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ABSTRACT 
Connected Matchings in Special Families of Graphs 

Christopher .J. Caragianis 

November 15, 2012 

A connected matching in a graph is a set of disjoint edges such that, for any pair 

of these edges, there is another edge of the graph incident to both of them. This 

dissertation investigates two problems related to finding large connected matchings 

in graphs. 

The first problem is motivated by a famous and still open conjecture made by 

Hadwiger stating that every k-chromatic graph contains a minor of the complete 

graph K k . If true, Hadwiger's conjecture would imply that every graph G has a 

minor of the complete graph Kn/a(C), where a(G) denotes the independence number 

of G. For a graph G with a(G) = 2, Thomasse first noted the connection between 

connected matchings and large complete graph minors: there exists an E > 0 such that 

every graph G with a( G) = 2 contains K l+f as a minor if and only if there exists 
3 

a positive constant c such that every graph G \vith c\'( G) = 2 contains a connected 

matching of size cn. In Chapter 3 we prove several structural properties of a vertex-

minimal counterexample to these statements, extending work by Blasiak. We also 

prove the existence of large connected matchings 1Il graphs with clique size close to 
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the Ramsey bound by proving: for any positive constants band e with e < ~, there 

exists a positive integer N such that, if G is a graph with n 2: N vertices, 0'( G) = 2, 

and clique size at most bJn log(n), then G contains a connected matching of size en. 

The second problem concerns thf~ computational complexity of finding thc si7-e 

of a maximum connected matching in a graph. This problem has many applications 

including, when the underlying graph is chordal bipartite, applications to the bipartite 

margin shop problem. For general graphs, this problem is NP-complete. Cameron has 

shown the problem is polynomial-time solvable for chordal graphs. Inspired by this 

and applications to the margin shop problem, in Chapter 4 we focus on the class 

of chordal bipartite graphs and one of its subclasses, the convex bipartite graphs. 

We show that a polynomial-time algorithm to find the size of a maximum connected 

matching in a chordal bipartite graph reduces to finding a polynomial-time algorithm 

to recognize chordal bipartite graphs that have a perfect connected matching. We also 

prove that, in chordal bipartite graphs, a connected matching of size k is equivalent 

to several other statements about the graph and its biadjacency matrix, including for 

example, the statement that the complement of the latter contains a k x k submatrix 

that is permutation equivalent to strictly upper triangular matrix. 

Vi 
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1. INTRODUCTION 

In broadest terms, this dissertation investigates "pairing up" problems. Assigning 

workers to jobs, putting students into cooperative pairs, scheduling processes to ma­

chines, and choosing efficient locations for building bridges between roads are all 

examples of this sort of problem. We look at special kinds of pairing schemes that 

have certain interconnectedness properties, and how they can be accomplished under 

various restrictions in diverse circumstances. 

When we model these scenarios with graphs, the type of pairing we are interested 

in will be called a connected matching. While gaining insight into practical issues such 

as the ones listed above is a worthy goal on its own, we will see that detecting con­

nected matchings in graphs is a rich and complex computational task. Furthermore, 

in certain families of graphs, the existence of large connected matchings is equivalent 

to Hadwiger's conjecture, a famous open problem in graph theory. 

The objective in this study is to carry forward the theory of connected matchings 

m both the computational and structural areas. We aim to further flesh out the 

complexity of detecting connected matchings, determining with greater specificity 

the classes of graphs for which connected matching problems are tractable. We also 

present progress on a conjecture related to the existence of large connected matchings 

1 



in graphs with independence nUInb~r 2. We \\Till also consider real world problems to 

which we apply our findings. 

In the remainder of this chapter, we walk through the basic graph theoretic ideas 

employed in this dissertation, and introduce some new ideas that clarify later expla­

nations. Next, we will introduce the extremal problem of connected matchings and 

place it in a theoretical context. In Chapter 3, we will present recent progress and 

original work on a version of that extremal problem. In Chapters 4 and 5, we will 

explore the computational issue of detecting connected matchings in some special 

families of graphs, and cite examples of optimization problems that can make use of 

these results. Finally, we will take a look at problems that are tangential to our main 

subject, but too appealing to be left behind. 

1.1. Background 

Formally speaking, a finite simple graph G = (V(G), E(G)) consists of a set V(G) 

called the ver-tex set and a set E(G) of two element subsets of V(G) called the edge 

set. We think of a graph as a collection of vertices, some of which are joined by edges. 

Graphs are typically used to model systems with a connectedness relation, as in the 

following examples: 

• A collection of people is modeled with a vertex set and an edge is placed between 

pairs of vertices corresponding to pairs of people who are friendly with each 

other (a social networ-k graph) . 

• A collection of computers is modeled with a vertex set and an edge is placed 
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between pairs of vertices corresponding to pairs of computers with a physical 

network cable between them (a computer network graph) . 

• The courses in a mathematics department are modeled with vertices. An edge 

is placed between them if their meeting times overlap (a scheduling graph). 

We use a shortened notation for edges. If edge e in a graph G is the set containing 

vertices u and v, we write e = uv. The complement of a graph G, denoted G, is 

the graph on the same vertex set as G in which the edge uv E E( G) if and only if 

uv ~ E(G). 

1.1.1. Matchings and connected matchings 

An edge e of a graph is said to be incident to each of its endpoints. A vertex v is 

saturated or covered by any collection of edges containing an edge incident to v. A 

matching in a graph is a collection of disjoint edges. A perfect matching is a matching 

that covers every vertex in the graph exactly once. Each vertex covered by a matching 

is "matched" unambiguously to one other vertex by the matching edge that touches 

it. 

A powerful theoretical tool for proving the existence of matchings is Hall's con­

dition. For a set S of vertices in a graph G, let N(S) be the open neighborhood of S, 

that is, the set of vertices in V( G) - 5 that are adjacent to a vertex from 5. Hall's 

condition, which can be proven by induction, states that if 5 has the property that 

for every subgraph T ~ 5, IN(T) n V(G) - 51 2 ITI, then there is a matching in G 

from S to G - S that saturates S. We will apply Hall's condition several times in this 
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A Nr 11 
1 .......... ! 

neighborly neighborly separable 

Figure 1.1: Neighborly and separable pairs of edges. 

study. 

Matchings in graphs are used to model pairings. Consider a graph with one subset 

of vertices representing jobs and another representing workers. Place an edge between 

a job and a worker if that worker is trained to perform that job. If each worker 

performs one job at a time, and each job needs only one worker, then a feasible 

assignment of jobs to workers is modeled by a matching. 

A pair of disjoint edges e = uv and f = xy in a graph G is separable if and 

only if none of the edges ux. uy, 1).1:, vy are present in G. A pair of edges that are 

not separable is called neighborly. A graph is called separable if and only if it has a 

separable pair of edges. Figure 1.1.1 exhibits the ways in which a pair of edges in a 

graph may be separable or neighborly. 

A connected matching in a graph G is a matching M with the additional property 

that no two edges of !vI are separable in G. 'vVe use this property to model various 

"matching-type" problems with extra requin~ments. 
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l.l.2. Gntph coloring 

Suppose we have a graph G = (V, E). If we take a subset V' of V and subset E' of E 

so that every e in E' is a subset of V', then the graph G' = (V', E') is called a subgmph 

of G. Intuitively, we create a subgraph by selecting vertices from a graph, and then 

choosing to include or exclude edges from the original graph whose endpoints are 

among the vertices we have selected. An edge that has both endpoints in a set S 

of vertices is said to be induced by S. The subgraph created by choosing a set S of 

vertices and all edges induced by S is called the subgraph of G induced by S, denoted 

G[S]. 

A set of vertices in a graph is called independent if it induces a graph with no 

edges. Let Q (G) denote the size of the largest independent vertex set of G, called the 

independence number of a graph G. 

Consider the scheduling graph we introduced earlier in this section. If two classes 

are in meetings at the same time at any point during the week, the corresponding 

vertices are joined by an edge. Each independent set therefore represents a collection 

of courses that do not overlap in time. Hence, a collection of courses we could feasibly 

assign to a single instructor corresponds to an independent set of vertices in the 

scheduling graph. We therefore model the task of assigning courses to instructors by 

partitioning the vertices of the scheduling graph into independent sets. 

Another way of looking at a partition of this kind is as a proper vertex coloring. 

Suppose we give each instructor a color, and visualize the scheduling graph with each 

vertex colored according to the instructor assigned to the corresponding course. If the 
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assignment is feasible, then no pair of adjacent vertices has the same color assigned to 

each. Formally, we define a proper vertex coloring as a partition C = {G1 , G2 , ... ,Ck } 

of the vertex set of a graph 0 with the property that each color class Gi is an 

independent set. 

A natural question arises in the scheduling graph model. How many instructors 

are needed to teach a certain collection of courses? In general, given a graph 0, how 

many colors are needed to properly color its vertices? The minimum number of colors 

needed to properly color a graph 0 is called the chromatic number of 0, denoted 

X( 0). For instance, a collection of three mutually adjacent vertices clearly requires 

three different colors in a proper coloring. However, a sequence of vertices each of 

which is adjacent to the precedent and antecedent vertices (a path graph) requires 

only two colors no matter how many vertices are used. A particularly interesting class 

of graphs are those with chromatic number two, called bipartite graphs. We denote a 

bipartite graph 0 as (A, B; E) where E is the edge set and A and B are the partite 

sets, i.e., the independent sets in a particular proper coloring of O. 

1.1.3. Perfect graphs 

The complementary notion of independence is completeness. If a subset S of vertices 

in a graph 0 induces all possible edges between vertices of S, we say S induces a 

complete graph or a clique. For the complete graph on n vertices, we use the notation 

Kn. The size of the largest clique contained in 0 is the clique number, denoted w(O). 

It's not hard to see that if a graph contains a clique on k vertices, then a proper 

coloring will require at least k colors. Each vertex of the clique is adjacent to all the 
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Figure 1.2: The graph C5 requires three colors, but has no triangle as a subgraph. 

others, and thus requires its own color. However, it is not the case that a graph must 

contain a clique on k vertices to require k colors for proper coloring. Consider a graph 

on five vertices Vl, V2, V3, V4, and V5. Add an edge between vertices whose indices differ 

by 1 modulo 5. This graph, as shown in Figure 1.1.3 is known as the cycle on five 

vertices (denoted C5 ); it has no clique of three vertices, yet requires three colors for 

a proper coloring. 

A graph G is perfect if and only if the chromatic number of each of its induced 

subgraphs is equal to the clique number of that subgraph. One of the great accom-

plishments of modern graph theory has been the characterization of perfect graphs 

given by the Strong Perfect Graph Theorem. 

Theorem 1 (Strong Perfect Graph Theorem). A graph G is perfect if and only if 

both G and G have no induced subgraph that is an odd cycle of length at least 5. 

This statement stood as a conjecture since its announcement by Berge in 1960 

until finally proven by Chudnovsky, Robertson, Seymour, and Thomas [9] in 2006. 
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Figure 1.3: C5 contains K3 as a minor. 

1.1.4. Hadwiger's conjecture 

One of the key threads in the development of graph theory through the past 60 years 

has been the search for upper bounds on the chromatic numbers of graphs. One type 

of conjectured upper bound involves relaxing the notion of a clique to some broader 

class of graphs that includes cliques. A subdivision of a graph G is a graph obtained 

from G by successively subdividing edges of G. To subdivide an edge uv, we introduce 

a new vertex w, and replace the edge uv with edges uw and wv. Hajas conjectured 

that a graph with chromatic number at least k must contain a subdivision of a k-

vertex clique as a subgraph. This was shown to be false for k 2': 7 by Catlin [8] in 

1979, but the cases of k = 5 and k = 6 remain open. This (ultimately false) conjecture 

was offered as a strengthening of the clatitiic conjecture of Hadwiger concerning graph 

mmors. 

We say that G contains H as a minor (denoted H -::;m G) if a graph isomorphic to 

H can be obtained from a subgraph of G by a series of edge contractions and vertex 

deletions. An edge contraction, as we see in Figure 1.3, consists of identifying a pair 

of adjacent vertices u and v as a single vertex that is adjacent to any vertices adjacent 

to 1l or v. The sets of vertices contracted to exhibit a particular minor in a graph are 
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called the branch sets of that minor. 

The Hadwiger number of a graph G, denoted 7]( G), is the largest integer n for 

which G contains Kn as a minor. Hadwiger's conjecture [20] claims that this is an 

upper bound on the chromatic number of a graph. 

Conjecture 1. For any graph G, 

I](G) :::: X(G) 

Some progress has been made toward resolving this conjecture. Erdos, Bollobas 

and Catlin [5] showed that almost alII graphs satisfy the conjecture. For chromatic 

numbers 1 and 2 the result is trivial. For chromatic number 3 it is a simple exercise2 . 

Dirac [10] proved the case of chromatic number 4 in 1952. The case of chromatic num-

ber 5 can be shown to be equivalent to the famous four-color theorem, and Robertson, 

Seymour and Thomas proved the same in L99~) for the case of chromatic number 6 

[32]. For larger chromatic numbers, the conjecture remains open. One motivation for 

this study is an attempt to develop other types of partial results, as we will see in the 

following chapter. 

1 A mndorn gmph is a probability space OIl all graphs with n vertices. The space used in this proof 
is snch that thp probability of any particular edge being present in the sample graph is a fixed value 
o < p < l. In this case, "almost all" means with probability approaching 1 as n increases without 
bound. 

2To see this, C'Onsider that any graph without an odd cycle as an induced subgraph can be properly 
colored with two colors. Thus a graph with chromatic number 3 must have an odd cycle that can 
be contracted to a triangle. 
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1.2. Complexity 

A large part of this dissertation is concerned with algorithms for finding connected 

rnatchings. \Vc ask whether or IlOt :'good" algorithms for finding cOIlnected matchings 

can be found. The starting point, as we will see in Chapter 4, is that the general 

problem of finding connected matchings is NP-·complete. The complexity class NP 

consists of computational problems that have Ii polynomial-time verifier, which is to 

say that a proposed solution can. if correct, be shown to be correct in a number of 

steps that scales polynomially with the size of the input. It is unknown whether or not 

the class NP coincides with the class P of problems that can be solved in a number of 

steps that scales polynomially with the size of the input. This is the famous P vs. NP 

question, far and away the outstanding open question in computational complexity 

theory. 

If it can be shown that every other problem in NP can be reduced to a given prob­

lem in NP, then this problem is said to be NP-complete. In practice, this is typically 

accomplished by reducing one of a known collection of NP-complete problems to the 

problem in question. For an excellent overview of the theory of NP-completeness , see 

Garey and Johnson [16] 

1.3. Proximity coloring 

Two vertices u and v in a graph G are connected if there is a sequence of vertices, 

each adjacent to the previous, that begins with u and ends with v (Such a sequence 

is called a path). We define the connectivity of a pair of connected vertices in a graph 
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G &.') the minimum number of vertices that must be deleted from G so that u and v 

are not connected in the resulting graph. If all pairs of vertices in G are connected, 

then we call G a connected graph. If G has n vertices, we define the connectivity of G 

(denoted K( G)) as n - 1 if G is a complete graph and as the minimum connectivity of 

any pair of vertices from G otherwise. A collection of vertices whose removal renders 

a graph disconnected is called a cut and a cut in G of size K( G) is called a minimum 

cut. 

When a connected graph is used as a "map" of some real-world network of inter­

connected nodes, we may be curious about how many "steps" it takes to get from one 

node to another. Suppose we look at a city road map and would like to determine 

the shortest route from the corner of 4th and Hill streets to the corner of 9th and 

Jefferson streets. ·What do we mean by shortest? An actual road map would be able to 

tell us the distance "as the crow flies" or the distance along roads. We could estimate 

our travel time based on spero limit ano traffic considerations. Or we could ask for 

the route that minimizes the number of stop lights we encounter. Let us consider this 

last notion of distance. We model the intersections as vertices in a graph and place 

an edge between vertices corresponding to intersections joined by an uninterrupted 

stretch of roadway. The "minimum stop light path" is the same as the shortest (in 

the sense of fewest edges) path in the graph from one vertex to another. 

The distance in a graph G between vertices u and v (denoted d( u, v) or dc ( u, v) 

if we wish to emphasize the choice of graph) is the number of edges in the shortest 

path between u and v using edges of G. The maximum distance between vertices of 

G is called the diameter of G, denoted diam(G). In the above example, we may not 
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be interested in the number of miles we drive from one intersection to the other, but 

only in the number of intersections through which we travel. Graph distance tells us 

about the proximity of vertices in the topology of the graph. 

Suppose e is a connected graph on n vertices. Consider also the edges of the 

complete graph on n vertices (denoted K n). We construct the proximity partition of 

E(Kn) by collecting these edges into sr:;ts ac('ording to the minimum distance in e 

between the endpoints. Define a relation", on the edges of Kn so that uv '" u'v' if and 

only if dc(u, v) = dc(u', v'). Clearly, this is an equivalence relation. The proximity 

partition of E(Kn) induced by e consists of the equivalence classes of this relation. 

Sometimes we may only be interested in distances that fall below a certain threshold. 

Perhaps in our application certain distances are simply considered "too far" to be of 

any note. In this case, we consider the proximity k-partition P~ induced bye, where 

for 1 ~i < k, vertices are related as above, and all pairs u, v with dc ( u, v) > k are 

collected into a single class. For small values of k, we may think of this partition as 

an edge coloring of Kn and refer to the p70ximity k-coloring of Kn. 

The proximity 3-coloring is helpful in studying connected matchings, so we intro­

duce a further shorthand. \Ve color the distance 1 edges (i.e. the underlying graph) 

blue, the distance 2 edges green, and all other edges red, as we see in Figure 1.4. We 

then refer to the resulting edge colored K'1 as the ReB graph induced by e (see, 

e.g., Figure 1.4). 

12 



Figure 1.4: A graph and the induced RGB graph. 

Figure 1.5: A graph and its line graph. 

1.3.1. Line Graphs 

Proximity colorings and RG B graphs become useful to connected matching problems 

when we consider line graphs. The line graph of a graph G (denoted L( G)) is a graph 

whose vertex set is the edge set of G and vertices in L(G) are adjacent if and only if 

the corresponding edges in G share an endpoint. A simple example of a line graph is 

exhibited in Figure 1.5. 

Proposition 1. Connected matchings in a graph G correspond to green cliques in the 

RGB graph induced by L(G). 

Proof Incident edges of G correspond to adjacent vertices in L(G) . If we have a 

pair of edges e, f E E( G) that are disjoint and neighborly, then there is some edge 

g E E(G) between an endpoint of e and an endpoint of f. Hence, eg,fg E E(L(G)) 

13 
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Figure 1.6: Correspondence between pairs of edges in G and the RGB edges of L( G). 

and ef ~ E(L(G)). This means that dL(G)(e, 1) = 2, and ef is green in the RGB graph 

induced by L(G), as shown in Figure 1.3.1. Since connected matchings are collections 

of pairwise non-incident and neighborly edges, the green cliques in the RGB graph 

induced by L(G) correspond to connected matchings in G. o 

Predictably, some complexity results on connected matching problems essentially 

rest on clique problems in RGB graphs of line graphs. While clique problems are in 

general NP hard, there are special classes of graphs, such as perfect graphs, for which 

they can be solved efficiently. We will see that some graphs retain this quality in the 

green graph of their line graph. 
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2. THE EXTREMAL PROBLEM 

Most of the work that has been done on connected matchings concerns the minimum 

size of a largest connected matching in a graph with certain properties. This is the 

extremal problem of connected matchings. In particular, how many vertices must a 

member of a certain class of graphs have before the existence of a connected matching 

of a certain size is guaranteed? In this chapter we discuss a connection between a 

certain special case of Hadwiger's conjecture and the extremal problem of connected 

matchings. 

2.1. Extremal problems 

Extremal graph theory is concerned with finding the maximum or minimum (by 

a variety of measures) graphs that have a certain property. Typically, an extremal 

problem asks "How many edges must be present in a graph with n vertices to ensure 

X", or "How many vertices must a graph with property P have to ensure X". The 

iconic example of an extremal problem, one which we use in Section 3.2.1, is the 

problem of edges and cliques. How many edges must a graph on n vertices have to 

ensure the existence of a clique of size k? The answer is due to Turan in 1941. Turan's 

answer [34] explicitly constructed the extremal graph, that is, the graph on n vertices 
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with no k-clique and the maximum number of edges. Let T(n, r) be the graph on n 

vertices constructed by dividing the vertices as evenly as possible into r parts and 

adding all edges among the parts. This is the complete balanced r-partite graph on n 

vertices, also called a Turan graph. 

Theorem 2. The n vertex graph with no complete subgraph on r vertices and the 

maximum number of edges is T( n, r - 1). 

l'vIany proofs of this theorem can be found in various graph theory texts, see [1] 

for several interesting proofs. 

2.2. A special case of Hadwiger's conjecture 

In Chapter 1 we discussed some partial results on Hadwiger's conjecture, primarily 

for the special ca..'Ses arising from restricting the chromatic number. Now we turn our 

attention to a different sort of special ease. A proper vertex coloring can be thought 

of as a partitioning of the vertex set into independent sets. This gives us an easy 

lower bound on the chromatic number in terms of the size of a largest independent 

set. The least number of colors needed would be realized when all color classes are the 

same size, so X(G) 2: njo:(G). This leads to the following weakening of Hadwiger's 

conjecture. 

Conjecture 2 (Weaker version of Hadwiger's conjecture). For all graphs G, 

n 
T/( G) 2: 0:( G) . 
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At the present time, this conjecture is open for any particular value of 0:. However, 

it was recently shown by Fradkin [14] to hold for claw-free graphs with 0: ~ 3. An 

examination of this problem by Duchet and Meyniel [11] yielded the following bound. 

Theorem 3. FOT any graph G, 

n 
n(G) > ---­
, , - 20: (Gl -- 1 

• J 

This is turn was improved by Kawarabayashi et. al [21] for almost all values of (~ 

Theorem 4. For any graph G on n vertices with 0:( G) ~ 3 

(G) 
n(4a(G)-2) 

T/ > 
- (40:(G) -- 3)(20:(G) - 1) 

The first improvement by an absolute constant factor comes from Fox [131 who 

shows that 

Theorem 5. Let c = 29-
2
fI3. Then fOT any graph G, 

) 
n 

'TI(G > ---. - (2 - c)o: 

The specific case of 0:( G) = 2 has attracted much attention. Plummer, Stiebitz and 

Toft gave this case a thorough treatment in [30]. Despite many partial and tangential 
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results on this case, the bound in Theorem 3 is still the best known for a = 2 

(Note that for small values of a, the bound in Theorem 3 is better than the bound 

in Theorem 5). In addition to their work on Hadwiger's conjecture, Plummer et. 

al introduce the idea of a connected matching. This led to the following extended 

conjecture. 

Conjecture 3 (PST extension of Hadwiger's conjecture). Every graph G with a( G) = 

2 and n vertices has a connected matching M such that the contractions of the edges 

in A1 to IMI single vertices result in a graph containing Krn/cl 

This was also conjectured by Seymour and is sometimes referred to as Seymour's 

strengthening of Hadwiger's conjecture. Plummer, Stiebitz and Toft prove this con-

jecture for all inflations l of graphs with independence number 2 and fewer than 12 

vertices, as well RS inflations of Rn infinite family of 0: = 2 graphs. 

2.3. Connected matchings in graphs with 0' = 2 

The strengthened verSIOn of Hadwiger's conjecture for graphs with independence 

number 2 placed connected matchings front and center. Seymour is credited with 

presenting the problem of improving the bound of Duchet and Meyniel in the case of 

independence number 2. 

Conjecture 4. There exists t > 0 so that every graph G with n vertices and 0'( G) = 2 

contains Kr(~+()ln as a minor. 

1 An inflation of a graph is obtained by replacing some vertices with complete graphs of any size 
all of whose vertices are adjacent to the neighbors of the replaced vertex. 
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One of the results of Kawarabayashi et. al in [21] effectively reduces this problem 

to an extremal problems on connected matchings. 

Theorem 6. If a graph G on n vertices with a(G) :::; 2 contains a connected matching 

of size greater than or equal to kn > 0, then G has Kr(n/3)(l+k/3)1 as a minor. 

Conversely, if G has K r en 1 as a minor for c > ~, then G contains a connected 

matching of size at least (3c - 1 )n/ 4 - ~. 

Thus, if there is some k for which ever'y graph with independence number two 

on n vertices has a connected matching of size kn, then Conjecture 4 must be true. 

Gyarfas, Furedi, and Simonyi presented this extremal conjecture explicitly in [15] 

Conjecture 5. There exists some constant c such that every graph G with n vertices 

and a( G) = 2 has a connected matching of size cn. 

Furthermore, they conjecture on the value of the constant c 

Conjecture 6. Every graph G with 4t - 1 vertices and n( G) = 2 has a connected 

matching of size t. 

They prove this for values of t up to 17, and show that it is sharp by exhibiting 

the example of G consisting of two disjoint and disconnected cliques. 

Another result found in [30] is that if H is a 4-vertex graph with a(H) :::; 2, and G 

is an n vertex graph with a(G) = 2 and no copy of H as an induced subgraph, then 

G has Krn/21 as a minor. Kriesell has recently [24] improved this result by adding the 

5 vertex graphs to this list. 
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t>~ ... 
B 

Figure 2.1: The graphs Band B- referred to in Theorem 8. 

Theorem 7. Let H be any graph with a(H) s: 2 on at most 5 vertices. Then every 

{K3, H}-free graph on n vertices has a collection of fn/2l pairwise adjacent edges 

and vertices. 

From this and the second part of theorem 6 we conclude that every {K3, H}-free 

graph on n vertices has a connected matching of size l ~ J. However when H = K 2,3, 

Kriesell has found that we can say even more. 

Theorem 8. Every connected, {K3, K 2,3}-free graph on n vertices nonisomorphic to 

B or B- in Figure 2.1 has a connected dominating matching of size l ~ J . 
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3. THE EXTREMAL CONJECTURE 

Now we focus directly on the extremal conjecture of Gyarfas, Furedi and Siruonyi 

(Conjecture 5). We show that among certain families of graphs with independence 

number 2, the size of a maximum connected matching is linear in the number of 

vertices. We "piggyback" in some cases on results related to Seymour's strengthening 

of Hadwiger's conjecture, optimizing them for connected matchings. Furthermore, we 

prove the conjecture for a class of graphs that appear with probability one in a natural 

random process generating graphs with independence number 2. 

The progress on Conjecture 5 presented in this chapter splits into large clique cases 

and small clique cases. For graphs with a = 2 that have large cliques (i.e., cliques 

whose size is linear in the number of vertices in the graph) it is relatively simple to 

construct the largest possible connected matching arising from a large clique as we 

show in Section 3.1. The structure of graphs with independence number 2 allows us 

to draw conclusions on the possible minimum degree and connectivity properties of 

a counterexample to Conjecture 5. 
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3.1. Large clique cases 

As noted earlier, Gyarfas, Furedi and Simonyi prove that for t ::; 16, any graph G 

with 0:( G) = 2 has a connected matching of size t. In so doing, they implicitly intra-

duce an important lemma concerning the relationship between cliques and connected 

matchings. 

Lemma 1 (GFS). Let 0 < c < 1/4. If G is a graph with o:(G) ::; 2 with w(G) 2 en, 

then G has a len J -connected matching. 

Proof. Let S be a set of en vertices inducing a clique. For any subset of S' ~ S, the 

intersection I = n {v E V (G) : sv 1- E( Gn induces a clique. If for any S' ~ S, I I I > 
sES' 

n/2, then there is a n/4-connected matching in the clique induced by I. Otherwise, 

IN(S')I = n - IS'I -III 

n 
>­- 4 

> IS'! 

for all S' ~ S. Hence, by Hall's condition (see e.g., [35]), a matching from the vertices 

of S to the vertices of V (G) - S exists. This matching must be connected, since S 

induces a clique. o 

We might suggestively call this the "spider lemma" &'5 it exhibits a connected 

matching with a "head" (the clique) and many "legs" (the matching with one side 
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inducing the clique). Using the spider lemma, we deduce some structural qualities 

that a counterexample to Conjecture 5 must possess. Chief among these is high con­

nectivity, because, in graphs with independence number at most two, disjoint sets 

of vertices with no edges between them must induce cliques. First, we make explicit 

the relationship between Conjecture 5 and Seymour's strengthening of Hadwiger's 

conjecture (As described in Chapter 2. Hereafter, SSH.). The following proposition 

shows that SSH implies the GFS conjecture. 

Proposition 2. If SSH holds for a graph G on n vertices with independence number 

2, then I/c(G) 2' n/4. 

Proof. Let M be the collection of branch sets of a K n / 2 minor of G that satisfies 

the hypothesis of SSH (all branch sets of size 2 or 1). Let Ml be the collection 

of elements of M consisting of single vertices and l'V[2 the collection of elements of 

M consisting of edges. Obviously, Jl;h is a connected matching. Furthermore, any 

matching of the clique induced by Ail forms a connected matching that extends the 

connected matching formed by 1''112 , because 

o 

In Lemma 2.1 of Blasiak's paper [3], the author shows that any n = 2 graph with 

connectivity less than n/2 satisfies SSH. We show the following for higher connectivity. 

Lemma 2. If G is a graph on nvertices with a:(G) < 2, then I/c(G) > n-~(G) If 
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/i(G) 2: n/2, then vc(G) 2: n - /i(G). 

Proof. Let G be a graph on n vertices with 0:( G) ::; 2. Because cuts in 0: = 2 graphs 

separate components that must be cliques, at least one component has at least n-;(G) 

vertices. Any matching in this clique component is connected, so G has a connected 

1· f' n-K(G) matc lIng 0 SIze -4-' 

The proof of the second claim follows the strategy of Lemma 2.1 of [3]. Assume 

that /i( G) 2: n/2. Let 5 be a minimum cut set of G. Let L, R be a partition of 

V( G) - 5 so that there are no edges joining vertices from L to vertices from R. Since 

a( G) = 2, Land R are cliques. Every vertex of 5 is adjacent to every vertex of L or 

adjacent to every vertex of R. We say that a vertex is complete to a set of vertices if 

it is adjancet to every vertex in the set. Let 5L be the set of vertices complete to L 

and 5R be the set of vertices complete to R. We claim that between any A ~ 5L with 

IAI ::; IRI and R (5R and L resp.) there is a matching that saturates A. Suppose there 

is no matching from R that saturates A. Halls condition then implies that there is a 

subset T of A such that IN(T) n RI < ITI. But then (5 - T) U (N(T) n R) is a cut set 

separating L U T and R - N(T). This set is smaller than 5, yielding a contradiction. 

Let M be the largest possible matching obtained with edges between 5L and R 

(temporarily named type 1 edges) and edges between 5 Rand L (type 2 edges). This 

matching is connected. To see this, note that the collections of edges of each type 

form "spiders" because Rand L are cliques. Furthermore, without loss of generality, 

the 5L ends of the type 1 edges are complete to L. and hence adjacent to an endpoint 

of every type 2 edge. 
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If both IRI ::::: ISL! and ILl::::: ISRI (and /'C(G) ~ n/2) , then we can find TL ~ SL 

and TR ~ SR so that TL and TR are disjoint, ITRI = ILl, and ITLI = IRI. Thus, using 

the above claim, we construct a connected matching saturating V(G) - S. 

Without loss of generality, IRI > SL. This means that ILl::::: SR, as S ~ n/2 and 

S ~ SLUSR. Let RU denote the set of vertices of R unmatched by M. Since lSI ~ n/2, 

we assume that we have matched all the vc!.tices of S L to vertices in R. Consequently, 

there are at least IRul unrnatched vertices of SR (denoted S'R). Augment M with any 

matching from the biclique between RU and S'R saturating RU to yield M' . These 

new edges are mutually connected, and connected to any type 1 or type 2 edges via 

edges of R in the case of type 1, or edges from SR to R in the case of type 2. Now 

M' is a connected matching saturating R U L, and IR U LI = n - /'C(G). o 

This lemma, together with the spidel lemma, allows us to collect the properties 

of a "large-clique" counterexample to Conjecture 5. Say that an edge e dominates a 

vertex l' rf- e if v is adjacent to an endpoint of e. The following proposition collects 

these properties. 

Proposition 3. If Gc is a vertex-minimal counterexample to Conjecture 5 with n 

vertices, then the following conditions must be satisfied 

1. w(GJ < en. 

2. r5(Gc ) ~ (1 - c)n. 

3. Gc has diameter 2. 

4. Gc is (1 - c)n-eonnected. 
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5. C e has no edge dominating c(n - 1) vertices. 

Proof. Items 1 and 4 follow directly from the two lemmas. The collection of non­

neighbors of a vertex in an 0: = 2 graph form a clique, which leads to item 2. Applying 

the pigeonhole principle together with the assumption in item 2, every pair of vertices 

share a neighbor, so Ce has diameter 2. 

Consider a vertex-minimal counterexample Ce . Following from the work of Gyarfas 

et al., we know that small graphs (fewer than 67 vertices) satisfy Conjecture 5 for any 

c :s; 4. Assume that the conjecture holds up to n - 1 vertices. Any edge dominating 

a connected matching clearly extends that connected matching. Thus our minimal 

counterexample must not dominate c( n - 1) vertices, lest it dominate a connected 

matching of size n - 1 by the induction hypothesis. D 

Taken altogether, the results of this section show that a counterexample to Con­

jecture 5 must be highly connected, yet avoid large cliques. As Blasiak remarks in 

[3], this means that the most "mysterious" cases arise when minimum degree and 

connectivity are close to the number of vertices in the graph. These are what we call 

the small clique cases. We show next that one important class of these graphs, the 

Ramsey graphs with independence number 2, satisfy Conjecture 5. 

3.2. The small clique cases 

To work on graphs with independence number 2 and only the smallest possible cliques, 

we employ results from an area known as Ramsey theory. Ramsey theory is concerned 

with the study of highly organized, unavoidable substructures in large structures. 
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This unavoidability is sometimes summarized by the statement "Complete disorder 

is impossible" . 

3.2.l. Ramsey's theorem 

Ramsey theory tells us that a large enough graph must either have a clique or in­

dependent set of a certain size. This makes intuitive sense, if there are few enough 

edges in a graph to avoid a large clique, then there ought to be a large independent 

set. Ramsey formalized and proved this intuition in the following theorem [31]. 

Theorem 9. For any pair of positive integers (r, s), there exists a least positive integer 

R(r, s) such that for any graph on R(r, s) vertices, there exists either a complete 

subgraph on r vertices in G or an independent set of 8 vertices in G. 

This number R(r, s) is known as a Ramsey number. 

We study graphs that are, in a sense, extremal with respect to Ramsey numbers. 

In particular, we study 0 = 2 graphs. This means we are most interested in the 

tT'iangle Ramsey numbers R(3, k). In [23], Kim famously proved that the magnitude 

of R(3, k) is on the order of k2
/ log k. For any positive constant B, we call the class 

of 0: = 2 graphs with n vertices and no clique of size B vi n log n the triangle Ramsey 

graphs. These graphs are very highly connected, so the results of the previous section 

are of little help. In this section, we show the Conjecture 5 holds for sufficiently large 

Ramsey graphs, with a value of c arbitrarily close to 1/4. We also discuss a natural 

random 0: = 2 graph model which 2Jmost certainly satisfies Conjecture 5. 

Theorem 10. Lpt c < 1/4 bp a constant. For any constani band sufficently large 
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N(y) 

Figure 3.1: Illustration of the count from Eq. 3.1 

n, every a = 2 graph G on n vertices with w( G) < bJn log n has a en-connected 

matching. 

First, we prove a lemma that will place a bound on the number of pairs of separable 

edges in an a = 2 graph with a given clique number. In order to simplify the notation 

in the proof, we work on the complementary notion of cycles of four vertices in 

triangle-free graphs with a given independence number. 

Lemma 3. For every pair of positive constants E, d there is n E,d such that every 

triangle-free graph G with n > nE,d vertices and a(G) < dv'n log n has fewer than m 3 

copies of c4 . 

Proof Fix E, d > 0 and let G be a triangle free graph on n vertices with a( G) < 

dv'nlogn. Let XC4 be the number of copies of C4 in G. Then 

x =! ~ (IN(U) n N(v)l) 
C4 2 ~ 2 

{u,v}~E(G) 

(3.1) 

For each nonadjacent vertex pair {u, v}, we count the number of distinct pairs of 
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vertices in the intersection of the neighborhoods of u and v. This counts each C4 

twice, so we divide by two. Fix E1 < J&. 

Claim. For sufficiently large n, fewer than n 2 (10g nt2 pairs of vertices u, v have neigh-

borhood intersection larger than (1 yn. 

Suppose the contrary is true, and there are more than n2(10gn)-2 pairs u, v so 

that IN ( u) n N ( v) I 2': f 1 yn. We count the total number of vertices in these intersec-

tions. The count is at least E(n5/ 2 (10gn)-2, meaning some vertex is counted at least 

fln3/ 2(logn)-2 times. However, ,6,(G) :s: o:(G) < dJnlogn, so each vertex is in at 

most 

neighborhood intersections. Thus, for sufficiently large n, the claim holds. 

Now we bound X C4 . We overestimate by supposing that there are precisely n2(10gn)-2 

pairs of vertices with the largest possible vertex intersection, and the remainder have 

neighborhood intersection of size (1 yn. 

Xc < ~ [ n
2 

(dv'n10g n) + (IE( G) I _ n
2 

). (E1 yn)] (3.2) 
4 2 (logn)2 2 (logn)2 2 

The right hand side asymptotically equals 

(3.3) 

This is strictly greater than en3
, tlO for tlufficicntly largc n, the desired bound on X C4 

holds. o 
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Now we prove Theorem 10. We use the language of RGB proximity colorings 

introduced in Chapter 1. 

Proof (of Theorem 10). Fix constants d and e < 1/4, and let G be a a = 2 graph 

with n vertices, Tn edges, and w( G) < bJn log n. Consider the RG B graph g induced 

by L(G) (recalling that green k-cliques correspond to k-connected matchings in G 

and red edges correspond to induced C4s in G). If R, G, and B denote the number of 

red, green and blue edges respectively, we would like to show that 

(m) (m) (m/rn) G= 2 -R-B'2 2 -en 2 (3.4) 

equi valently 

(3.5) 

guaranteeing by Turan's theorem (sec, e.g., [35]) a green clique on en vertices in g, 

and a en-connected matching in G. 

We obtain a crude upper bound 011 B by taking the number of edges in the line 

graph of K n , 

n3 3n2 

B< ---+n. 
2 2 

(3.6) 

We bound R using Lemma 1. For any ( > 0 and sufficiently large n, 

(3.7) 

30 



Thus for sufficiently large n, 

We compare this with the right hand side of (3.5) 

en (mien) 
2 e;I' (er;~2 - :) 

1 2 -1 m -mn --
2c 2 

n3 

8e 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Since e < 1/4, and we can take t < l~:c, for sufficiently large n, the inequality (3.5) 

holds and G has a en-connected matching. o 

3.2.2. The triangle-free process 

The triangle-free process is a method of stochastically constructing maximal triangle-

free graphs. Let Go be the empty graph on n vertices and let Oi be the set of edges of 

Kn - Gi that will not create a triangle when added to G i . Then for each G i , construct 

Gi+l by adding an edge chosen uniformly at random from 0; until some step k at 

which Ok is empty. The complementary version of this process is a natural source of 

a = 2 graphs. 

Bohman has shown in [4] that the triangle free process asymptotically almost 

surely produces graphs which satisfy the hypotheses of Theorem 10. This unfortu-

nat ely falls short of a proof that Conjecture 5 holds for almost all a = 2 graphs 
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because the triangle-free process does not produce a uniform distribution. Nonethe­

less, the triangle-free process indicates that the 0: = 2 Ramsey graphs are in a sense 

"typical" among 0: = 2 graphs and well worth studying. 

In conclusion, we see that in 0: = 2 graphs that are highly "spread-out" (Theorem 

10) and in ones that are "bunched-up" (spider lemma) Conjecture 5 succeeds. It 

remains to be seen if further work in tuning and sharpening these techniques can 

close the gap, if new approaches are needed, or if indeed there lurks a counterexample 

somewhere in the middle ground 
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4. COMPUTING CONNECTED MATCHINGS 

While the extremal problem of connected matchings has driven most of the theoretical 

development to date, there is another aspect of connected matchings that demands 

our attention. How do we find large connected matchings in graphs? In particular, 

how do we compute the size of the largest connected matching in a particular graph? 

Plummer et. al show in [30] that this problem is NP-hard in general. 

A connected matching of size k has a clique minor of size k, so it may not be sur­

prising that the general problem of finding connected matchings is difficult. There is a 

"clique-like" element to the problem, and so we might expect that the computational 

difficulty is similar to clique problems. However, maximum matchings in graphs can 

be found efficiently. Edmonds in [12] showed an algorithm that computes the maxi­

mum matching in a graph in time polynomial to the number of vertices in the graph. 

Furthermore, there are many elegant matching algorithms that we may adapt to the 

problem of constructing a maximum connected matching. 

In this chapter, we investigate computational problems concerning connected 

matchings in special families of graphs. We attempt to utilize the special structure of 

these families to develop algorithms that find maximum connected matchings. 
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4.1. Known results 

In [6], Cameron shows that the maximum connected matching problem is solvable in 

polynomial time for chordal graphs, by considering connected matchings as match-

ings contained in neighborly sets of edges. Neighborly sets of edges from a graph G 

correspond to cliques in the square of the line graph of G, L(G)2. It then follows that 

if L( G)2 has M maximal cliques, then the maximum connected matching in G can 

be found by solving M maximum matching problems. Hence, we state the following 

general result from which the result on chordal graphs follows. 

Theorem 11. If P is a class of graphs such that for any G E P with n vertices, 

the number of maximal cliques in L( G)2 is less than f (n) where f is a polynomial, 

then the maximum connected matching problem can be solved in polynomial time for 

graphs from P. 

The square of the line graph of a chordal graph is itself a chordal graph I
, and 

hence has a polynomial number of maximal cliques. 

Conversely, Cameron also shows that the maximum weighted connected matching 

problem remain" NP-complete on (O,l)-weighted bipartite graph". It i" not difficult 

to reduce this problem to the maximum clique problem on general graphs, by taking 

any graph H and replacing each vertex v with a new edge joining two new vertices VI 

and V2, assigning the edge 'VI7)2 a weight of 1. If two vertices u and 7) are adjacent in 

H, we produce edges UI7)2 and U2Vl of weight zero. In the resulting graph, the edges 

1 In fact, Cameron showed in [7] that a larger class of graphs, the weakly chordal graphs also have 
this property. That is, the square of the line graph of a weakly chordal graph is also weakly chordal. 

34 



weakly chordal 
~ 

bipartite 
j 

/ 
chordal acyclic 

chordal bipartite 

Figure 4.1: Inclusion diagram 

of positive weight in any connected matching correspond to a clique in H and vice 

versa. It is important to note that this reasoning does not extend to the unweighted 

bipartite graphs. 

4.2. Chordal bipartite graphs 

To extend the results in the previous section, we turn to a relaxation of chordal graphs , 

the weakly chordal graphs. A weakly chordal graph is a graph in which every cycle 

of length five or greater has a chord. Also, we closely examine those weakly chordal 

graphs that are also bipartite; these graphs are known as chordal bipartite graphs (see 

Figure 4.2). 

An important characterization of chordal bipartite graphs is that any non-empty 

induced subgraph of a chordal bipartite graph contains a bisimplicial edge. An edge uv 

is bisimplicial if the neighborhoods of the endpoints induce a complete bipartite graph. 

That is, for any a E N(u) and bE N(v), ab is an edge of the graph. Bisimplicial edges 

equip the chordal bipartite graphs with a perfect edge without vertex elimination 

ordering, i.e. , upon removing a bisimplicial edge from a chordal bipartite graph, the 
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resulting graph is still chordal bipartite. These results, among others developing the 

theory of chordal bipartite graphs, can be found in [18]. 

4.2.1. Inert bisimplicial edges 

If a graph is non-separable, then we quickly compute the maximum connected match­

ing using any maximum matching algorithm we choose. The following result of Golumbic 

[17] is valuable when dealing with non-separable chordal bipartite graphs. 

Theorem 12. Let H be a choTdal bipaTtite gmph. If H is sepamble, then it has at 

least two sepamble bisimplicial edges. 

We will see shortly that once we have identified a pair of bisimplicial edges, we can 

always remove one of them from the graph without reducing the size of a maximum 

connected matching in the graph. 

Let us say that an edge e in a graph G is ineTt if vc(G) = vc(G - e). Bisimplicial 

edges in chordal bipartite graphs are inert unless the conditions in the following lemma 

are satisfied. 

Lemma 4. Let G = (A, B; E) be choTdal bipaTtite. A bisimplicial edge e = uv is ineTt 

unless at least one of the following is tme: 

1. e is contained in eveTY maximum connected matching. 

2. FOT any maximum connected matching lvI, eveTY edge of M has exactly one 

endpoint adjacent to an endpoint of e. 

3. FOT any maximum connected matching M, N(e) is coveTed by M. 
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Figure 4.2: Picture of a non-inert bisimplicial edge. Every maximum connected match­
ing saturates the neighborhood of the edge. 

Proof Suppose we have a chordal bipartite graph G = (A, B; E) that has a bisim-

plicial edge e = uv with u E A and v E B. To prove that condition 1 is necessary, 

we must show that removing e does not reduce the size of a maximum connected 

matching that does not include e. 

In fact we show more, to wit, that removing e does not reduce the size of any 

connected matching that does not include e. Suppose we have a connected matching 

M . If M does not cover the endpoints of e, then obviously removing e has no effect 

on the size of M . Thus we have f = uu' and 9 = v'v included in M. The only way 

removing e could red uce the size of M is by disconnecting f and g. However, since 

e is bisimplicial, u' E N(u), and v' E N(v); the edge u'v' must be present. Hence 

removing e does not disconnect f and 9 (see Figure 4.2.1). In proving the necessity 

of condition 2, we choose a maximum connected matching M. By condition 1, we 

assume that e E M. Suppose now that f = u"v" is another edge of M and edges 

9 = uv" and h = u"v are both present. We claim that we can remove e and f from 
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M 

• 
• 
• 

o 0 

Figure 4.3: lllustration of proof of condition 1. 

M 

• 
• • 

Figure 4.4: lllustration of proof of condition 2. 

M and replace them with 9 and h. Let d = UIllV
Ill be an edge of M. This edge d must 

be connected to one of either 9 or h via an endpoint of e. Without loss of generality, 

suppose d is connected to 9 by the edge uvlll
. Now V III E N(u) and u" E N(v). Since 

e is bisimplicial, u"vlll is present and d is connected to h as well (see Figure 4.2.1). 

To prove that condition 3 is necessary, once again choose a maximum connected 

matching M. Suppose now that condition 3 does not hold , and there is (WLOG) an 

edge f = ux such that x is not covered by M. We claim that we can remove e and 

replace it with f in M. We need only consider some edge 9 contained in M that is 

not connected to e via u. Then there is an endpoint w of 9 so that w E N(v). Clearly 

x E N(u), so wx is present and 9 is connected to f (see Figure 4.2.1). D 

38 



M 

~f :-~ 
• 
• 
• 

Figure 4.5: illustration of proof of condition 3. 

Taken altogether, these observations about bisimplicial edges allow us to reduce 

the maximum connected matching problem to a saturating connected matching prob-

lem. Presented with a separable chordal bipartite graph, we find two separable bisim-

plicial edges. If the neighborhood of either endpoint of one of these edges is not 

saturated by a connected matching, then the edge is inert and is removed. If both 

edges have connected matchings saturating their neighborhoods, we simply remove 

the edge of smaller degree. If they additionally have the same degree, either one may 

be removed. In this manner, we remove bisimplicial edges until the graph is ren-

dered nonseparable. Having done so, any maximum matching algorithm will produce 

a maximum connected matching. 

In short, we reduce Maximum Connected Matching to the following problem. 

Saturating Connected Matching 

Input: Bipartite graph G = (A, Bj E) 

Question: Is there a connected matching in G that saturates A? 
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Figure 4.6: A connected matching that is not an ordered connected matching. 

4.2.2. Ordered connected matchings 

Now we explore ideas equivalent to connected matchings in chordal bipartite graphs. 

The first is a connected matching with extra requirements. Next, we define a family 

of graphs with perfect connected matchings. After that, we define a property of hy­

pergraphs. Finally, we describe a different sort of matching problem that is in fact 

equivalent to cO.nnected matchings on this restricted class of graphs. 

We define an ordered connected matching as follows. Let M = {el' e2, ... ,ek} be 

a connected matching in a bipartite graph G = (A, B; E) with the endpoints of each 

ei labeled with ai E A and bi E B. If there is an ordering a : M -+ [k] so that 

2. N(al) ~ N(aj) whenever j 2:: l for all j, l E [k] 

then we say M is an ordered connected matching. Note that if we find the appropriate 

sequence of vertices in A, there is neccessarily an appropriate sequence of vertices 

in B. Not every bipartite connected matching is an ordered connected matching, as 

we see in Figure 4.6. However, it is worth noting that this example is a cycle on six 

vertices. 

Secondly, we define a family of graphs with perfect connected matchings. Let 
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Figure 4.7: The graph L 5 . 

Ln be a balanced bipartite graph with 2n vertices in sets A = {aI, a2, ... , a3} and 

B = {bl , b2 , . .. , bn }. Each vertex ai in A is adjacent to precisely those vertices in B 

whose indices are less than or equal to i. Then then edges between vertices with equal 

indices form an ordered connected matching. In Figure 4.7 we see an illustration of 

L 5 · 

Now we consider ahypergraph H = {V(H), E(H)}. Let S = {Si }~=l be a sequence 

of subsets of V(H). If for each i ~ k there is a distinct Ei E E(H) such that Si ~ Ei, 

then we say that S is dominated by H. A chain is a sequence of sets GI , G2 , . .. , Gk 

with the property that Gi S;; Gi +l for 1 ~ i < k. In this section, we are interested in 

dominated chains in hypergraphs. 

Finally, consider the following computational question: 

Maximum Red Matching Free of Blue-Red Alternating Cycles (MR) 

Given a complete bipartite graph H = (X, Y; E) whose edges are partitioned into 

a set B of blue edges and a set R of red edges and whose vertices are covered by 

blue edges, what is a maximum matching M in the red component (X U Y, R) 

such that the subgraph (X, Y; BUM) has no blue-red alternatiing cycles? 

The main result of this section is an equivalence theorem that provides many 
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different perspectives on connected matchings in chordal bipartite graphs. Before we 

state the theorem, we need to introduce two ideas. The first is the biadjacency matrix 

MB of a bipartite graph G = (A, B; E). This is the (O,l)-matrix formed by indexing 

rows with the vertices in A and indexing columns with the vertices in B. The element 

aij of MB is 1 if the ith vertex of A is adjacent to the jth vertex of B, and zero 

otherwise. 

The second notion we need to introduce is the neigborhood hypergraph generated 

by a set S of vertices from a graph G. This is a hypergraph defined on the vertices of 

G with an edge defined by the open neighborhood of each vertex from S. 

Theorem 13. Let G = (A, B; E) be a chordal bipartite graph. The following state-

ments are equivalent: 

1. G has a connected matching of size k. 

2. G has an ordered connected matching of size k. 

3. G has a copy of Lk as a subgraph. 

4. Tthe neighborhood hypergraph of A has a dominated chain of size k. 

5. The biadjacency matrix MB of the complement G of G has a submatrix that is 

permutation-equivalent to a strictly upper triangular matrix. 

6. For a red/blue edge-colored bigraph H = (X, Y; B U R),~f G is the red graph H, 

then the're is a matching M of size k in G with no alternating blue/red cycle in 

(X,Y;BUM). 
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Proof. First we show that statement 1 is equivalent to statement 2. We wish to prove 

that any connected matching M in a chordal bipartite graph G = (A, B; E) has a 

vertex a E A so that a is covered by M and a is adjacent to the B-endpoints of every 

edge of M. We say that such a vertex dominates lv!. If this is true, we can find the 

proper ordering of M by sequentially removing the M -edge covering a dominating 

edge and working on the smaller connected matching that remains. 

We proceed by induction on the size n of the connected matching. Small cases of 

n = 1,2 are trivial, and the case of n = 3 is easily checked. Now suppose that every 

chordal bipartite connected matching of up to n-1 edges has a dominating vertex and 

let M be a connected matching of size n in a chordal bipartite graph G = (A, B; E). 

Let H be the subgraph of G induced by vertices covered by M. Applying lemma 4, we 

may remove any bisimplicial edges of H that are not contained in M without reducing 

the size of N!; neither does this introduce any new dominating vertices. Remove these 

edges until all remaining bisimplicial edges are contained in M. 

The resulting graph is chordal bipartite. so there exists a bisimplicial edge ab E M, 

with a E A and bE B. If a is not a dominating vertex, then consider lvIb, the connected 

matching contained in A! that touches the neighbors of b excluding a. Some a' E A 

dominates it1b, which means that a' is adjacent to all non-neighbors of a. Furthermore, 

because the edge abis bisimplicial, a' is adjacent to all of the neighbors of a as well. 

Hence, a' is a vertex that dominates it1. 

We have already noted that Lk contains a connected matching of size k. Hence we 

show now that the subgraph induced by the vertices covered by an ordered connected 

matching has Lk as a subgraph. This is enough to prove that statement 2 is equivalent 
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to statement 3. Given an ordered connected matching of size k in a bipartite graph 

G, with a labeling and edge ordering (j consistent with the definition of an ordered 

connected matching, relabel the vertices so that the endpoints of ei are aa(ei) and 

ba(e,). Applying the neighborhood inclusion property of ordered connected matchings, 

it is easy to see that the vertices as labeled induce all the edges of L k . 

To show that statement 3 is equivalent to statement 4, let us consider the vertices 

of A included in the copy of Lk and their neighborhoods within Lk. These form the 

chain that is dominated by the neighborhoods of these vertices in C. 

The complement of our copy of Lk gives us the submatrix of ME that must be 

permutation-equivalent to a strictly upper triangular matrix. By the definition of L k , 

there is a dominating vertex, and a sequence of vertices wherein each is nonadjacent 

to at most one more vertex than the last. By permuting the columns so that the row 

corresponding to the high degree (in G) vertex is at the bottom, and the rows going 

up correspond to the sequence we just described, we end up with a strictly upper 

triangular matrix. 

We prove the equivalence of the MR problem to the connected matching problem 

1Il chordal bipartite graphs as follows. First, if there are no alternating blue/red 

four cycles in (X, Y; BUM), then M is certainly a connected matching (in the 

red graph). Conversely, consider the copy of Lk contained in a k-connected matching. 

Any alternating cycle must avoid the "outer" edges, and the endpoints of those edges. 

Working inductively after removing those edges and vertices, we see that we have 

a new pair of "outer" edges that must be avoided. Hence, no alternating cycle is 

present. o 
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4.2.3. Convex graphs 

The convex graphs are chordal bipartite graphs for which there is a vertex ordering of 

one side with the property that the neighborhoods of the other side form a collection 

of intervals. In this section, we will discuss an attempt at building an algorithm for 

finding maximum connected matchings in convex graphs that is hest descrihed in the 

language of hypergraphs. 

Convex graphs can naturally be thought of as the bipartite graph representation 

of an interval hypergraph. As such, we inquire after connected matchings in convex 

graphs by considering the k-dominated chain problem for interval hypergraphs. 

Proposition 4. The largest set in a chain dominated by an interval hypergraph H 

can be chosen to be an interval in the ordering of V(H) derived from the interval 

representation of H. 

This is obviously true as all sets in the chain are subsets of the interval dominating 

the top element in the chain. Due to this fact, and the fact that there are only 

polynomially many subintervab of a finite interval, it suffices to find a polynomial-time 

algorithm for the problem of finding a perfect dominated chain in interval hypergraphs. 

If this is possible, we need only check every interval for a perfect chain dominated by 

H. 

Dominated k-chain 

Input: Hypergraph H, positive integer k 
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VI U2 [V3 V41 Vs U6 

L< V1 IV2 V,3 V41 V5 V6 

l'lh V2 V,3 V41 Vs V6 

VI V2 IV3 V4 V5 V61 >R VI V'2 IV3 V4 V5 V61 

VI IV2 V3 V4 Vsl V6 

IVI V2 V3 V4 Vs v61 

Figure 4.8: Diagram of an interval hypergraph. The cap is {V3, V4}. 

Question: Is there a chain of length k dominated by H? 

Let H be an interval hypergraph. We call the intersection of all intervals G = 

neEE(H) e in an interval hypergraph the cap of the hypergraph. We are especially 

interested in two collections of intervals, R = {I E H : I 2:: G}, and L = {I E H : 

I ::; G}. As in Figure 4.8, we think of these as the intervals that extend only to the 

left or right (respectively) of the cap. 

Let us index the vertices of H VI, V2, ... 'Uk according to an interval ordering, reading 

left to right. Suppose there is a chain G1 , G2 , . .. ,Gk on V(H) that is dominated by 

H. It must be the case that G1 is a singleton, Gk = V(H), and IGil = IGi-1 1 + 1. 

Define a permutation () : [k] -+ [k] so that 

In other words, Vi is "added" at the ()( i)th step in the chain. Our chain is completely 

determined by (). To dominate the chain, we suppose that there exists an indexing 
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E 1 , E2 , ... ,Ek of the edges of H so that 

We construct an algorithm that chooses vertices to add to the chain together with 

dominating intervals in a "step-by-step" manner. It will be easy to see that if the 

algorithm succeeds, its output must be a dominated perfect chain. 

First, note that if j > i, and E j ~ Ei , then the edge sequence with Ei and E j 

interchanged still dominates the chain. That is, we can take an interval "too soon" , so 

long as the interval is contained in the interval it is replacing. After interchanging the 

two intervals in the edge sequence, the vertex order () is still intact and corresponds 

to the dominated chain. 

Our algorithm proceeds by sequentially removing edges and vertices. Start with 

all of H, and attempt to choose a vertex contained in all k edges of H along with 

one of the edges of H to be designated VI and E1 . Then remove this edge and this 

vertex and do the same for the resulting hypergraph. If we can proceed until all 

edges and vertices have been chosen without encountering a hypergraph whose cap is 

empty, then clearly we have exhibited a perfect chain dominated by H. To complete 

an algorithm for efficiently finding a perfect dominated chain, we must make these 

choices in such a way that no perfect dominated chains are missed. As of this writing, 

we have not been able to describe such a method. Nonetheless, the following method 

avoids many of the pitfalls encountered in our search, and is a reasonable place to 

begin any further attempts. 
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We first claim that we can chom,e any vertex of C to be VI. Suppose u E C is not 

VI. Because u is in every edge of H, it can act as the first chain element. We then 

move VI to the place in the sequence of chose vertices formerly occupied by u without 

disturbing the chain. Thus, the first stf'P in our algorithm is 

Step O. Choose any element of C to be VI 

The problem remains to select an edge of H to dominate VI. By our earlier obser­

vation concerning edges that contain "later" edges, if C E E(H) then we can certainly 

choose C. So we suppose that C ~ E(H). 

Step 1. If C E E(H), let EI = C. 

Looking ahead, we see that we must choose all of R or L before C is exhausted. 

Until all elements of either R or L have been chosen, the mutual intersection of 

remaining edges is a subset of C. If C is exhausted, then only the empty subset 

remains and the algorithm terminates. 

Step 2. If both Rand L are smaller than C, then there is no dominated perfect 

chain. 

One of R or L will be used in its entirety when C is exhausted. We must ensure 

that the other collection can be used later. Subroutine 1 is designed to tell us if this 

is possible. 
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Subroutine 1. 

Input: Sequence of vertices Ul, Ul-l, ... , Ul, VI, V2, ... , Vk; Set R of nested intervals 

all containing VI and not Ul; Set U of intervals containing VI and Ul. 

1. Assign VI to the smallest unassigned R set. 

2. If all R sets have been assigned, return YES. 

3. If V2 does not exist, return NO. 

4. If V2 is not in all sets, reassign VI to the smallest unassigned U set that 

contains VI but not V2. Return NO if no such set exists. 

5. Subtract 1 from the index of all v-vertices and go to 2. 

For the next step, send R, V(H) - C in order and with allu vertices less than C 

and all v vertices greater than C, and U = E(H) - (L U R) as input to Subroutine 1. 

Then send L with the vertex order suitably reversed. 

Step 3. If both Land R return NO from Subroutine 1, there is no dominated 

perfect chain. If (WLOG) L returns NO and R returns YES, choose minL to be 

E1 · 

We show that if Subroutine 1 is satisfied for Rand L, then we are free to choose 

either direction to build our chain. For brevity, we lean to the left. 
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Step 4. If both Land R return YES from Subroutine 1, choose min L to be 

Finally, we iterate the process. 

Step 5. Remove VI and El from H and begin at Step 0 with the resulting 

interval hypergraph. 

The hole in this algorithm lies in whether or not choosing L instead of R when 

both are safe will miss a perfect dominated chain. We have been unable to produce a 

counterexample or a proof. 
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5. MODELING WITH CONNECTED MATCHINGS 

5.1. Bipartite graphs 

In a typical bipartite matching problem, we are attempting to perform an assignment. 

We are given a collection A of one type of object, a collection B of a second type 

of object, and a set of feasible assignments of objects from B to each object in A. 

We assume that only one object may be assigned to another object. The problem 

is to choose from among these possible assignments a set of actual assignments that 

maximizes some desirable property. 

In the case of connected matchings, we have added another requirement. The 

assignment must be done in such a way that among the objects in any two assigned 

pairs, there is some other, unused feasible assignment. This may model redundancy, 

flexihility, interconnectivity, proximity, or some other quality we wish to demand of 

the chosen matching. 

5.1.1. Cloud administration 

Let us draw up a hypothetical problem that highlights the ahove description. Suppose 

we are administering a cloud-based application. Broadly speaking, the architecture 

of the application consists of servers which store and process data and clients which 
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deliver content and receive commands from end users. At any given time, each client 

is logged in to the small subset of servers needed to carry out a particular task. 

Suppose that we want to allow limited and moderated client-client communication. 

For privacy, security, or other reasons we do not wish to allow all clients logged in to 

a given server to send and receive messages from each other. In fact, we require that 

one side of any transmission be a superuser. This privileged client serves to moderate 

the communication. However, we do wish for any two clients logged into any of the 

servers to be able to get a message from one to the other as quickly as possible. 

We begin with a matching problem: how do we assign a privileged (logged-in) 

client to each server? Each superuser will administer its assigned server, in addition to 

transmitting messages among clients logged into that server. By itself, this question 

provides us with a collection of superusers that can moderate all messages on any 

given server. Furthermore, each message passes through only one intermediary. This 

is close to what we want, but so far we cannot guarantee that users not mutually 

logged into allY particular server can communicate. 

To fully meet our requirements, we must ensure that there is a "safe" path between 

any two servers. To meet them and enSUle rapid communication, we should ensure that 

any pair of superusers are both logged into some server and can thus pass messages. 

When we make an assignment that does so, we have actually found a connected 

matching. It is also not difficult to see that any connected matching in the server­

client bigraph represents a satisfactory assignment of servers to superusers. 

An interesting feature of this particular example is an asymmetry in scaling. As 

the application grows in users, each individual server machine will be able to serve 
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greater numbers of clients, provided that the software involved is well designed and 

scalable. If the number of servers remains essentially fixed as the application grows, 

then we will still be able to efficiently identify large connected matchings in the server 

graph. 

5.1.2. The bipartite margin shop 

Another application of connected matchings in bipartite graphs arises from the work 

of Oron, Steiner and Timkovsky in [28]. A large brokerage firm may manage tens 

of millions of customer accounts. Margining these accounts and producing account 

status slips at the end of each business day presents a serious computational challenge. 

Oron et. al model the computational task with a graph they term the bipartite margin 

shop. 

A bipartite margin shop G = (A, B; E) is a bipartite graph with vertices that 

represent tasks. Each task v has an associated processing time Pv. Each connected 

component of this graph is called a job. This graph is a precedence graph in that an 

edge ab, with a E A and b E B, is present when task a must be completed no later 

than task b. This model is bipartite on the assumption that there are two machines 

at work, !vIA and MB . Tasks from A are processed on machine MAl and tasks from B 

are processed on machine M B . Interpreting this problem in terms of a brokerage firm 

margining accounts, we have an edge between the tasks a and b if the account b has a 

position in the security a. This means the "market" machine MA must calculate the 

margin requirement for one unit of the security a before the "account" machine ME 

can calculate the margin requirement for the account b. 
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Figure 5.1: A red connected matching M with an alternating cycle of length six. 

In the margin-shop scheduling problem, we take a bipartite margin shop and 

try compute to the schedule that completes each job in the minimum time without 

violating the precedence relationships encoded in the graph. The authors of [28] prove 

that the bipartite margin shop problem is actually equivalent to the MR problem 

discussed in Chapter 4. 

This is very closely related to the problem of finding a connected matching in the 

graph of red edges. In fact, a matching as described above with no alternating blue­

red cycles would certainly be a connected matching. As we proved in Chapter 4, for 

chordal bipartite graphs , the problems are equivalent. However for general bipartite 

graphs it is stronger than the notion of a connected matching. As we see in Figure 

5.1, a connected matching in red edges could permit alternating cycles longer than 

four edges. 

5.2. General graphs 

Sometimes we may encounter a matching-type problem with only one type of object 

modeled by nodes. In this case, we cannot assume that the appropriate graph model is 

bipartite. The relation we wish to model with edges in the graph is assumed to be non-
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transitive, as otherwise the graph model degenerates into a collection of disconnected 

cliques. 

5.2.1. Partnership assignments 

One type of "assignment between equals" we encounter in the real world is that 

of working partnerships. In any organization, we can model individuals as vertices 

in a graph and use edges to represent some type of advantageous (non-transitive) 

working relationship. By identifying a connected matching, we collect a set of possible 

partnerships wherein each pair of partners has the advantageous relationship and 

any two pairs A and B have all indvidual from pair A that has the advantageous 

relationship with some individual from pair B, 

Let us see how this might work in a high school mathematics classroom. Suppose 

we model the students in the class as vertices. We are interested in the opportunities 

students have to work together outside of class, so we place an edge between vertices 

if the corresponding students share a study hall, lunch period, or live within a block 

of one another. We want to assign a project to groups of two students each, and would 

like for the students to have time to work on the project outside of class. Assigning 

groups so that each group corresponds to an edge in the graph we have constructed 

is a matching problem, and the result is a collection of pairs of students that have 

opportunities to work together outside of class. 

Now let's suppose that the content of each pair's assigned project is a piece of a 

larger class project. In light of this, we would like to additionally require that each 

pair of two-student groups has a chance to share their findings and collaborate outside 
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of class. In order for this to happen, the matching must also be connected. That is to 

say, in any two groups A and B, there is a student from A who shares a study hall, 

lunch period, or neighborhood with a student from B. 
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6. RELATED PROBLEMS 

In the course of studying connected matchings, some problems have arisen that are 

quite interesting in their own right. While these approaches did not lead to results 

related to connected matchings, they are closely related to this investigation in their 

own ways, and may point the way to further research. The first is a notion related to 

the distance approach to detecting connected matchings. The second offers a system­

atic way of "reducing" a chordal bipartite graph. 

6.1. Characterizing the "connected matching graph" 

A graph G induces a proximity partition described by the collection of distance-k 

graphs of G. We may ask if there is a characterization of Hk where 

Hk = {H: H is the distance-k graph of some graph G} 

In the case of H 2 , we can do so. Let A( G) denote the adjacency matrix of a graph 

G. In [27] Mukhopdhyay characterizes graphs that have a square root, which is to 

say graphs H such that for some graph G, A(H) = A(G)2. This is equivalent to H 

possessing an edge between any pair of vertices u, v that satisfy dc ( u, v) ::; 2. 
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Theorem 14 (Mudkhopdhyay). A connected graph G with n vertices VI, V2, . .. , Vn 

has a square TOot if and only if some set of n complete subgraphs of G whose union is G 

can be labeled GI , G2 , ... ,Gn so that, for all i, J = 1,2, ... ,n the following conditions 

hold: 

1. Ci contains Vi! 

2. Ci contains Vj if and only if Cd contains Vi· 

An alternate definition of 1i2 is 

and we have the following characterization in the spirit of Mukhopdhyay's theorem. 

Theorem 15. A graph G with n vertices VI, V2, . .. ,Vn is the distance 2 graph of some 

gmph H if and only if some set of n subgraphs of G whose union is G can be labeled 

GI , G2 , ... ,Cn so that 

2. For every pair of vertices Vi, Vj E C k ! exactly one of the following holds: 

(a) V(Vj E E(Gk ) 

(b) If Vi E V ( Gj ), then Vj E \l ( Gi ) 
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The proof of this theorem rests 011 the same central realization as Mudkhopdhay's 

theorem, which is that the enumerated sub graphs correspond to the neighborhoods 

(closed neighborhoods in Mudkhopdhay's theorem, open ones in Theorem 15) in the 

underlying graph. 

Proof. Suppose we have a graph G on vertices VI, V2, ... , Vn and subgraphs C1, C 2 , ... , Cn 

that satisfy the above conditions. We construct a graph H on the same vertex set by 

adding edges in two steps for each Ci . 

Step 1. Add the complement of Ci . 

Step 2. Add all edges from Vi to Ci . 

We claim that G is now the distance 2 graph of H. Suppose that dH(Vi, Vj) = 2. We 

want to show that ViVj E E( G). Since d H ( Vi, Vj) ::::: 2, there is some vertex Vk so that 

'Vi'Vk, 'Vj'Vk E E(H). If both edges were added in step 2, then one of the following occurs 

In case 1, distance 2 implies ViVj rf. E(H). In particular, this edge was not added in 

step 2, so Vi rf. C j and Vj rf. C. Condition 2 then implies that if Vi, Vj E C k for some 

C k , then ViVj E E(G). In case 2, V(Ci ) and V(Cj ) intersect, implying (by condition 3) 

again that there is a V(CI ) containing both Vi and Vj. In case 3, condition 4 requires 

that Vi, Vj E Ck' In any event, Vi'Vj E E( G). 
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Now we may assume (WLOG) that ViVk was added to H in step 1. Suppose VjVk 

was added in step 2. Then either Vk E Cj, implying C i n C j of:. 0, or Vj E C k implying 

Vi, Vj E Ck. The only remaining possibility is that both ViVk and VjVk were added in 

step 1. Following from two applications of condition 2(b), both Vi and Vj are then in 

V(Cd. This completes the proof of sufficiency. 

For the proof of necessity, we take a graph H and show that the distance-two 

graph D2(H) has a collection of subgraphs with the necessary properties. For each 

vertex Vi, let V(C i ) = N(Vi). That condition 1 holds is immediate. The vertices of any 

given Ci are at most distance two apart. Whenever there is a nonedge in a particular 

Ci and 2(a) fails, the vertices must be adjacent in H, and condition 2(b) holds. The 

symmetric property of the neighbor relation shows that conditions 3 and 4 hold as 

well. Finally, all distance 2 edges occur between vertices with a common neighbor, so 

UCi=G. o 

In a distance 2 graph, the enumerated subgraphs are actually the complements of 

the graphs induced by the open neighborhoods of the underlying graphs. This allows 

us to characterize the distance 2 graphs of graphs with local characterizations. The 

following is an example. 

Proposition 5. If every enumerated subgraph Ci of a distance 2 graph H has inde­

pendence number 2, then it is the distance 2 graph of a claw-free graph. 

In the case of connected matchings, we are most interested in the distance 2 graphs 

of line graphs. Unfortunately, line graphs do not have a local characterization. The 

best local characterization that approximates them is the locally co-bipartite graphs. 
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A graph is locally co-bipartite if each open neighborhood induces a graph whose 

complement is bipartite. Hence, the following is the best we have in the direction of 

characterizing the distance 2 graphs of line graphs. 

Proposition 6. If every enumerated subgraph Ci of a distance 2 graph H is bipartite, 

then it is the distance 2 graph of a locally co-bipartite graph. 

6.2. Totally balanced hypergraphs, basic trees, and chordal bipartite graphs. 

In chapter 4, we discussed the chordal bipartite graphs at some length. There is a 

characterization of chordal bipartite graphs that we have not yet discussed. The inci-

dence bigraph of a hypergraph H is a bipartite graph with one partite set comprised 

of the edges of H, and the other comprised of the vertices of H. We draw an edge 

from v to e whenever vEe in H. The chordal bipartite graphs are characterized 

as the incidence bigraphs of a special class of hypergraphs known as totally balanced 

hypergraphs. 

A cycle1 in a hypergraph is an analog of the graph-theoretic notion of a cycle. The 

vertices VI, V2, .. . ,Uk of of a hypergraph H form a cycle if the pairs 

are all adjacent in H. A hypergraph is totally balanced if and only if every cycle of 

length greater than two has an edge containing three vertices of the cycle. It is not 

lThis is not the only defintion of a cycle in r.he theory of hypergraphs. This particular definition 
is a generalization of cycles in graphs, but the reader should be aware of other definitions in the 
literature. 
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difficult to see that through the lens of an incidence bigraph, this is equivalent to 

requiring that cycles of length 6 have a chord. 

This connection between totally balanced hypergraphs and chordal bipartite graphs 

led to a new line of inquiry growing out of work by Lehel. In [25], Lehel describes a 

reduction process achievable on totally balanced hypergraphs. Totally balanced hy­

pergraphs are a special case of tr'ee hypergraphs. A tree hypergraph is one for which 

there is a basic tr-ee. A basic tree is a tree T H on the vertices of the hypergraph with 

the property that every edge of H induces a subtree of TH . 

Let us describe Lehel's method of "reducing" a tree hypergraph modulo a basic 

tree. For a hypergraph H and a choice of basic tree T, let the edges of T be the 

vertices of a new hypergraph HIT. For each edge e of H, we construct an edge e' of 

HIT by collecting all of the edges of T for which both endpoints are in e. 

Unfortunately, this line of investigation did not yield substantial results on the 

question of computing connected mathings in chordal bipartite graphs. However, a 

key property of Lehel's reduction vis a vis basic trees was uncovered, as well as an 

interesting tree mapping which we describe below. 

A (simple) enveloping of a graph G = (V, E(G)) into a graph H = (V, E(H)) is a 

one-to-one mapping cjJ : E(G) -+ E(H) with the property that for every uv E E(G), 

cjJ(uv) is on a u, v path in H. 

Theorem 16. For- any pair- of tr-ees Tl and T2 on a veTtex set V, ther-e is a simple 

enveloping cjJ ofTl into T2 . 

Pmof. We work by induction on the number of vertices in V. For the case of !VI = 2, 

62 



an identity map is an enveloping. 

Now suppose we have an enveloping between trees on up to k vertices. Let Tl and 

T2 be a pair of trees on k + 1 vertices. Start by taking any pendant edge uv of Tl with 

leaf vertex u, and mapping it to uv' where v' is the next vertex on the u, v path in T2 . 

Now remove u from Tl and identify u and v' as v' in T2. We now have two trees Tl - u 

and T~ on a vertex set V' = V - {u} with k vertices. Hence there is an enveloping ¢ 

of Tl - {u} into T~. Furthermore, ¢ can be extended as follows to an enveloping ¢' of 

Tl into T2: 

1. uv maps to uv' as above. 

2. If ¢(x, y) = wv' then either wu or wv' is an edge of T2 . Set ¢'(x, y) = wu or wv' 

as appropriate. 

D 

This theorem tells us that between any two trees on a set of vertices, one can be 

mapped onto the other in such a way that edges are mapped into the paths defined 

by their endpoints. Tree envelopings may he a topic worthy of investigation in their 

own right. 

Using this result on envelopings, we prove that the reduction proposed by Lehel 

is insensitive to the choice of basic tree. 

Theorem 17. If Tl and T2 are basic trees of a tree hyperyraph H, then 
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Proof. We show that an enveloping ¢; of Tl into T2 induces an isomorphism between 

H/T1 and H/T2 . 

Suppose first that uv E N(ei) in H/Tl . Then {u,v} ~ ei in H. Since ei then 

induces a subtree of T2 , the vertices of u, v path of T2 must be in ei. Hence, the 

endpoints of cp(uv) are in ei, and ¢(uv) E N(e·t ) in H/T2 • 

Now we need to show that IN(ei)1 in H/T! is the same as IN(ei)1 in H/T2. This 

is as simple as noting that the neighborhood of ei induces a subtree in both Tl and 

T2 , and both of these subtrees have leil - 1 edges. Hence IN(ei)1 = leil - 1 in both 

o 

6.3. Conclusion 

We have laid a great deal of groundwork in computing maximum connected matchings 

in certain families of bipartite graphs. With additional attention, it is likely this can 

provide the basis for determining the complexity of finding a maximum connected 

matching in convex or chordal bipartite graphs. 

We have also demonstrated the equivalence of the maximum connected matching 

problem to certain cases of an important practical optimization problem: the bipartite 

margin shop. It would be interesting to see how well chordal bipartite graphs approx­

imate the actual account/security relationships in investment firms. Conversely, it 

would be also be worthwhile to investigate how closely a graph must approximate a 

chordal bipartite graph (whether this is measured in edit distance, or total number 
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of long cycles) in order to apply the results found herein. 

In pursuit of the extremal question, we have determined that counterexamples to 

the key conjecture of Gyarfas, Fiiredi and Simonyi (Conjecture 5) have both high 

connectivity and no large cliques. Furthermore, we have determined that any infinite 

family of counterexamples must not have the smallest possible clique numbers for 

graphs with independence number two. This excludes from consideration the most 

probable graphs arising from the triangle-free process. 

The study of connected matchings is alive and well, and it is our hope that this dis­

sertation will be helpful in moving this area forward. Many appealing computational 

problems remain, and the close connection to Hadwiger's conjecture is a fascinating 

aspect of the structural study of connected matchings. We look forward to investi­

gating these ideas in the future. 

65 



REFERENCES 

[1] Martin Aigner and Gunter lV1. Ziegler, Proofs from The Book, 4th ed., Springer-Verlag, Berlin, 

2010. MR2569612 (2010m:0000l) 

[2] J6zsef Balogh and Alexandr V. Kostochka, Large minor's in graphs with given indepen­

dence number, Discrete Math. 311 (2011). no. 20, 2203-2215, DOl 10. 10l6/j.disc.201 1.07.003. 

MR2825665 (2012i:05275) 

[3] Jonah B1asiak, A special case of Hadwiger's conjecture, J. Combin. Theory SeI. B 97 (2007), 

no. 6, 1056-1073, DOl 10.1016/j.jctb.2007.04.003. MR2354718 (2009a:05064) 

[4] Tom Bohman. The triangle-free process, Adv. Math. 221 (2009), no. 5, 1653-1677, DOl 

1O.1016/j.aim.2009.02.018. MR2522430 (201Oh:05271) 

[5] Rpla Bollobas, Paul Cat.lin. and Paul A. Erdos, Hadwiger's conjectur'e is true for almost every 

graph, European .1. Combin. 1 (1980), no. 3, 195-199. MR593989 (82b:05107) 

[6] Kathie Cameron, Connected matchings, Combinatorial optimization-Eureka, you shrink!, 

Lecture Notes in Cornput. Sci., vol. 2570, Springer, Berlin, 2003, pp. 34-38. MR2163948 

(2006c: 90072) 

[7] __ , Induced rnatchings, Discrete Appl. Math. 24 (1989), no. 1-3,97-102, DOl 10.1016/0166-

218X(92)90275-F. First Montreal Conference on Combinatorics and Computer Science, 1987. 

MRI011265 (90g:05139) 

[8] Paul A. Catlin, Haj6s' graph-coloring conJecture: variations and counterexamples, J. Combin. 

Theory SeI. B 26 (1979), no. 2, 268-274, 001 10.1016/0095-8956(79)90062-5. MR532593 

(81g:05057) 

66 



[9] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas, The strong perfect 

graph theorem, Ann. of Math. (2) 164 (20U6), no. 1, 51-229, DOl 1O.4007/annals.2006.164.51. 

MR2233847 (2007c:05091) 

[10] Gabriel A. Dirac, A pmperty of 4-chromatic graphs and some remarks on critical graphs, J. 

London Math. Soc. 27 (1952), 85-92. MR0045371 (13,572f) 

[11] Pierre Duchet and Henry Meyniel, On Hadwigcr's number and the stability number, Graph 

theory (Cambridge, 1981), North-Holland Math. Stud., vol. 62, North-Holland, Amsterdam, 

1982, pp. 71-73. MR671905 (84h:05074) 

[12] Jack Edmonds, Paths, trees, and flower." Canad. J. Math. 17 (1965), 449-467. MR0177907 (31 

#2165) 

[13] Jacob Fox, Complete minors and independence number, SIAM J. Discrete Math. 24 (2010), 

no. 4,1313-1321, DOl 10.1137/090766814. MR2735925 (2011m:05293) 

[14] Alexandra Fradkin, Clique minors in claw-free graphs, J. Combin. Theory Ser. B 102 (2012), 

no. 1. 71-85, DOl 10. 1016/j.jctb.201 1.04.005. MR2871768 (2012m:05332) 

[15] Zoltan Fiiredi. Andras Gyarfas, and Gabor Simonyi, Connected matchings and Hadwiger's con­

jectur·e. Problem Section, Cornbin. Probab. Comput. 14 (2005), 435-438. 

[16] Michael R. Garey and David S. Johnson, Computer:s and intractability, W. H. Freeman and 

Co., San Francisco, Calif., 1979. A guide to the theory of NP-coIIlpleteness; A Series of Books 

in the Mathematical Sciences. MR519066 (80g:68056) 

[17] Martin Charles Golumbic, Algor'ithmic graph theory and perfect graphs, 2nd ed., Annals of 

Discrete Mathematics, vol. 57, Elsevier Science B.V., Amsterdam, 2004. With a foreword by 

Claude Berge. MR2063679 (2005e:05061) 

[18] Martin Charles Golumbic and Clinton F. Goss, Perfect elimination and chordal bipartite graphs, 

J. Graph Theory 2 (1978), no. 2, 155-163, DOl 1O.1002/jgt.3190020209. MR493395 (80d:05037) 

67 



[19] Andras Gyarf!is, Mikl6s Ruszink6, Gahor N. Sark6zy, and Endre Szemcredi, One-sided cover­

ings of colored complete bipartite graphs, Topics in discrete mathematics, Algorithms Combin., 

vol. 26, Springer, Berlin, 2006, pp. 133-144. MR2249267 (2008c:05120) 

[20] Hugo Hadwiger, Uber cine Klassifikation der Strcckenkornplcxe, Vierteljschr. Naturforsch. Ges. 

Zurich 88 (1943), 133-142 (German). MR00l2237 (6,281c) 

[21] Ken-ichi Kawarabayashi, Michael D. Plummer, and Bjarne Toft, Improvements of the theorem 

of Duchet and Meyniel on Hadwiger's conjecture, J. Combin. Theory Ser. B 95 (2005), no. 1, 

152-167, DOl 1O.1016/j.jctb.2005.04.001. MR2156345 (2006b:05118) 

[22] AndreI Kotlov, Matchings and Hadwiger"s conjectur'e, Discrete Math. 244 (2002), no. 1-3,241-

252, DOl 1O.1016/S0012-365X(01)00087-5. Algebraic and topological methods in graph theory 

(Lake Bled, 1999). MRl844036 (2002k:05087) 

[23] Jeong Han Kim, The Ramsey number R(3, t) has order of magnitude t2
/ log t, Random 

Structures Algorithms 7 (1995), no. 3, 173-207, DOl 1O.1002/rsa.3240070302. MR1369063 

(96m:05140) 

[24] Matthias Kriesell, On Seym01tr'S strengthening of Hadwiger's conjecture for graphs with certain 

forbidden subgraphs, Discrete Mathematics (2010), 435-438. 

[25] Jeno Lehel, A characterization of totally balanced hyperymphs, Discrete Math. 57 (1985), no. 1-

2, 59-65, DOl 1O.1016/0012-365X(85)90l56-6. MR816048 (87f:05123) 

[26] Frank 1\faJrray and Henry MeYlliel, On a relationship between Hadwiger and stability num­

bers, Discrete Math. 64 (1987), no. 1, 39-42, DOl 10.10l6/0012-365X(87)90238-X. MR882610 

(88g:05076) 

[27] Arnar Mukhopadhyay, The squa'f'e root of a graph, J, Combinatorial Theory 2 (1967), 290-295. 

MR0210616 (35 #1502) 

[28] Daniel Oron, George Steiner, and Vadim G. Timkovsky, The. bipartite margin shop and maxi­

mum red matchings free of blue-red alternating cycles, Discrete Optim. 6 (2009), no. 3, 299-309, 

DOl 1O.1016/j.ciisopt.2009.03.001. MR2532467 (201Og:90052) 

68 



[29] Anders Sune Pedersen and Bjarne Toft, ,4 basic elementar'Y extension of the D'Uchet· Meyniel the­

orem, Discrete Math. 310 (2010), no. 3, 480--488, DOl 1O.1016/j.disc.2009.03.023. MR2564800 

(2011c:05320) 

[30] Michael D. Plummer, Michael Stiebitz, and Bjarne Toft, On a special case of Hadwiger's con­

ject'Ure, Discuss. Math. Graph Theory 23 (2003), no. 2, 333-363. MR2070161 (2005e:05055) 

[31] Frank P. Ramsey, On a Problem of Fur'mal Logic, Proc. London Math. Soc. S2-30, no. 1, 264, 

DOl 10.1112/plms/s2-30.1.264. MR1576401 

[32] Neil Robertson, Paul Seymour, and Robin lhomas, Hadwiger"s conject'Ure for K 6 -free graphs, 

Combinatorica 13 (1993), no. 3, 279-361, DOL 1O.1007/BF01202354. MR1238823 (94i:05037) 

[33] Bjarne Toft, A s'Urvey of Hadwiger's conject'Ure, Congr. Numer. 115 (1996), 249 283. Surveys 

in graph theory (San Francisco, CA, 1995). MR1411244 (97i:05048) 

[34] Paul Tur;in, Eine Extremala'Ufgabe a'Us der Gmphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452 

(Hungarian, with German summary). MR0018405 (8,284j) 

[35] Douglas B. v,'est, Intrvd'Uction to graph theory, Prentice Hall Inc., Upper Saddle River, NJ, 

1996. MR1367739 (96i:05001) 

69 



RGB graph, 12 

Basic tree, 62 

Bipartite graph, 6 

Branch sets, 9 

Chromatic number, 6 

Clique, 6 

Clique number, 6 

Complete graph, see Clique 

Connected vertices, 10 

Connectivity, 11 

Cut, 11 

Diameter, 11 

Distance, 12 

Edge, 2 

Extremal graph theory, 15 

Graph, 2 

Graph complement, 3 

INDEX 

Hadwiger number, 9 

Hadwiger's conjecture, 8 

Hajas' conjecture, 8 

Hall's condition, 3 

Incidence bigraph, 61 

Independence number, 5 

Induced edge, 5 

Induced subgraph, 5 

Line graph, 13 

Matching, 3 

connected, 4 

perfect, 3 

Minor, 8 

Neighborly edges, 4 

NP-complete, 10 

Partite set, 6 

Path, 10 
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Path, 6 

Perfect graph, 7 

Precedence graph, 53 

Proper vertex coloring, 5 

Proximity coloring, 12 

Proximity partition, 12 

Random graph, 9 

Scheduling graph, 5 

Separable edges, 4 

Strong Perfect Graph Theorem, 7 

Subdivision, 8 

Turan graph, Hi 

Totally balanced hypergraph, 61 

Tree hypergraphs, 62 

Triangle-free process, 31 

Vertex, 2 

independent sets of, 5 
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