 for top 2). Due to the insignificance of the quality, I 

compared the quality according to the similarity measures including all numbers of N peers. Among three 

kinds of similarities, there was no significant difference on the performance of recommendations 

according to the similarity measures (F = .29, p =.75 for top 10; F = .05, p =.95 for top 5; F = .07, p =.93 

for top 2). Figure 79 shows the results of KNN recommendations based on target users‟ watching 

connections and their co-members. Due to the insignificant difference, the highest values on the graph 

were selected. For all ranks, the recommendations based on the log-likelihood similarity with the 20 

nearest connections (i.e.) yielded slightly higher F1 value. Thus, as KNN recommendations using users‟ 

both watching relations and group co-members, I selected KNN recommendation using the log-likelihood 

similarity based on the target user‟s top 20 similar connections (i.e. loglikelihood_20). 
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Figure 79. Comparison of KNN Recommendations based on Watching Relations and Group 

Memberships (GMemWatch) 

A.2.2 Finding Optimal Setting for Matrix Factorization Recommendations 

Settings for SVD Recommendations based on Anonymous Users (CFSVD) 

Figure 80 shows the results of matrix factorization recommendations based on users‟ anonymous users 

(i.e. CFSVD). As explained in the A.2.1, this test targeted on the target users consisting of group 

members. According to the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, there 

was no significant difference in the F1 measure across all settings (F = 2.89, p = .008 for top 10;  F = 

2.40, p = .025 for top 5; F = 1.74, p =.018 for top 2). Due to the statistical insignificance, as the graph 

shows, the recommendations having 50 factors with λ=0.15 which yielded the highest F1 value were 

decided.  

 
Figure 80. Comparison of Matrix Factorization Recommendations based on Users’ Anonymous 

Peers (CFSVD)  

Settings for SVD Recommendations based on Group Co-members (GMemSVD) 

Figure 81 shows the results of matrix factorization recommendations based on users‟ co-members of 

the same group (i.e. GMemSVD). According to the One-way ANOVA, there were significant differences 

in the F1 measure across all settings (F = 5.24, p < .001 for top 10; F = 3.23, p < .001 for top 5; F = 1.61, 

p = .04 for top 2). In spite of the overall statistical significance, according to the pairwise tests, there were 

no significant differences on factor by factor and depending on the different λ values. Thus, as the graph 

shows, the recommendations with 16 factors and λ=0.15 which yielded the highest F1 value were 

decided.  
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(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

 
(c) F1 Measure of Top 2 

Figure 81. Comparison of Matrix Factorization Recommendations based on Users’ Co-members 

(GMemSVD) 

Settings for SVD Recommendations based on Users’ Co-members and their Group Library 

(GroupSVD) 

Figure 82 shows the results of matrix factorization recommendations based on users‟ co-members and 

their group library (i.e. GroupSVD). According to the One-way ANOVA, there were significant 

differences in the F1 measure across all settings (F = 7.50, p < .001 for top 10; F = 5.87, p < .001 for top 

5; F = 4.11, p < .001 for top 2). In spite of the overall statistical significance, according to the pairwise 

tests, there were no significant differences on factor by factor and depending on the different λ values. 

Thus, as the graph shows, the recommendations with 16 factors and λ=0.15 which yielded the highest F1 

value were decided. 
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(a) F1 Measure of Top 10 

 
(b) F1 Measure of Top 5 

 
(c) F1 Measure of Top 2 

Figure 82. Comparison of Matrix Factorization Recommendations based on Users’ Co-members 

and their library (GroupSVD) 

Settings for SVD Recommendations based on Watching Networks and Group Memberships 

(GMemWatchSVD) 

Figure 83 shows the results of matrix factorization recommendations based on watching relations and 

group co-members (i.e. GMemWatchSVD). According to the One-way ANOVA and Scheffé pairwise 

test, regardless of the ranks, there were no significant differences in the F1 measure across all settings (F 

= .30, p = .997 for top 10;  F = .39, p = .99 for top 5; F = .19, p = 1.0 for top 2). In spite of the statistical 

insignificance, the graph shows that the F1 values of 20 factors with λ=0.15 were getting higher on higher 

ranks. 
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(d) F1 Measure of Top 10 

 
(e) F1 Measure of Top 5 

 
(f) F1 Measure of Top 2 

Figure 83. Comparison of Matrix Factorization Recommendations based on Watching Networks 

and Group Memberships (GMemWatchSVD) 

A.3 FINDING GOOD SETTINGS FOR COLLABORATION NETWORK-BASED 

RECOMMENDATIONS 

Settings for SVD Recommendations based on Anonymous Peers (CFSVD) 

Figure 84 shows the results of matrix factorization recommendations based on anonymous peers (i.e. 

CFSVD).  3 varying numbers of latent factors (5, 7, and 10 factors) with λ = 1.5 were tested. According to 

the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, there were no significant 

differences in the F1 measure across all settings (F = .03, p = .96 for top 10;  F = .01, p = .99 for top 5; F 

= .01, p = .99 for top 2). In spite of the statistical insignificance, the graph shows that the F1 values of 
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SVD having with15 factors produced the slightly higher F1 measure than the others, in particular in 

higher ranks. 

 

Figure 84. Comparison of Matrix Factorization Recommendations based on Users’ Anonymous 

Peers 

Settings for SVD Recommendations based on Collaborators (SNSVD_Coll) 

Figure 85 shows the results of matrix factorization recommendations based on users‟ collaborators 

(i.e. SNSVD_Coll). 4 varying numbers of latent factors (3, 5, 7, and 10 factors) with λ = 1.5 were tested. 

According to the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, there were no 

significant differences in the F1 measure across all settings (F = .06, p = .98 for top 10;  F = .11, p = .95 

for top 5; F = .05, p = .98 for top 2). In spite of the statistical insignificance, the graph shows that the F1 

values of SVD having with 3 factors produced the higher F1 measure than the others in higher ranks. 

 
Figure 85. Comparison of Matrix Factorization Recommendations based on Users’ Collaborators 

Settings for SVD Recommendations based on CN3 Social Connections (SNSVD_CN3) 
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Figure 86 shows the results of matrix factorization recommendations based on users‟ CN3 social 

connections (i.e. SNSVD_CN3). 4 varying numbers of latent factors (3, 5, 7, and 10 factors) with λ = 1.5 

were tested. According to the One-way ANOVA and Scheffé pairwise test, regardless of the ranks, there 

were no significant differences in the F1 measure across all settings (F = .01, p = .98 for top 10;  F = .00, 

p = .99 for top 5; F = .03, p = .99 for top 2). In spite of the statistical insignificance, the graph shows that 

the F1 values of SVD having with 10 factors produced the higher F1 measure than the others in higher 

ranks. 

 
Figure 86. Comparison of Matrix Factorization Recommendation based on Users’ CN3 Social 

Connections 

Settings for SVD Recommendations based on Both Collaborators and CN3 Social Connections 

(SNSVD_All) 

Figure 87 shows the results of matrix factorization recommendations based on users‟ collaborators and 

CN3 social connections (i.e. SNSVD_All). 4 varying numbers of latent factors (3, 5, 7, and 10 factors) 

with λ = 1.5 were tested. According to the One-way ANOVA and Scheffé pairwise test, regardless of the 

ranks, there were no significant differences in the F1 measure across all settings (F = .00, p = .99 for top 

10;  F = .12, p = .95 for top 5; F = .08, p = .97 for top 2). In spite of the statistical insignificance, the 

graph shows that the F1 values of SVD having with 3 factors produced the higher F1 measure than the 

others in higher ranks. 
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Figure 87. Comparison of Matrix Factorization Recommendation based on Both Collaborators and 

CN3 Social Connections 
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Appendix B 

IMPLEMENTATION OF INFORMATION SIMILARITY AND 

RECOMMENDATION ALGORITHMS 

In this dissertation, most of the information similarities and recommendation algorithms were 

implemented using third-party applications, except the cases where collecting and cleaning data sources. 

In particular, the following applications were used.  

- Lucene (v3.2): This application was to process text-related information (i.e. case normalization and 

stemming), to build word vectors and to compute the Singular Vector Decomposition. 

- Mahout (v0.6): This was core application to implement information similarities and most of the 

recommendation algorithms.  

- R with igraph package: This application was to compute all kinds of social properties, in both edge 

level and vertex level.  
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