100 research outputs found

    On Murty-Simon Conjecture II

    Full text link
    A graph is diameter two edge-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter two edge-critical graph on nn vertices is at most n24\lfloor \frac{n^{2}}{4} \rfloor and the extremal graph is the complete bipartite graph Kn2,n2K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}. In the series papers [7-9], the Murty-Simon Conjecture stated by Haynes et al. is not the original conjecture, indeed, it is only for the diameter two edge-critical graphs of even order. In this paper, we completely prove the Murty-Simon Conjecture for the graphs whose complements have vertex connectivity \ell, where =1,2,3\ell = 1, 2, 3; and for the graphs whose complements have an independent vertex cut of cardinality at least three.Comment: 9 pages, submitted for publication on May 10, 201

    Topics in Graph Theory: Extremal Intersecting Systems, Perfect Graphs, and Bireflexive Graphs

    Get PDF
    In this thesis we investigate three different aspects of graph theory. Firstly, we consider interesecting systems of independent sets in graphs, and the extension of the classical theorem of Erdos, Ko and Rado to graphs. Our main results are a proof of an Erdos-Ko-Rado type theorem for a class of trees, and a class of trees which form counterexamples to a conjecture of Hurlberg and Kamat, in such a way that extends the previous counterexamples given by Baber. Secondly, we investigate perfect graphs - specifically, edge modification aspects of perfect graphs and their subclasses. We give some alternative characterisations of perfect graphs in terms of edge modification, as well as considering the possible connection of the critically perfect graphs - previously studied by Wagler - to the Strong Perfect Graph Theorem. We prove that the situation where critically perfect graphs arise has no analogue in seven different subclasses of perfect graphs (e.g. chordal, comparability graphs), and consider the connectivity of a bipartite reconfiguration-type graph associated to each of these subclasses. Thirdly, we consider a graph theoretic structure called a bireflexive graph where every vertex is both adjacent and nonadjacent to itself, and use this to characterise modular decompositions as the surjective homomorphisms of these structures. We examine some analogues of some graph theoretic notions and define a “dual” version of the reconstruction conjecture

    Connected Domination Critical Graphs

    Get PDF
    This thesis investigates the structure of connected domination critical graphs. The characterizations developed provide an important theoretical framework for addressing a number of difficult computational problems in the areas of operations research (for example, facility locations, industrial production systems), security, communication and wireless networks, transportation and logistics networks, land surveying and computational biology. In these application areas, the problems of interest are modelled by networks and graph parameters such as domination numbers reflect the efficiency and performance of the systems

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem

    Combinatorics

    Get PDF
    [no abstract available

    Vertex colouring and forbidden subgraphs - a survey

    Get PDF
    There is a great variety of colouring concepts and results in the literature. Here our focus is to survey results on vertex colourings of graphs defined in terms of forbidden induced subgraph conditions

    Connected matchings in special families of graphs.

    Get PDF
    A connected matching in a graph is a set of disjoint edges such that, for any pair of these edges, there is another edge of the graph incident to both of them. This dissertation investigates two problems related to finding large connected matchings in graphs. The first problem is motivated by a famous and still open conjecture made by Hadwiger stating that every k-chromatic graph contains a minor of the complete graph Kk . If true, Hadwiger\u27s conjecture would imply that every graph G has a minor of the complete graph K n/a(C), where a(G) denotes the independence number of G. For a graph G with a(G) = 2, Thomassé first noted the connection between connected matchings and large complete graph minors: there exists an ? \u3e 0 such that every graph G with a( G) = 2 contains K ?+, as a minor if and only if there exists a positive constant c such that every graph G with a( G) = 2 contains a connected matching of size cn. In Chapter 3 we prove several structural properties of a vertexminimal counterexample to these statements, extending work by Blasiak. We also prove the existence of large connected matchings in graphs with clique size close to the Ramsey bound by proving: for any positive constants band c with c \u3c ¼, there exists a positive integer N such that, if G is a graph with n =: N vertices, 0\u27( G) = 2, and clique size at most bv(n log(n) )then G contains a connected matching of size cn. The second problem concerns computational complexity of finding the size of a maximum connected matching in a graph. This problem has many applications including, when the underlying graph is chordal bipartite, applications to the bipartite margin shop problem. For general graphs, this problem is NP-complete. Cameron has shown the problem is polynomial-time solvable for chordal graphs. Inspired by this and applications to the margin shop problem, in Chapter 4 we focus on the class of chordal bipartite graphs and one of its subclasses, the convex bipartite graphs. We show that a polynomial-time algorithm to find the size of a maximum connected matching in a chordal bipartite graph reduces to finding a polynomial-time algorithm to recognize chordal bipartite graphs that have a perfect connected matching. We also prove that, in chordal bipartite graphs, a connected matching of size k is equivalent to several other statements about the graph and its biadjacency matrix, including for example, the statement that the complement of the latter contains a k x k submatrix that is permutation equivalent to strictly upper triangular matrix

    Master index of volumes 161–170

    Get PDF
    corecore