5 research outputs found

    A Simple Numerical Method for Pricing an American Put Option

    Get PDF
    We present a simple numerical method to find the optimal exercise boundary in an American put option. We formulate an intermediate function with the fixed free boundary that has Lipschitz character near optimal exercise boundary. Employing it, we can easily determine the optimal exercise boundary by solving a quadratic equation in time-recursive way. We also present several numerical results which illustrate a comparison to other methods

    Pricing European and American Options under Heston Model using Discontinuous Galerkin Finite Elements

    Full text link
    This paper deals with pricing of European and American options, when the underlying asset price follows Heston model, via the interior penalty discontinuous Galerkin finite element method (dGFEM). The advantages of dGFEM space discretization with Rannacher smoothing as time integrator with nonsmooth initial and boundary conditions are illustrated for European vanilla options, digital call and American put options. The convection dominated Heston model for vanishing volatility is efficiently solved utilizing the adaptive dGFEM. For fast solution of the linear complementary problem of the American options, a projected successive over relaxation (PSOR) method is developed with the norm preconditioned dGFEM. We show the efficiency and accuracy of dGFEM for option pricing by conducting comparison analysis with other methods and numerical experiments

    Radial basis functions with partition of unity method for American options with stochastic volatility

    Get PDF
    In this article, we price American options under Heston's stochastic volatility model using a radial basis function (RBF) with partition of unity method (PUM) applied to a linear complementary formulation of the free boundary partial differential equation problem. RBF-PUMs are local meshfree methods that are accurate and flexible with respect to the problem geometry and that produce algebraic problems with sparse matrices which have a moderate condition number. Next, a Crank-Nicolson time discretisation is combined with the operator splitting method to get a fully discrete problem. To better control the computational cost and the accuracy, adaptivity is used in the spatial discretisation. Numerical experiments illustrate the accuracy and efficiency of the proposed algorithm
    corecore