7,230 research outputs found

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time

    Near-optimal labeling schemes for nearest common ancestors

    Full text link
    We consider NCA labeling schemes: given a rooted tree TT, label the nodes of TT with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the label of their nearest common ancestor. For trees with nn nodes we present upper and lower bounds establishing that labels of size (2±ϵ)logn(2\pm \epsilon)\log n, ϵ<1\epsilon<1 are both sufficient and necessary. (All logarithms in this paper are in base 2.) Alstrup, Bille, and Rauhe (SIDMA'05) showed that ancestor and NCA labeling schemes have labels of size logn+Ω(loglogn)\log n +\Omega(\log \log n). Our lower bound increases this to logn+Ω(logn)\log n + \Omega(\log n) for NCA labeling schemes. Since Fraigniaud and Korman (STOC'10) established that labels in ancestor labeling schemes have size logn+Θ(loglogn)\log n +\Theta(\log \log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10logn10 \log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even outperforms some recent experimental studies by Fischer (ESA'09) where variants of the same NCA labeling scheme are shown to all have labels of size approximately 8logn8 \log n

    Engineering failure analysis and design optimisation with HiP-HOPS

    Get PDF
    The scale and complexity of computer-based safety critical systems, like those used in the transport and manufacturing industries, pose significant challenges for failure analysis. Over the last decade, research has focused on automating this task. In one approach, predictive models of system failure are constructed from the topology of the system and local component failure models using a process of composition. An alternative approach employs model-checking of state automata to study the effects of failure and verify system safety properties. In this paper, we discuss these two approaches to failure analysis. We then focus on Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) - one of the more advanced compositional approaches - and discuss its capabilities for automatic synthesis of fault trees, combinatorial Failure Modes and Effects Analyses, and reliability versus cost optimisation of systems via application of automatic model transformations. We summarise these contributions and demonstrate the application of HiP-HOPS on a simplified fuel oil system for a ship engine. In light of this example, we discuss strengths and limitations of the method in relation to other state-of-the-art techniques. In particular, because HiP-HOPS is deductive in nature, relating system failures back to their causes, it is less prone to combinatorial explosion and can more readily be iterated. For this reason, it enables exhaustive assessment of combinations of failures and design optimisation using computationally expensive meta-heuristics. (C) 2010 Elsevier Ltd. All rights reserved

    Hybridation of Bayesian networks and evolutionary algorithms for multi-objective optimization in an integrated product design and project management context

    Get PDF
    A better integration of preliminary product design and project management processes at early steps of system design is nowadays a key industrial issue. Therefore, the aim is to make firms evolve from classical sequential approach (first product design the project design and management) to new integrated approaches. In this paper, a model for integrated product/project optimization is first proposed which allows taking into account simultaneously decisions coming from the product and project managers. However, the resulting model has an important underlying complexity, and a multi-objective optimization technique is required to provide managers with appropriate scenarios in a reasonable amount of time. The proposed approach is based on an original evolutionary algorithm called evolutionary algorithm oriented by knowledge (EAOK). This algorithm is based on the interaction between an adapted evolutionary algorithm and a model of knowledge (MoK) used for giving relevant orientations during the search process. The evolutionary operators of the EA are modified in order to take into account these orientations. The MoK is based on the Bayesian Network formalism and is built both from expert knowledge and from individuals generated by the EA. A learning process permits to update probabilities of the BN from a set of selected individuals. At each cycle of the EA, probabilities contained into the MoK are used to give some bias to the new evolutionary operators. This method ensures both a faster and effective optimization, but it also provides the decision maker with a graphic and interactive model of knowledge linked to the studied project. An experimental platform has been developed to experiment the algorithm and a large campaign of tests permits to compare different strategies as well as the benefits of this novel approach in comparison with a classical EA

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    A Two-Stage Multi-Objective Optimization of Erasure Coding in Overlay Networks

    Get PDF
    In the recent years, overlay networks have emerged as a crucial platform for deployment of various distributed applications. Many of these applications rely on data redundancy techniques, such as erasure coding, to achieve higher fault tolerance. However, erasure coding applied in large scale overlay networks entails various overheads in terms of storage, latency and data rebuilding costs. These overheads are largely attributed to the selected erasure coding scheme and the encoded chunk placement in the overlay network. This paper explores a multi-objective optimization approach for identifying appropriate erasure coding schemes and encoded chunk placement in overlay networks. The uniqueness of our approach lies in the consideration of multiple erasure coding objectives such as encoding rate and redundancy factor, with overlay network performance characteristics like storage consumption, latency and system reliability. Our approach enables a variety of tradeoff solutions with respect to these objectives to be identified in the form of a Pareto front. To solve this problem, we propose a novel two stage multiobjective evolutionary algorithm, where the first stage determines the optimal set of encoding schemes, while the second stage optimizes placement of the corresponding encoded data chunks in overlay networks of varying sizes. We study the performance of our method by generating and analyzing the Pareto optimal sets of tradeoff solutions. Experimental results demonstrate that the Pareto optimal set produced by our multi-objective approach includes and even dominates the chunk placements delivered by a related state-of-the-art weighted sum method

    On coding labeled trees

    Get PDF
    Trees are probably the most studied class of graphs in Computer Science. In this thesis we study bijective codes that represent labeled trees by means of string of node labels. We contribute to the understanding of their algorithmic tractability, their properties, and their applications. The thesis is divided into two parts. In the first part we focus on two types of tree codes, namely Prufer-like codes and Transformation codes. We study optimal encoding and decoding algorithms, both in a sequential and in a parallel setting. We propose a unified approach that works for all Prufer-like codes and a more generic scheme based on the transformation of a tree into a functional digraph suitable for all bijective codes. Our results in this area close a variety of open problems. We also consider possible applications of tree encodings, discussing how to exploit these codes in Genetic Algorithms and in the generation of random trees. Moreover, we introduce a modified version of a known code that, in Genetic Algorithms, outperform all the other known codes. In the second part of the thesis we focus on two possible generalizations of our work. We first take into account the classes of k-trees and k-arch graphs (both superclasses of trees): we study bijective codes for this classes of graphs and their algorithmic feasibility. Then, we shift our attention to Informative Labeling Schemes. In this context labels are no longer considered as simple unique node identifiers, they rather convey information useful to achieve efficient computations on the tree. We exploit this idea to design a concurrent data structure for the lowest common ancestor problem on dynamic trees. We also present an experimental comparison between our labeling scheme and the one proposed by Peleg for static trees
    corecore