3,121 research outputs found

    Rob’s Robot: Current and Future Challenges for Humanoid Robots

    Get PDF

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    First Steps Towards an Ethics of Robots and Artificial Intelligence

    Get PDF
    This article offers an overview of the main first-order ethical questions raised by robots and Artificial Intelligence (RAIs) under five broad rubrics: functionality, inherent significance, rights and responsibilities, side-effects, and threats. The first letter of each rubric taken together conveniently generates the acronym FIRST. Special attention is given to the rubrics of functionality and inherent significance given the centrality of the former and the tendency to neglect the latter in virtue of its somewhat nebulous and contested character. In addition to exploring some illustrative issues arising under each rubric, the article also emphasizes a number of more general themes. These include: the multiplicity of interacting levels on which ethical questions about RAIs arise, the need to recognise that RAIs potentially implicate the full gamut of human values (rather than exclusively or primarily some readily identifiable sub-set of ethical or legal principles), and the need for practically salient ethical reflection on RAIs to be informed by a realistic appreciation of their existing and foreseeable capacities

    Abstraction, Imagery, and Control in Cognitive Architecture.

    Full text link
    This dissertation presents a theory describing the components of a cognitive architecture supporting intelligent behavior in spatial tasks. In this theory, an abstract symbolic representation serves as the basis for decisions. As a means to support abstract decision-making, imagery processes are also present. Here, a concrete (highly detailed) representation of the state of the problem is maintained in parallel with the abstract representation. Perceptual and action systems are decomposed into parts that operate between the environment and the concrete representation, and parts that operate between the concrete and abstract representations. Control processes can issue actions as a continuous function of information in the concrete representation, and actions can be simulated (imagined) in terms of it. The agent can then derive useful abstract information by applying perceptual processes to the resulting concrete state. This theory addresses two challenges in architecture design that arise due to the diversity and complexity of spatial tasks that an intelligent agent must address. The perceptual abstraction problem results from the difficulty of creating a single perception system able to induce appropriate abstract representations in each of the many tasks an agent might encounter, and the irreducibility problem arises because some tasks are resistant to being abstracted at all. Imagery works to mitigate the perceptual abstraction problem by allowing a given perception system to work in more tasks, as perception can be dynamically combined with imagery. Continuous control, and the simulation thereof via imagery, works to mitigate the irreducibility problem. The use of imagery to address these challenges differs from other approaches in AI, where imagery is considered as an alternative to abstract representation, rather than as a means to it. A detailed implementation of the theory is described, which is an extension of the Soar cognitive architecture. Agents instantiated in this architecture are demonstrated, including agents that use reinforcement learning and imagery to play arcade games, and an agent that performs sampling-based motion planning for a car-like vehicle. The performance of these agents is discussed in the context of the underlying architectural theory. Connections between this work and psychological theories of mental imagery are also discussed.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78795/1/swinterm_1.pd

    Development of Cognitive Capabilities in Humanoid Robots

    Get PDF
    Merged with duplicate record 10026.1/645 on 03.04.2017 by CS (TIS)Building intelligent systems with human level of competence is the ultimate grand challenge for science and technology in general, and especially for the computational intelligence community. Recent theories in autonomous cognitive systems have focused on the close integration (grounding) of communication with perception, categorisation and action. Cognitive systems are essential for integrated multi-platform systems that are capable of sensing and communicating. This thesis presents a cognitive system for a humanoid robot that integrates abilities such as object detection and recognition, which are merged with natural language understanding and refined motor controls. The work includes three studies; (1) the use of generic manipulation of objects using the NMFT algorithm, by successfully testing the extension of the NMFT to control robot behaviour; (2) a study of the development of a robotic simulator; (3) robotic simulation experiments showing that a humanoid robot is able to acquire complex behavioural, cognitive, and linguistic skills through individual and social learning. The robot is able to learn to handle and manipulate objects autonomously, to cooperate with human users, and to adapt its abilities to changes in internal and environmental conditions. The model and the experimental results reported in this thesis, emphasise the importance of embodied cognition, i.e. the humanoid robot's physical interaction between its body and the environment

    The Philosophy of Online Manipulation

    Get PDF
    Are we being manipulated online? If so, is being manipulated by online technologies and algorithmic systems notably different from human forms of manipulation? And what is under threat exactly when people are manipulated online? This volume provides philosophical and conceptual depth to debates in digital ethics about online manipulation. The contributions explore the ramifications of our increasingly consequential interactions with online technologies such as online recommender systems, social media, user friendly design, microtargeting, default settings, gamification, and real time profiling. The authors in this volume address four broad and interconnected themes: What is the conceptual nature of online manipulation? And how, methodologically, should the concept be defined? Does online manipulation threaten autonomy, freedom, and meaning in life and if so, how? What are the epistemic, affective, and political harms and risks associated with online manipulation? What are legal and regulatory perspectives on online manipulation? This volume brings these various considerations together to offer philosophically robust answers to critical questions concerning our online interactions with one another and with autonomous systems. The Philosophy of Online Manipulation will be of interest to researchers and advanced students working in moral philosophy, digital ethics, philosophy of technology, and the ethics of manipulation

    Towards gestural understanding for intelligent robots

    Get PDF
    Fritsch JN. Towards gestural understanding for intelligent robots. Bielefeld: Universität Bielefeld; 2012.A strong driving force of scientific progress in the technical sciences is the quest for systems that assist humans in their daily life and make their life easier and more enjoyable. Nowadays smartphones are probably the most typical instances of such systems. Another class of systems that is getting increasing attention are intelligent robots. Instead of offering a smartphone touch screen to select actions, these systems are intended to offer a more natural human-machine interface to their users. Out of the large range of actions performed by humans, gestures performed with the hands play a very important role especially when humans interact with their direct surrounding like, e.g., pointing to an object or manipulating it. Consequently, a robot has to understand such gestures to offer an intuitive interface. Gestural understanding is, therefore, a key capability on the way to intelligent robots. This book deals with vision-based approaches for gestural understanding. Over the past two decades, this has been an intensive field of research which has resulted in a variety of algorithms to analyze human hand motions. Following a categorization of different gesture types and a review of other sensing techniques, the design of vision systems that achieve hand gesture understanding for intelligent robots is analyzed. For each of the individual algorithmic steps – hand detection, hand tracking, and trajectory-based gesture recognition – a separate Chapter introduces common techniques and algorithms and provides example methods. The resulting recognition algorithms are considering gestures in isolation and are often not sufficient for interacting with a robot who can only understand such gestures when incorporating the context like, e.g., what object was pointed at or manipulated. Going beyond a purely trajectory-based gesture recognition by incorporating context is an important prerequisite to achieve gesture understanding and is addressed explicitly in a separate Chapter of this book. Two types of context, user-provided context and situational context, are reviewed and existing approaches to incorporate context for gestural understanding are reviewed. Example approaches for both context types provide a deeper algorithmic insight into this field of research. An overview of recent robots capable of gesture recognition and understanding summarizes the currently realized human-robot interaction quality. The approaches for gesture understanding covered in this book are manually designed while humans learn to recognize gestures automatically during growing up. Promising research targeted at analyzing developmental learning in children in order to mimic this capability in technical systems is highlighted in the last Chapter completing this book as this research direction may be highly influential for creating future gesture understanding systems

    The epistemic value of emotions

    Get PDF
    corecore