5,019 research outputs found

    Modeling Temporal Structure in Music for Emotion Prediction using Pairwise Comparisons

    Get PDF
    The temporal structure of music is essential for the cognitive processes related to the emotions expressed in music. However, such temporal information is often disregarded in typical Music Information Retrieval modeling tasks of predicting higher-level cognitive or semantic aspects of music such as emotions, genre, and similarity. This paper addresses the specific hypothesis whether temporal information is essential for predicting expressed emotions in music, as a prototypical example of a cognitive aspect of music. We propose to test this hypothesis using a novel processing pipeline: 1) Extracting audio features for each track resulting in a multivariate "feature time series". 2) Using generative models to represent these time series (acquiring a complete track representation). Specifically, we explore the Gaussian Mixture model, Vector Quantization, Autoregressive model, Markov and Hidden Markov models. 3) Utilizing the generative models in a discriminative setting by selecting the Probability Product Kernel as the natural kernel for all considered track representations. We evaluate the representations using a kernel based model specifically extended to support the robust two-alternative forced choice self-report paradigm, used for eliciting expressed emotions in music. The methods are evaluated using two data sets and show increased predictive performance using temporal information, thus supporting the overall hypothesis

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    Predicting the emotions expressed in music

    Get PDF

    Perspectives on Bayesian Optimization for HCI

    Get PDF
    In this position paper we discuss optimization in the HCI domain based on our experiences with Bayesian methods for modeling and optimization of audio systems, including challenges related to evaluating, designing, and optimizing such interfaces. We outline and demonstrate how a combined Bayesian modeling and optimization approach provides a flexible framework for integrating various user and content attributes, while also supporting model-based optimization of HCI systems. Finally, we discuss current and future research direction and applications, such as inferring user needs and optimizing interfaces for computer assisted teaching

    Network Model Selection for Task-Focused Attributed Network Inference

    Full text link
    Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments

    Neural Collaborative Ranking

    Full text link
    Recommender systems are aimed at generating a personalized ranked list of items that an end user might be interested in. With the unprecedented success of deep learning in computer vision and speech recognition, recently it has been a hot topic to bridge the gap between recommender systems and deep neural network. And deep learning methods have been shown to achieve state-of-the-art on many recommendation tasks. For example, a recent model, NeuMF, first projects users and items into some shared low-dimensional latent feature space, and then employs neural nets to model the interaction between the user and item latent features to obtain state-of-the-art performance on the recommendation tasks. NeuMF assumes that the non-interacted items are inherent negative and uses negative sampling to relax this assumption. In this paper, we examine an alternative approach which does not assume that the non-interacted items are necessarily negative, just that they are less preferred than interacted items. Specifically, we develop a new classification strategy based on the widely used pairwise ranking assumption. We combine our classification strategy with the recently proposed neural collaborative filtering framework, and propose a general collaborative ranking framework called Neural Network based Collaborative Ranking (NCR). We resort to a neural network architecture to model a user's pairwise preference between items, with the belief that neural network will effectively capture the latent structure of latent factors. The experimental results on two real-world datasets show the superior performance of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and Knowledge Managemen
    corecore