
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Integration of top-down and bottom-up information for audio organization and retrieval

Jensen, Bjørn Sand; Larsen, Jan; Hansen, Lars Kai

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, B. S., Larsen, J., & Hansen, L. K. (2012). Integration of top-down and bottom-up information for audio
organization and retrieval. Kgs. Lyngby: Technical University of Denmark (DTU).  (IMM-PhD-2012; No. 291).

http://orbit.dtu.dk/en/publications/integration-of-topdown-and-bottomup-information-for-audio-organization-and-retrieval(71247068-7adb-4827-aad9-e1c04ee14d8a).html


Integration of top-down and
bottom-up information for audio

organization and retrieval

Bjørn Sand Jensen

Kongens Lyngby 2012
IMM-PHD-2012-291



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



Summary

The increasing availability of digital audio and music calls for methods and
systems to analyse and organize these digital objects. This thesis investigates
three elements related to such systems focusing on the ability to represent and
elicit the user’s view on the multimedia object and the system output. The aim
is to provide organization and processing, which aligns with the understanding
and needs of the users.

Multimedia, including audio and music, is often characterized by large amount
of heterogeneous information, and the first element investigated in the the-
sis concerns the integration of such heterogeneous and multimodal information
sources based on latent Dirichlet allocation (LDA). The model is used to in-
tegrate bottom-up features (reflecting timbre, loudness, tempo and chroma),
meta-data aspects (lyrics) and top-down aspects, namely user generated open
vocabulary tags. The model and representation is evaluated on the auxiliary
task of genre classification.

Eliciting the subjective representation and opinion of users is an important and
challenging element in building personalized systems. The thesis contributes
with a setup for modelling and elicitation of preference and other cognitive as-
pects with focus on audio applications. The setup is based on classical regression
and choice models placed in the framework of Gaussian processes, which pro-
vides flexible non-parametric Bayesian models. The setup consist of a number of
likelihood functions suitable for modelling both absolute ratings (direct scaling)
and comparative judgements (indirect scaling). Inference is typically performed
by analytical approximation methods, including the Laplace approximation and
expectation propagation. In order to minimize the cost of the often expensive
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and lengthy experimentation, sequential experiment design or active learning is
supported as an integrated part of the setup. The setup is applied in the field of
music emotion modelling and optimization of a parametric audio system both
with high-dimensional input spaces.

The final element considered in the thesis, concerns the general context of users,
such as location and social context. This is important in understanding user
behavior and in determining the users current information needs. The thesis
investigates the predictability of the user context, in particular location, based
on information theoretic bounds and a particular experimental approach based
on context sensing using the ubiquitous mobile phone.



Resumé (in Danish)

Den stigende tilgængelighed og brug af digitale medier kræver metoder og sys-
temer til at forst̊a og organisere s̊adanne digitale objekter og det ideelt p̊a en
m̊ade, der er i tr̊ad med brugernes forst̊aelse, forventninger og behov. Denne
afhandling undersøger tre elementer i s̊adanne systemer som alle vedrører sys-
temets evne til at repræsentere og frembringe brugerens syn p̊a objektet eller
systemets output.

Multimedie, inklusiv lyd og musik, er ofte karakteriseret ved store mængde
af heterogene informationskilder, og det første element, der er undersøges i
afhandlingen, er integration af s̊adanne informationskilder ved hj̊alp af Latent
Dirichlet Allocation (LDA). Modellen anvendes til at integrere bottom-up as-
pekter (timbre, loudness, tempo og chroma features), metadata aspekter (lyrik)
samt top-down aspekter i form af brugergenererede annotationer. Modellen og
repræsentationen evalueres blandt andet p̊a sin even til at repræsentere genre.

Modellering og eksperimentel frembringelse af en brugers interne repræsentation
og forst̊aelse af for eksempel musik er en generel udfordring i multimediesystmer
og andre applikationer. Afhandlingen bidrager med en opsætning til modeller-
ing og frembringelse af præference og andre kognitive aspekter. Opsætningen
er baseret p̊a klassiske regressions- og beslutningsmodeller i rammerne af Gaus-
siske processer, hvilket resulterer i en række ikke-parametriske Bayesianske mod-
eller. Opsætningen best̊ar af en række likelihood funktioner, der er egende til at
modellere b̊ade brugeres absolutte vurderinger eller parrerede sammenligninger.
Inferens i disse modeller er typisk udørt gennem analytiske approksimationsme-
toder s̊asom Laplace-approksimationen og expectation propagation. For at min-
imere den ofte kostbare eksperimentelle forsøgtid, er sekventiel eksperimentel
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design understøttet som en integeret del af opsætningen. Metoderne anvendes
inden for modellering af følelser i musik og brugeroptimering af et parametrisk
audio system med høj-dimensionelle data.

Det sidste aspekt, der er undersøgt, relaterer sig til brugerens generelle kontekst,
som placering og social kontekst, hvilket er vigtigt for forst̊aelsen af brugerad-
færd og til afdækning af brugernes aktuelle informationsbehov. Afhandlingen
undersøger forudsigeligheden af brugerens kontekst, navnlig placering, baseret
p̊a informationsteoretiske grænser og en bestemt eksperimentel tilgang baseret
p̊a indsamling af data fra den allestedsnærværende mobiltelefon.



Preface

This thesis was prepared at The Department of Informatics and Mathemati-
cal Modeling (IMM), The Technical University of Denmark (DTU), in partial
fulfillment of the requirements for acquiring the Ph.D. degree at DTU.

The project was funded by DTU, initiated April 2009 and completed December
2012. Throughout the period, the project was supervised by associate professor
Jan Larsen and by co-supervisor professor Lars Kai Hansen.

The thesis reflects the research part of the project. It consists of an summary
report in combination with a collection of published and submitted research
papers written during the period and published during the project period (or
immediately thereafter 1).

The project is motivated by the challenges involved in processing, modelling
and organization of multimedia in particular in systems where users plays an
integral role. This is a highly cross-disciplinary field including elements from
digital signal processing, human-computer interaction, cognitive modelling and
machine learning. The thesis therefore consist of contributions originating in
three different research fields of course with some overlap. It is therefore the
aim of the summary report to give a coherent and general overview of the con-
tributions from a system perspective. Hence, this summary report is therefore
not an exhaustive walk-through of all applied methods and detailed derivations,
but an attempt to place the contributions in an overall and general context of
user driven machine learning systems.

1Note that the final version of the report has been updated with the published versions of
the papers originally indicated as submitted
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The report further refrains from describing well-known methods such as Ex-
pectation Maximization, Support Vector Machines and K-means, and simply
provide textbook reference for standard methods well-described in textbooks or
elsewhere. As a consequence it is assumed that the reader is familiar with basic
probability theory and its application in machine learning.

Bjørn Sand Jensen
January 14th, 2013
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Notation

The following contains a list of common notation and symbols used throughout
the report, which may differ slightly from the contributions in order to provide
a coherent notation across different focus areas. Variations and specialized use
may occur which is made clear from the context.

Various sets of variables and observations

R The reals.
Z Integers.
N Natural numbers (including zero).
X Domain of the input variable / input space.
Y Domain of the output variable / output space.
X A set. Typically of input instances from X. Typically index

with n
Y A set. Typically of outputs from Y. Typically indexed with

k
V A set. Typically used to denote a vocabulary of words

indexed by v.
D A set. A joint collection of inputs and outputs, D = {X ,Y},

so a dataset.
C A (choice) set of inputs. A subset from X used in a specific

likelihood.
E An experiment set. A subset from X



xiv Notation

Size/count parameters:

D Dimension of input space X
N Number of inputs, N = |X | or as or general count, typically

with an informative subscript.
K Number of observations/experiment K = |Y|. .
C = |C| Size of choice set. Typically indexed with k.
M Number of data modalities or as a general count. Typically

indexed with m
V = |V| Size of a given vocabulary, i.e. V words in the vocabulary.
E = |E| Size of (candidate) experiment set.
Z Number of latent components, e.g. number of Gaussian

components or topics. Related index variable is z.
S Number of songs, typically indexed with s. Note that S is

also used to denote various information theoretic measure
such as entropy, however never in the same context as song.

Variables and observations:

y A output variable/observation (used in supervised context
only)

y A multidimensional output variable / observation (used in
supervised context only)

X A random variable (used when required to differential be-
tween the variable itself and the outcome which is clear
from context)

x, w (Multi-dimensional) input (or outcome when required to
differentiate between outcome and variable which is clear
from context)

X, W A collection of inputs N ×D
x∗/x∗ A test input
w∗/w∗

y∗/y∗ A test output
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Probabilities and distributions
The notation does not distinguish between probability and probability densities,
where it is clear from the context. Capital letters is used for the variable itself
where it is advantageous to differentiate (Chapter 4) and in following list to
differentiate between variable and outcome).

P (X = x) The probability that the random variable X takes on a
given value x. P (X) ∈ [0; 1].

p (x|θ) A probability density parameterized by elements in θ
P (X = x|Y = y) A conditional probability probability where X is condition

on another random variable, Y
p (y|x) A conditional probability density function (or condition

probability, which is clear from context)
E(X) Expectation of a random variable, X.
V(X) Second order moment of the random variable X, i.e. vari-

ance. Also used to denote covariance.
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Distributions, processes and related functions:

A stochastic process is a collection of random variables Xi indexed by i X =
{X1, X2, ..., XN}. In the report a Gaussian process considered from a func-
tion viewpoint a the following notation is employed, and using an informal
notation, a Gaussian process is then denoted f = {f1, f2, ..., fN} or f(·) =
{f(x1), f(x2), ..., f(xN )}, thus fi , f(xi) being the individual random vari-
ables. It is noted that the Gaussian process is defined for all x ∈ X, i.e. in
principle infinite, but we usually consider a finite subset through a vector f of
the function evaluated a finite set of inputs, i.e., f = [f(x1), f(x2), ..., f(xN )],
resulting in a tractable finite multi-variate Gaussian distribution.

N (x|µ,Σ) Normal/Gaussian Distribution (used interchangeably) [26,
App. B]

N (µ,Σ)
Φ (z) Cumulative Gaussian, with mean 0 and standard deviation

1
Φ−1 (z) Probit function. Inverse cumulative Gaussian.
Beta (α, β) A standard two parameter beta distribution
Categorical(λ) A categorical distribution [26]. A multinomial distrbution

with only one draw. Parameterized by the probabilities λ.
Dirichlet(α) A Dirichlet distrbution parameterized by the concentration

parameter α [26, App. B]
TG(µ, σ) Standard truncated Gaussian distribution usually with sup-

port in [0, 1]
Truncated G.
k(x, x′) Covariance function, co-defining a Gaussian process
m(x) Mean function, co-defining a Gaussian process
K or KXX Covariance marix with elements k(x, x′) between all train-

ing inputs.
kr Covariance vector between all traning inputs and a test

input xr.

Information theory

S (X) (Shannon) Entropy of the random variable X
S (X|Y = y) Conditional entropy of the random variable x conditioned

on the random variable Y taking a particular value
S (X|Y ) Conditional entropy of the random variable S conditioned

on the random variable Y - or a dataset in some cases.
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Chapter 1

Introduction

The growth of the digital multimedia world, in terms of both scale and use,
makes it increasingly important to create systems to process and organize digital
multimedia objects, such as text documents, books, video and audio objects
with the aim to increase the productivity and the satisfaction of the users.
The emphasis on the user is especially important in multimedia systems, where
the information itself has a profound perceptual and cognitive influence on the
users, such as music which has the ability to both move, repel and even heal
us [185]. It has therefore become an important engineering task to design and
build systems to store, process and organize multimedia information, designed
to be well aligned with the user’s needs and expectations.

The systems considered in this thesis ranges from relatively simple reproduction
devices like personal media players or hearing aids, to more complex organiza-
tion and retrieval systems, such as search engines and recommendation services.
In the first case, the system task is typically to provide a optimally processed
versions of the input conditioned on system parameters. In the second case, the
system task is essentially to define similarity between user query and objects to
be able to return relevant search results. In order to produce a particular system
result and output - such as search results, processed audio files or recommenda-
tions - a given system often make use of a so called computational representation
or mathematical models. This representation essentially defines the similarity
and relations between either system parameters or the objects. The only as-
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sumption regarding a system in this context; is that these are designed to be
utilized and operated by human subjects: the users. Such users have conscious
or unconscious information needs (see e.g. [144][211]), a subjective understand-
ing of objects relations and certain expectations to the system response. We
threat such user related and specific aspects under the general notion of a user
representation encompassing the general state of the user, possibly affected
by the current environmentally context of the user such as location and social
context. If the computational representation and the user’s representation is not
aligned suboptimal system performance is typically encountered. We here de-
fine this misalignment as the semantic gap [198]. The overall system goal is to
minimize this semantic gap by ensuring that the computational representation
is well-aligned with the user’s representation and needs.

Modern computational representations for organization and retrieval include
the latent semantic view of multimedia objects in text mining [55] and music
[240, 239, 105], which in a unsupervised manner extracts the latent semantics
of the data in order to provide grouping and organization. The main goal is
to provide representations well aligned with general human representations, for
which reason the term ’cognitive’ components [83] is sometimes preferred. Such
purely content based and unsupervised representations is here defined as the
bottom-up view or a computational low-level representation. Examples of
such bottom-up based systems include content based recommendation in for
example image retrieval and music recommendation/similarity [127].

An unsupervised bottom-up representation may provide general alignment with
generic perceptual and cognitive representations evaluated over the general pop-
ulation. However, representation of objects and/or the system output is typi-
cally highly subjective and depends on the general state of the user. To obtain
a computational representation aligned with the representation of the individ-
ual user, it is thus necessary to obtain information regarding the user view
on objects, system output and possibly the user’s environmental context. In
the simplest case this information may be as simple as providing labels for the
objects, which results in classical supervised machine learning setting (see e.g.
[26]. Other examples include reproduction systems such as personal entertain-
ment systems, where system parameters are adapted based on user’s indication
of preference. Such consciously expressed information is here defined as a top-
down and a computational representation based solely on this view is referred
to as high-level representation. Examples of purely top-down driven systems in-
clude collaborative filtering, relying only on user’s ratings such as Netflix [166]
and Amazon [6]. Slightly more subtle top-down driven systems include music
recommendation services like last.fm [119]. Here user provided tags can be seen
as a conscious wish to express the user’s view on the object or system output.
The high-level computational representation can, for example, be obtained by
latent semantic analysis [125], classification or regression models for represent-
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Figure 1.1: A simplified view of a general information processing system. A
user’s understanding, needs and expectations is represented by a (instantaneous)
user representation, and the consciously expressed versions of this representa-
tion towards the objects or a given system output. The system consists of
the objects either processed for e.g. based on some system parameters (like in
reproduction) or as raw objects (retrieval and recommendation). The system
considers bottom-up information in the form of content based features, object
meta-data (context), and top-down information in the form of user generated
information, e.g. expressed user view and common knowledge. The system
models and integration via a computational representation, possibly consisting
of a separate low-level representation , and a possibly separate high-level repre-
sentation. The system presents the results and information though an expressed
system view, and can request information through expressed systems needs. The
actual human-computer-interface between the system and user is represented
by the yellow bar, but not considered in the thesis.
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ing aspects such as categorization (e.g. genre) and preference. Such top-down
driven systems has the possibility to determine a representation based on the
user’s expressed views, namely the user generated data. However, such user gen-
erated data is typically a noisy expression of the true user representation due
to subject inconsistencies and drift in the user representation itself, for example
due to change in user context. The high-level computational representation,
therefore, only reflects the expressed version of the user representation; not the
representation its self. Furthermore, a purely top-down approach suffers from
the cold-start problem, in which some ratings may be missing for a subset or all
objects (or system outputs).

With the pros and cons of both bottom-up and top-down views, a potential
solution towards fully bridging the semantic gap seems to be the combination
of both. In combination, the two views is potentially robust to missing and
noisy user generated view, and the lack of individualization in purely bottom-
up driven systems. So far the definition of computational representations has
been divided to a low- and a high-level representation based on information on
which they were based. This simply illustrates that such separation is some-
times possible and logical on its own. In a combined view, however, simple
representation can, for example, include standard classification and regression
models. In this case, the bottom-up view is simply used as a input (feature) to
the representation leading to a top-down aspect without the need or requirement
for separate bottom-up and top-down representations1. More subtle systems,
which combines the two separate computational representations, include recom-
mendation systems which takes into account both content and annotations (for
example in the form of two separate or combined LSA representations). A num-
ber of such systems has been proposed for multimedia systems, for examples in
image retrieval [85][187], and in various form in the music information retrieval
(MIR) community [188][43][208][240][206].

An important part, not addressed in the so far static description of a system, is
the actual dynamic use of the system, i.e., the interaction taking place between
the system and the users. From the user perspective this interaction is the
process of using the system to obtain a given (potentially unconscious) need,
i.e, find relevant webpages or listening to music with the best possible reproduc-
tion performance. From the system perspective this is ideally a combined
process of a) satisfying the user’s information needs and b) learning and/or
adapting the representations in order to achieve the first part. Part a) is given
by the main purpose (as seen from the users) of the system, for example re-
trieval/recommendation or reproduction. Part b) is the process of optimizing
the computational representation (of both users and the objects) in an optimal

1One may argue that for example kernel methods require a low-level representation of
the inputs in the form of a kernel function which on its own defines low-level similarity and
relations, i.e. a representation.
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fashion by obtaining the users top-down view of the objects, object relations,
user relation or system results. And potentially (decoding) the context of the
users. Thus, part b) relates to fulfilling the information needs of the system.
Fulfilling the systems needs can be done in many ways, i.e, explicitly querying
the users by requesting annotations - or implicitly by observing the user’s re-
sponse to an result such as click-through rates and implicit feedback [10]. In
combination, we refer to part a) and b) as the interactive learning process
or simply active learning when the focus is on the algorithmic and not the
system aspects.

The defining aspect of the systems (and algorithms) is the user. While there
are many open purely technical and algorithmic problems towards the general
and ultimate machine learning system, many challenges relates directly to the
users of the system. This thesis will focus on a few of the many aspects outlined
above which are outlined in the following section.

1.1 Focus Areas

The ambition in many application domains is to eventually design and construct
systems with many of the appealing properties discusses above. This thesis
will focus on three different, but equally important elements of the general
challenge, namely a combined computational representation of music, preference
learning with focus on audio and music - and finally human predictability with
relevance to user context and characterization of human behavior. These aspects
are conceptually outlined below while a more detailed overview and technical
aspects are covered in individual chapters 2 3 4 presenting short introductions
to the different fields and the contributions.

Computational Representations of Music

Multimedia and in particular music has an immense impact on the modern so-
ciety in terms of well-being [51][185] and commercial value (e.g. [95][112]). The
large boost in music consumption created by the personal and portable devices,
such as MP3-players and smartphones, has created the need and demand for
services which organize, recommendation and stream the actual content.

However, few if any of the current music recommendation and retrieval services
has truly managed to provide relevant and personal music recommendation and
search results [43]. This is for example reflected in the way many users still
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discover new music, namely through the ’non-interactive’ radio [171]. Potential
solutions towards a successful music recommendation and retrieval system (see
e.g. [208][43]) is based on the general system outlied in Fig.(1.1). This implies
computational music representations which are based both on bottom-up audio
analysis and user based top-down views reflecting multiple high-level aspects of
the music, such as emotion, preference and categorization. In the optimal case
this should be combined with interactive process ensuring that the representa-
tion is updated based on changes in environmental and social context.

The aim of this thesis is to investigate a subpart of this ’ideal’ music system.
The goal is specifically to investigate models and representations which can
combine the bottom-up view - based on audio content analysis - with a top-
down view based on an expressed user view obtained through user annotation
annotations. In particular, the aim is to evaluate the representation on the
recently published Million Song Dataset which will ensure both scalability of
the methods and generalization of the results. Secondly, the goal of the thesis
is to examine robust and flexible way to represent and elicit cognitive aspects
such as preference and emotion in music, based on the methods provided by the
next focus area.

Preference Learning with Gaussian processes

Explicit, top-down user ratings and judgements is a major element in many
modern information processing systems such as movie and book recommenda-
tion, satisfaction of online web services, implicit user feedback via click-through
rates in online advertising or search engines [10] and skipping behavior in music
playlists [174].

Such ratings, judgement and feedback represent a general desire from the system
to elicit and understand perceptual and cognitive aspects of the users in order to
optimize system performance. However, robustly eliciting such aspects is often
complicated by the aspects themselves, such as preference, which are inherently
difficult to elicit and represent due to the profound and diverse cognitive effect
for example audio and music has on the users. These issues can often be framed
in terms of standard signal detection theory [230] where concepts such as internal
noise, bias and drift can be used to describe the challenges in obtaining robust
ratings and judgements.

Experimental psychology has dealt with such issues in decades and often rely
on relative simple experimental protocols for examining one (or few) effects
in well-controlled situations and analyses the results with standard statistical
test. The sensormetric field, often applied in the food sciences for optimizing
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products [163], also deals with similar aspects. However this field typically focus
on discriminative testing and post-analysing a few, well-defined effects and in
particular, one (or a few) fully controllable variables. In the system view of this
thesis, such methodologies are available only in situations where the aim is to
post-optimize explicit system parameters in for example reproduction systems.
This does not usually allow for application in interactive systems with many
partly controllable variables as in the case of general preference learning of
music and online system optimization.

The goal in this thesis is therefore to investigate and realize a general setup
based on flexible Gaussian processes, applicable in real interactive systems. It
should be both flexible and robust in eliciting and representing different percep-
tual and cognitive aspects, such as preference and cognitive aspects of audio.
The aim is therefore is to provide support for different response types, including
discrete choices and continuous ratings, suitable for modelling the particular ob-
servations originating from different experimental paradigms. To optimize the
learning rate of the system, it is the aim to investigate effective paradigms in-
cluding extended versions of classic forced choice paradigms. To further optimize
the learning rate sequential experimental design should also be supported for
optimal experimentation in real applications. It should, in a flexible way, sup-
port the many representations relevant to audio and music, including multiple
heterogenous data sources potentially modeled by probability density functions.

The realized setup 2 is presented in details in section 3, and documented and
applied in multiple contribution listed in Sec.1.2.

Predictability of User Context

The context in which users interacts with systems and objects has a major
influence on both the users representation in terms of needs and understanding
of the objects and system output. One major aspect of the user context is
location (others include social context), which can typically be used to improve
the computational representation of the objects of interest.

A intriguing aspect of human context, and in particular location, is to what
degree it can be predicted based on the past which determines the so-called
predictability. From an engineering viewpoint this has relevance to resource
allocation and general system optimization, however, the predictability of loca-
tion provides a basic view into human behavior by quantifying the repetitive
patterns of human life.

2Developed in collaboration with co-authors.
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The aim of the thesis is to investigate methods for characterizing and examining
the predictability of subjects, in particular the location aspect sampled using the
ubiquitous mobile phone. The goal is to quantify the fundamental predictability
of humans mobility, which characterises each individual user. The methods for
accomplishing this are described in Chapter 4 and the dataset and results are
presented in [B] and [A].

1.2 Contributions

The academic contributions follows the three areas defined above, thus

• The first contribution relates to finding semantic representation of music
by modelling music data by multi-modal Bayesian topic models which
provides a relatively simple, but widely applicably probabilistic model.
Contribution [H] is a study of the million song dataset [20] analysing the
alignment between top-down open vocabulary tags with the bottom-up
representation. It furthermore examines the predictive power of the joint
model for genre and style prediction - a classic task MIR task.

• The second and primary group of contributions is in the field of ranking,
rating and preference learning. The thesis contributes with a number
of modelling extensions and applications of a flexible probabilistic setup
relying on Gaussian process priors.

In terms of experimental paradigms relying on relative comparisons be-
tween objects/system output, the thesis contributes with the proposal and
realization of a new likelihood model for pairwise ratings with continuous
observations based on the Beta distribution [C]. The thesis furthermore
contributes with a sparse/pseudo-input extension for the classic pairwise
model setting. This allows scaling of the pairwise model to larger problems
[G] than previously feasible.

In terms of experimental paradigms relying on absolute ratings; contri-
bution [C] proposes and realize a likelihood model based on Beta and
Truncated distributions designed for responses with bounded support.

In contribution [I] active learning or sequential design is investigated for
system optimization, where elements of the setup is applied for active
preference learning with absolute (bounded) responses in a real-world and
interactive application.

The modelling part of the individual contributions are realized in a general
setup supporting various paradigm for ranking and rating, which has been
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applied in the field of music emotion modelling [F][E], music preference
[D], and independently by co-authors in audio preference learning [170].
Multiple kernel and generative kernel elements of the setup was further-
more applied in [4] supporting sensor fusion for binary classification.

• The third group of contributions is related to the field of human context
prediction and in particular one-step ahead predictability of location. The
thesis contributes in [B] and [A] with studies relating to and supporting
previous work in the field of human predictability relying on nonparametric
predictability bounds derived from information theory.

1.3 Structure

The report continuous with a general introduction to the three subareas previ-
ously identified and outlined. The chapters are not an exhaustive walk-through
of every aspects of the methodology and modelling methods, but aims at intro-
ducing the reader to the general area in the respective fields and focusing on
placing the listed contributions in a broader context of the respective research
areas.

• Chapter 2 provides an overview of computational aspects of audio and
music with focus on the content based bottom-up view and the users
top-down view including related tasks in the field of music information
retrieval (MIR). Based on [H] the chapter then describes a setup and
model for integration multiple views in a single joint semantic space based
on multi-modal topics models, which provides background and motivation
for contribution [H] .

• Chapter 3 is an introduction to preference learning, ranking and elicitation
of perceptual and cognitive aspects primarily in the audio/music domains
based on a Gaussian processes. The chapters takes a holistic view on pref-
erence learning with Gaussian process, and considers a general Bayesian
setup consisting of four elements: observations, prior, inference and se-
quential design.

• Chapter 4 describes methods for estimating users predictability based on
information theoretic bounds. It gives an motivation for the approach and
an introduction to the methods with a simple proof of the bounds applied
in [B,A].



10 Introduction

• Chapter 5 summarizes and concludes the thesis based on the summary
report and contributions related to each of the three focus areas.

The contributions are included as pre-prints in the appendix. They are grouped
in the three focus areas as outlined in the introduction,

Computational Representation of Music

• Appendix [H] contains a pre-print of the paper: ”Towards a universal
representation for audio information retrieval and analysis”

Preference Learning with Gaussian Processes

• Appendix [C] contains a pre-print of the paper: ”Efficient Preference
Learning with Pairwise Continuous Observations and Gaussian Processes”
(MLSP 2011)

• Appendix [D] contains a pre-print of the paper: ”A Predictive model of
music preference using pairwise comparisons” (MLSP2011)

• Appendix [F] contains a pre-print of the paper: ”Modeling Expressed
Emotions in Music using Pairwise Comparisons” (CMMR2012)

• Appendix [E] contains a pre-print of the paper: ”Towards Predicting Ex-
pressed Emotion in Music from Pairwise Comparisons” (SMC 2012)

• Appendix [G] contains a pre-print of the paper: ”Pseudo Inputs For Pair-
wise Learning With Gaussian Processes” (MLSP 2012).

• Appendix [I] contains a pre-print of the paper: ”Personalized Audio Sys-
tem - a Bayesian Approach”

• Appendix [J] contains a pre-print of the paper: ”Bounded Gaussian Pro-
cess Regression”.

Predictability of User Context

• Appendix [A] contains a pre-print of the paper: ”Estimating human pre-
dictability from mobile sensor data” (MLSP2010)

• Appendix [B] contains a pre-print of the paper: ”Predictability of mobile
phone associations, European Conference on Machine Learning” (MUSE2010)



Chapter 2

Computational
Representation of Music

Music and audio plays an important and large part in the modern society in
terms of well-being [51] and commercial importance [95]. One of the challenging
issues, from a signal processing and computational point of view, is the many
aspects which influences the way a user perceives and understands a particular
song or even a subpart of the song. This is both an effect of the complex auditory
system and high level cognitive aspects influenced by cultural and personal
memory [57]. This makes it both challenging to represent and reproduce music,
analyse single songs, organize millions of songs and create music and audio
services for retrieval and recommendation.

The field of computational audio and music goes back to at least the fifties,
where the CSIRA computer was the first computer to play computer generated
audio [54]. The audio (and image) domain acted as perfect application and
motivator for the spur of digital signal processing developed in the last half
of the last century. The field often came up with new challenges specifically
related to music synthesis, reproduction and analysis, here focusing on the latter
aspect. Another important aspect of the field is the understanding of the human
auditory systems and in particular development of simple perceptual auditory
models (see e.g. [243][76]), for example loudness models and mel-frequency
filterbanks applied in many modern music analysis systems. This allowed the
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computer to analyse the audio in a way similar to the listener.

The combination of digital signal processing and perceptual auditory models al-
lowed the music information retrieval (MIR) field to automate tasks previously
limited to human analysis. This included chord recognition, source separation,
transcription, tempo estimation, segmentation, best extraction, timbre detec-
tion, instrument classification, gender recognition, artist recognition and cover
song detection. These tasks are objective and bottom-up driven in the sense
that they are not depending on subjective representations (experience, cultural
background, memory etc.) and can in principle be deduced from the signal and
metadata of the song.

While these objective tasks are certainly interesting, this thesis focuses on the
top-down driven tasks related to organization and recommendation, which are
highly influenced by the users representation and understanding. This represen-
tation is typically considered a complex result of biological, environmental, cul-
tural background and the current context of the individual, including the social
context) (e.g. [52]). Such engineering and system tasks include genre classifi-
cation, emotion recognition (both expressed and induced), perceived similarity
based on timbre, rhythmic, harmonic and melodic aspects with application to
for example recommendation, (auto)tagging and preference elicitation.

The mentioned top-down tasks are related to general organization and retrieval
systems. In the other setting considered, i.e., reproduction, the top-down task
amounts to finding the optimal system parameters (such as filter characteristics)
to obtain the best possible alignment with for example the users preference1.

Outline: This section continues with an overview of the many domain spe-
cific aspects and object representations of audio and music also relevant to the
contributions in Sec.3. First, a brief overview of content based features and
representations is provided in Sec.2.2. Secondly, top-down aspects of music and
music systems are revised in Sec. 2.3. Sec. 2.4 gives an introduction to the ag-
gregation of several music representations into a multi-modal model based on
probabilistic topic models, in particular multi-modal Latent Dirichlet Allocation
(LDA).

1Such tasks are not considered from a modelling perspective in this chapter but addressed
in Chapter 3
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2.1 The Audio Object: Signal and Metadata

Audio objects, in particular music objects, are here characterized by two overall
aspects,

• The signal: A time-domain signal indirectly representing the physical
sound pressure level created when a system reproduces the audio from
the signal.

• The metadata: (sometimes referred to as the object context) covers as-
pects objectively connected to the audio/music object. This includes
artist, period/year, duration, sampling rate, and possibly some catego-
rization. In context of a system, textual lyrics are also considered part of
the metadata, since it is typically available in external form to the time
domain signal and not derived from the signal itself.

The time-domain signal as illustrated in Fig. 2.1, is the base object consid-
ered in audio analysis, processing and reproduction. For the task considered
later on, we typically consider basic transforms of the data to for example the
frequency domain using the discrete (fast) fourier transform (FFT). Given the
non-stationary of music, this and other analysis methods are often based on
an equal-length and possibly overlapping analysis frames, significantly shorter
that the full signal, and typically less than a second, as illustrated in Fig. 2.1.
Alternatively, some analysis approaches uses frames of non-equal length based
on the events in the signal such as the Echonest [60]. These analysis frames,
regardless of the length, is the basic temporal entity on which the bottom-up
feature extraction works

Metadata regarding the audio/music object includes purely objective aspects
such as origin and period. The texttual lyrics are also considered metadata
since it often enters as a separate set of (objective) data and not extracted
from the audio. Lyrics has been analyzed in a number of studies, such as [177],
finding clear patters in the way the temporal course of the emotion of lyrics
change in music. For qualitative classification, lyrics have been evaluated in for
example [94] showing that lyrics can aid in bottom-up based audio modeling.
Contribution [H] uses lyrics in evaluating genre prediction and alignment with
top-down aspects showing that lyrics is not a particular good feature for genre
and style classification as compared with audio.
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Figure 2.1: The top panel shows the audio signal by its time-magnitude represen-
tation. The top panel furthermore shows the temporal frames which is normally
used to extract bottom-up features. The shortest frames (in red) shows the ba-
sic analysis windows, the intermediate frames illustrates the process of temporal
integration in which multiple is used in the estimation of a representation on
longer time scale. The longest frame illustrates temporal integration operating
on the full signal length. The second panel shows the spectrum of the sig-
nal. The third panel shows the mel-frequency cepstrum coefficients (MFCC)
extracted on the basic analysis frame. The fourth (bottom) panel shows the
chromagram.
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Frequency Domain Time Domain Unsupervised Others
(see e.g [176][76]) (see e.g. [176][160]) features descriptors

FFT / DCT Onsets NMF (e.g. [175]) Information
Zero-crossings Deep NN ([124][82]) dynamics [3]

Energy / ratios Envelope aspects . . . . . .
Autocorrelation

Rolloff, Flatness Duration
Flatness, Centroid . . .
Flux, Bandwidth
Slope, Spread
. . .

Timbre / Perceptual Tonal/Hamony/Melody Rythmic Loudness [57]
Spectrum Encoding (see e.g. [109]) ([109][160][176])

MFCC [76] Pitch (e.g. [109][169]) Pulse / Tatum Loudness
PLP [87] Chroma(gram)/PCP [69][15] Beats Sharpness
LPC [76] Chords (e.g. [99]) Bars / Measue Spread
. . . Melody features (e.g. [186]) Tempo . . .

Noisiness . . .
Inharmonicity
. . .

Table 2.1: A non-exhaustive but representative overview of common bottom-up
audio features. The top row lists a number of base features and elements used
in describing the musical features listed in the second row.

2.2 Bottom-Up View

The music analysis and retrieval community has considered hundreds of different
content based descriptions of music. Generally these can roughly be grouped
into partly musically meaningful categorizes as indicated in Tab. 2.2. Some
content based descriptors are purely statistical and other such as loudness and
the timbre motivated mel-frequency cepstrum coefficients (MCFF) are related
to - or at least motivated by - directly to the human auditory processing.

The thesis applies a variety of the most popular bottom-up features outlined in
Tab. 2.2, which is shortly described in terms of the music aspects (the second
row in Tab. 2.2).

Loudness is the perceptual understanding of strength which allows a person to
rank sounds from quiet to loud [76]. It is not a mathematical quality, such
as energy and power, and loudness is often calculated based on perceptual
models of loudness [159][243]. Loudness can also be considered top-down
aspect since it depends on context, however since extracted from the audio,
we here consider it a part of the bottom-up view.
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Explicit loudness features are considered in contribution [H], based on the
Echonest feature set [60].

Timbre is the quality of music which allows human to differentiate between
different instrument playing the same note with same pitch and loudness
[193]. The mel-frequency cepstral coefficients (MFCC) is a computational
approach [133][153][76][56] to extract at least some aspect of this quality
[213][9] by encoding the spectrum in a perceptual way. The extraction on
each analysis frame is (typically) performed as follows [56][76]:

Windowing→ FFT(·)→ Abs(·)→ log(·)→ Mel-FilterBank→ DCT

where the FFT denotes the Fast Fourier Transform, and DCT denotes
the discrete cosine transform. The main aspect to consider is the Mel
frequency filter bank which aims at performing spectrum analysis in line
with the human auditory system [76]. Various implementations of MFCCs
such as [33][38][219] allows for different filter banks, windowing function
and importantly allows for different number of filter bands distributed
across the full frequency range. Furthermore, an arbitrary subset of the
resulting coefficients is typically parsed on to the model stage, which alto-
gether makes the notion of MFCC a vague concept, highly dependent on
implementation and application.

Other features carry information timbre and a large number of both tem-
poral and spectral aspects has typically been included in the aim to de-
scribe timbre, such as spectral flux and zero-crossing rate (ZCR).

In contributions [D][E][F] standard timbre features was applied (MFCCs,
ZCR and spectral descriptors), whereas contribution [H] used the Echonest
version of timbre, which are based on a linear projection of MFCC-like
features into a 12 dimensional subspace [60].

Tonal and Harmonic
Pitch is defined [109] as ”a perceptual property that allows the ordering of
sounds on a frequency-related scale”. Is not the same as the fundamental
frequency in spectrum analysis, since the auditory system highly influences
the pitch perception [57]. However, the actual fundamental frequency is
often applied as a proxy for pitch.

Chroma (or pitch class profile) features has become a popular represen-
tative for the tonal and harmonic content of music (see e.g. [61]). The
chromagram is based on the chromatic scale, thus the representation con-
sist of twelve bin frequency spectrum. Each bin contains the aggregation
of energy all bins in the fullrange frequency spectrum which are closest
to the note defined by the twelve bins invariant to a particular octave.
Hence, it is a twelve dimensional representing of the energy/intensity of
the twelve pitch classes. It is a coarser representation than the pitch itself
or fundamental frequency, but is also more robust in terms of estimation
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and noise. The chroma(gram) is typically (see e.g. [160]) extracted in a
frame based manner based on a set of constant-Q filters per octave (12,
i.e. 1 semitone per bin, or 36, i.e. 1/3 semitones per bin).

Contribution [I] makes use of the chroma features from the Echonest [60]
implementation, however beat aligned to obtain a music meaning full tem-
poral alignment - and furthermore normalized per beat segment in line
with previous work [18].

The Melody is an even higher level representation and focuses on the se-
quence of pitch and chords and can simply be defined, as follows: ”Melody
is the dominant individual pitched line in a musical ensemble” [173]. As
noted in [186] it may be considered a top-down aspects as it is cultural
and context dependent.

Rhythmic
Rhythm in its most general form refers to the temporal aspects of music
such as tatum, beats and bars [77][161]. Often we consider the primary
or generic tempo, i.e. the rate at which a standard listener would tap the
foot when listening to music. This is typically represented as the number
of beat per second. Tempo is applied in contribution [H].

2.2.1 Song Level Representation

The features described above can often (alone or combined) be considered a
sequence of vectors in some high-dimensional space which constitutes the rep-
resentation of the song on the frame level. However, for many modeling we
are interested in a representation on the song level so this section will outline
standard ways of finding a song level representation.

Pre-processing is often applied in order to increase the interpretability of the
frame based representtaion, or ease the computational load of the often high-
dimensional feature spaces and/or large music databases. A large variety of
methods can been applied in the audio domain for reducing the dimensional-
ity, such as the pallet of multi-dimensional scaling (e.g. ISOMAP, Laplacian
Eigenmaps), however, the primary preprocessing tools is the simple principle
component analysis (PCA) [26]. It is typically calculated via the SVD decom-
position and was applied in contribution [D,F] as preprocessing with the aim of
reducing the dimensionality defined by common timbre features.

Audiowords is a term used to describe a representation in which the feature
space is quantized into a number of prototypical audio words [196][91][210][146].
Based on a vocabulary of audiowords, V of size V × 1, each frame in all the
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audio songs can be assigned in a hard manner to a single audioword corre-
sponding to the well-known technique of vector quantization (VQ). In a song,
s, a particular word from the vocabulary of audiowords at position/frame i
is denoted, ws,i, and the sequence becomes a vector of integer indexes, i.e.,

ws =
[
ws,1, ws,1, .., wsNs

]>
. There are various strategies towards finding the

audiowords, and possibly the simplest is to apply a K-means algorithm [26]
with a fixed number of K centers. Obviously any (spectral) clustering (hard or
soft), sensible decomposition (such as normalized matrix factorization) may be
used to define the audio words (followed by hard assignment). In contribution
[H] an online version of the K-means algorithm [106] was applied for scalability
on the Million Song Dataset (MSD) [20].

Temporal considerations: Many of the bottom-up features outlined above -
or their low-rank and vector quantized version - are typically based on the frame
based analysis as outlined in Fig. 2.1, thus a sequence of vectors. The obvious
temporal aspect of audio has spurred a vast amount of work in representing and
modelling temporal. The approaches can roughly be categorized as follows:

Temporal Independence - bag-of-frames In the simplest possible - but widely
applied approach - we assume that the frames are independent and obtain
a so called bag-of-frames approach.

• Mean-Variance / Gaussian:
A simple statistical representation of a set of vectors in a song, s,
is the multi-dimensional mean vector, µs, and variance, σs, of the
multi-dimensional observations. This can naturally be generalized to
a probability, and given the often continuous features, the natural
distribution is a standard Gaussian, i.e.the representation for a song,
s is simply

p (x|θs) = N (x|µs,Σs)

where θs = {µs,Σs}. µs is the mean of the distribution and Σs is
the covariance matrix. While seemingly simple, this representation
has been argued to be rich enough [143], at least for classification
purposes.

• Gaussian Mixture Model
The single Gaussian representation is possibly enough in many situa-
tion and systems [143], however another popular approach is to gener-
alize the Gaussian representation to a mixture of individual Gaussian
using the Gaussian Mixture Model (GMM) to define a considerably
more complex density, i.e.,

p (x|θs) =

Z∑

z=1

p (z) p
(
x|θ(z)

s

)
=

Z∑

z=1

p (z)N
(
x|µ(z)

s ,Σ(z)
s

)
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where θs =
{
θ(z)
s

}z=1:Z

and θ(z)
s =

{
µ

(z)
s ,Σ

(z)
s

}
. The mixing pro-

portions, p(z), further has the constraint p (z) ∈ [0, 1] and
Z∑
z=1

p (z) =

1. The model is typically estimated using standard expectation max-
imization algorithm [26]. Determining the model complexity is gen-
erally a tricky matter and may be performed using the Akiies Infor-
mation Criterion (AIC) or the Bayesian Information Criterion (BIC)
[190][26], penalizing the resulting log-likelihood with a complexity
term depending on the number of free parameters in the model.

• Histograms for audio word models:
In case the audio feature space has been quantized into audio words,
we may represent the song as a sequence of the audiowords. However,
in the bag-of-frames assumption the order does not matter and the
song may be represented counting the number of occurrences of the
audiowords in the vocabulary. This may be expressed as counts of
(audio)words in a given song, n (ws = v) where v is the index into the
vocabulary, V. This results in a bag-of-(audio)words representation
where each song is represented by a x ∈ NV vector of counts xs =
[n (ws = 1) , n (ws = 2) , ..., n (ws = V )]

>

This bag-of-frames representation obviously requires less estimation
and computation than the GMM, and was used for scalability rea-
sons in contribution [H] on the MSD. In some settings, the vector of
counts may be represented as a probability mass function, i.e., as a
distribution over all words for a given song. This is implicitly done
in for example [7] for a topic model, and [146] for use in a kernel
method.

Temporal Integration A number of approaches has been suggested aiming
to integrate the low-level short time features into a longer frame in effect
integrating temporal information into new features and representations
which may then be applied in a algorithm. This approach can often be
divided into a number of categories depending on what temporal level an
subsequent algorithm makes its decision

• Early: Integration of information from each analysis frame can in the
simplest form be conducted by stacking individual frames. A more
advanced approach is the multi-variate auto-regression (AR) mod-
elling across multiple analysis frames, resulting in intermediate level
frames with for example AR coefficients (see [150] for an overview).

• Late: Another formally not a bottom-up approach is to make deci-
sions for each analysis frame and subsequently make a single joint
decision based for example on majority voting [150].
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Temporal Modelling The most elaborate approach to include temporal infor-
mation is a ’real’ modelling of the temporal dynamics which can be done
using for example hidden Markov models, or the more suitable dynamic
texture mixture model [12][11].

The song level representation applied in the contributions is typically the
Gaussian Mixture Model. There exist many proposals and evaluations [98][9] of
various measures of unsupervised similarity measures between densities. Based
on a single feature vector - and possibly the mean of the Gaussian - simple
distance measure such as the Euclidian, cosine or Mahanalobis distance may be
applied to define similarity between audio. More elaborate and popular sim-
ilarity measures include the (Symmetrized) Kullback-Leibler (KL) divergence
between densities. This can be computed in closed form with single compo-
nents, however must be evaluated by stochastic simulation for general mixtures.
The Earth Mover distance [134] is an approach to get around the KL divergences
problem with more than one component. The Hellinger distance [98] is an alter-
native measure between distributions, which can be generalized to mixtures in
analytical form [97]. A particular intriguing approach is based on the Bayesian,
non-parametric Hierarchal Dirichlet Process approach [90] effectively encoding
all songs with a a-prior assumption of infinite number of Gaussians common to
all songs. Each song is then coded as a mixture of these common Gaussians,
and similarity is given by the mixing proportions corresponding to p(z).

Tasks which rely on such music representations and similarities, include purely
bottom-up driven tasks like content based recommendation. However, for the
specific task of mapping to some label, e.g, genre, we often turn to supervised
machine learning algorithms (including the ones considered in Chapter 3), which
are based directly or indirectly on metrics or similarity functions. Well-known
algorithm include K-nearest neighbor [26] and kernel machines [197][26] such
as the Support Vector Machine (SVM), widely popular in the MIR community.
There is in general no requirements for the similarity function used in the K-
nearest neighbor algorithm, however any algorithm based on kernels, formally
require the kernel to be positive semi definite (PSD) (disregarding the notion of
conditional PSD kernels). Provided that the defined similarity is a valid metric
(e.g. [84]) it may directly be converted into a valid kernel function [81] 2.

The kernel based algorithms provide flexible alternatives to vector space algo-
rithms, since the only requirement is a valid kernel (perhaps derived from a valid
metric), which can be formulated for many objects such as strings, text and dis-
tributions. In particular, contribution [D] makes use of the probability product
kernel (PPK) [97] (described in more detail in Sec.3) for defining correlation
between the bottom-up audio features in terms of each songs density given by

2As considered in the co-authored paper [4]
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the GMM. The PPK has gained some attention in the MIR community and
has been applied in [152][150][14] with GMM and MAR, and most recently in
[146] using a histogram representation. Furthermore, contribution [F,D] utilizes
the PPK based on the Gaussian Mixture Model representation. Alternatives in
the MIR community includes the symmetric Kullback-Leibler divergence based
kernel (see e.g [151]), which is formally not a PSD kernel. And the much sim-
pler option of applying a squared exponential on a vectorized version of the
Gaussian representation (or the mixture) is often a simpler alternative. Such a
representation is applied in contribution [E].

2.3 Top-Down View

The bottom-up view as defined by the content based analysis and metadata, has
been a primary driver of music similarity in the early years. However, in recent
years many successful music studies and services are based not on the content
itself, but on the ratings and opinions of users, in a so called collaborative filter
setups. This is the text book example of a purely top-down based system, where
the users expressed views defines the possibly subjective similarity between mu-
sic songs.

Such collaborative filters are certainly not the only form of user generated data
suitable for including in a top-down view of music and audio systems. A number
of such aspects (and related datasets) has been considering in the music infor-
mation retrieval and analysis community), and we here provide an overview of
the approaches and relevant studies.

Preference - ratings and rankings
Subjective audio and music preference is a major aspect in recommenda-
tion and understanding of user representation and needs. Such preference
ratings is the basis of collaborate filtering systems (see e.g. [43] for a
general overview) and has been investigated in numerous studies such as
[42].

Collaborative filters usually suffers from very sparse data and have in
the MIR field been found to be biased by popular artists and popularity
in general [43]. Another approach is a fully personalized system which
was considered in contribution [D], where we proposed and investigated
a paradigm, where users compare two music songs to elicit their music
preference based on partial rankings of the music objects.

Audio preference was also considered in contribution [I], which attempts
to efficiently eliciting the preference in a music reproduction system where
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the music signal is altered by a linear filter operation parameterized by
system settings. The system task is to optimize the system parameters
based on a internal representation of the users preference.

Listening patterns
Listening patterns of users is an indirect preference rating method, where
the frequency is a representative of preference. This is, however, prone to
popularity as outlined in [43]. The million song dataset and the associated
TasteProfile dataset [2] - with more than one million users and more than
48 million entries - offers the possibility of evaluating the usefulness of
listening patters for preference learning and recommendation.

Music emotion - expressed and induced
That music has an emotional effect on humans is hardly a surprise and
probably one of the reason why music is such an important part of the
modern life. Naturally, audio and music systems should take this impor-
tant aspects into consideration, and in doing so, it is custom to differentiate
between the expressed emotion and the induced emotions of the music.

Expressed emotions of music is the objective emotional expression the
music is believed to carry, i.e., it can be seen as the expression the com-
poser is aiming to express [104]. Aimed to be an objective evaluation of
the emotion which the music expresses; it is still influenced by the cultural
background of the listeners [89][103]. The induced emotions refer to the
affect that the music has on the listener personally, i.e., highly depen-
dent on internal representation (memories, experience etc) and context.
Whether the distinction between expressed and induced emotion is fea-
sible is certainly an issues [183][104], however not often discussed in the
MIR community where the focus has been on the expressed emotion, thus,
disregarding the affect the music has on the individual and focusing on
the (homogeneous) population used to examine it.

The experimental setup typically applied for examining the expressed emo-
tion are categorical approaches [88] or dimensional approaches [184]. The
dimensional approach is the most applied in the MIR field [108], and
the preferred dimensions are arousal and valance denote the AV space.
Valance spans a range from highly positive (happy) to highly negative
(sad), whereas arousal ranges from calm/passive to excited/active [184].

From an application point of view, the aim is to model and predict the
emotional expression in the AV space based on the bottom-up features
which can then be used in recommendation and retrieval systems. A
number of approaches has been proposed in the MIR community (see [108]
for a review). These are mainly based on so-called direct scaling methods
in which users are asked to assign a single absolute value on the AV scale,
representing the emotion expressed by a particular piece of music. This
is often highly susceptible to the users lack of understanding of the scale



2.3 Top-Down View 23

[140], due to the complex concepts of arousal and valance. This is in
addition with the cognitive difficult in separating the expressed emotion
from the induced.

Contribution [E,F] consider the task of predicting the (expressed) emotion
of music based on pairwise comparisons between individual songs in the AV
space, which is an alternative but more robust experimental paradigm than
absolute rating. It has not yet fully been explored in the MIR community,
although previously considered in [237].

Induced emotion is highly personal and even context dependent and has
seemingly not been investigated within the MIR field, possibly due to
the experimental difficulties in obtaining robust ratings and representa-
tions [104]. It is, however, crucial to include such knowledge into truly
personal systems where individuals are affected differently by the music.
This personal aspect should optimally be elicited and represented by a
given system.

Annotation - categories and tags
Categorization of music, such as genre [68] is often a result of cultural
understanding and grouping of music [52], and is therefore considered a
top-down aspect in this context. The task of classifying music into genre
based on bottom-up features has been a defining task of MIR in many
years (see [209] for a comprehensive review).

Fixed vocabulary based on a certain taxonomy/ontology, is a simple
form of tagging where genre based annotation can be seen as a special
case. However, while genre is typically considered unique and exclusive,
the general annotation setting allows multiple annotations per objects (and
possibly users). Examples of such fixed annotations in include [221] where
the vocabulary is based on the CAL500 vocabulary [39], and a recent
proposal of an ontology for music annotation [181].

Open vocabularies also known as a folksonomies, provides a setting,
where the annotation themselves is the result of a conscious decision to
freely express the individual user representation towards an object or sys-
tem result (see [118] for a general review). Thus, users are allowed to
enter free text or even sentences expressing their view. A number of re-
search and real-world datasets has been collection in the MIR field, in-
cluding Magnatagatune [120], MajorMinor [142], last.fm [1] and CAL500
[39]. Descriptive studies of open vocabulary annotations, include [125] us-
ing probabilistic latent semantic analysis (pLSA), finding clear semantic
patterns. Similarly [72] uses open vocabulary tags from last.fm to evaluate
the similarity between artists also based on last.fm. [203] examines the
alignment between genre and tags based on a fixed expert vocabulary and
last.fm. Prediction of these tags from e.g. the audio features is a common
task in MIR (e.g. [155][19][91]), often motivated from a recommendation
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and retrieval point of view [43] in which the tagging induces a particular
top-down similarity.

Contribution [I] considers open vocabulary tags based on last.fm dataset.
This is combined with the bottom-up view to show alignment between
representations and tags in a descriptive fashion.

Music similarity - explicit and implicit
Explicit ratings of similarity of music objects is not a common approach in
the MIR community, but has gained some momentum with the MagnaTa-
gAtune dataset [120]. Various approaches [207][234][235] been applied to
learn the similarity based on the odd-one-out experimental paradigm, i.e.,
selecting the object which is most dissimilar to the two others 3. A sim-
ilar approach was formulated in [62] considering ground truth for artist
similarity.

Other approaches to similarity include explicit relevance feedback, where
users indicate relevance of the returned search result. This as for exam-
ple been proposed in [110] in which the user’s query is altered based on
indicated relevance, and in [45] reweighing feature dimensions based on
indicated relevance of search results.

The direct scaling of similarity is conjectured to be an important modelling
aspect in future systems, since it provides a direct way to manipulate
computational representations by expressed distances, or by e.g. odd-one-
out paradigms [120], possibly in an interactive learning process.

Implicit ratings based on the general techniques of (implicit) relevance
feedback [10] amounts to observing the behavior of the user in relation to
a system output, e.g., click-through behavior of music search. Such feed-
back implicitly defines similarity between query and objects. Examples of
such ideas has been proposed in for example [174] examining the skipping
behavior in recommended music playlists .

Common knowledge and Web resources
An particular aspect of the top-down view is common knowledge, i.e.
knowledge which has been collectively agreed upon such as encyclopedias
and reference works. This covers some of the annotation aspects previously
mentioned, at least to some degree. Wikipedia, for example, contains a
detailed description of genre and other music related aspects useable as
general top-down information. Such an approach was for example investi-
gated in [157] examining content and links in Wikipedia’s music universe -
and recently in [204], anchoring the patters found in an analysis of last.fm
using Wikipedia’s music universe. Other online sources of information are

3The framework presented in Sec. 3 can be used to model this dataset in a probabilistic
manner unlike e.g. [235]
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Twitter and similar services, which can provide top-down information re-
garding the objects, such as the preference covered above. It can further
give detailed insight into the users general context, including activities and
state of mind. Online social network such as Facebook and Twitter can
be a potential source of top-down and contextual information in collab-
orative filtering settings, inline with the friend-of-a-friend (FOAF) ideas
presented in [42][43].

2.4 Joining Views

The tasks related to the various views typically focuses on mapping from a
bottom-up view to the top-down view in order to utilize the bottom-up (or con-
tent based) analysis to enrich the users in a given system. Such task include
supervised auto-tagging [91][19], unsupervised similarity computation based on
bottom-up similarity (e.g. [98]), supervised genre classification based on bottom-
up features [209] and unsupervised (with auxiliary task) tag analysis [126]. Here,
the focus is on the combination of views - or modalities. Modern music organi-
zation systems and services, such as last.fm, typically have access to (multiple)
bottom-up and top-down views, but a major challenge is to utilize either, or
both, to create an effective computational representation, which aligns well with
the (individual) user representation as argued in Chapter 1.

In recent years, this has spurred a large interest in multimodal integration of
views - or modalities - for a number of tasks typically within retrial and recom-
mendation domain. Particular focus has been on hybrid recommendation based
on collaborative filtering and content based features (e.g. [240]), discriminative
semantic retrieval by combining kernels [14] and playlist generation by apply-
ing a hyper-graph approach, using many different modalities and learning the
weight of each modality discriminatively [148]. Recently [149] applied multi-
way canonical correlations analysis (CCA) based on bottom-up audio features,
lyrics and tags to analyze emotional aspects of music based on the Million Song
Dataset [20].

A further advantage of including multiple bottom-up and top-down views in a
single suitable model, is the possibility for a the single model to solve multiple
tasks previously covered by many different algorithms. The work in [229] is
a proposal for such a multi-task system in the MIR field. Contribution [H] is
an proposal of a probabilistic and generative approach towards such a system
providing a relatively simple probabilistic approach. It integrates the bottom-
up view (the audio features), the meta-data (lyrics) and a top-down view based
on open vocabulary tags.
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2.4.1 Example: Multimodal Integration

A concrete example where multimodal integration is an natural and often re-
quired approach is large scale music modelling which has become possible due
to the release large linked datasets such as the million song dataset (MSD). In
contribution [H] a setup is proposed which considers a number of the already
outlined views or modalities, in particular

Audio
The audio content is represented by bottom-up analysis. In particular
four fundamental aspects covering all of the musical aspects outlined in
Sec.2.2. I.e. timbre (x(timbre) ∈ R12), rhythmic (x(tempo) ∈ R), harmonic
(x(chroma) ∈ [0, 1]12) and loudness (x(loudness) ∈ R1). The features are
extracted by Echonest and already available in the MSD, however, the
setup aligns the event based segment to the beats of the song in order
to obtain music meaningful analysis frames (songs with no defined beat
maintain the segment based analysis frames).

The million songs in the MSD poses a computational problem due to the
mere size of the dataset. Contribution [H], therefore, takes the audioword
approach outlined in 2.2 in which the common feature space is vector
quantized (VQ) and frames in each song assigned to a single audioword.

The song level representation is obtained by assuming that the frames are
independent, i.e., no temporal integration is performed in [H]. This means
that each of the million songs is represented by a count of individual
audiowords. In contribution [H] the combined audio vocabulary is of size
V (tags) = 2112 audio words.

Lyrics
The textual lyrics of a song is another fundamental modality, which is
integrated in the setup. The lyric representation is in a bag-of-(lyric)-
words similar to the audiowords. The lyric vocabulary is of size V lyric =
5000 ( available in the MSD).

Tags
The user generated top-down is based on open vocabulary tags originating
from last.fm. They are represented as a bag-of-words of size V (tags) =
20.000 including the most popular tags out of more than 500.000 unique
tags.

Evaluation
The setup uses other top-down information which is not included in the
representation itself. These are genre (15 categories/classes) and style
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Figure 2.2: Graphical model (plate notation) of the considered versions of pLSA
(left) and the two different LDA models (right).

(22 categories/classes) originating from the All Music Guide dataset as-
sociated with the MSD [189]. This categorizes are simply represented
byV (genre) = 15 and V (style) = 22 word vocabulary, respectively.

The particular bag-of-words type representation allows for a symmetric and ho-
mogeneous representation of all modalities, which is advantages for scaling the
systems and allowing for standard computation representations/models. The
computational representation used to join these views, is in the current setup
based on probabilistic topic modelling originally formulated as pLSA [92], which
naturally leads to the multimodal Latent Dirichlet Allocation (LDA) formula-
tion applied in contribution [H].

2.4.2 Multimodal Latent Dirichlet Allocation

Modelling text in terms of latent grouping - or topics - is a popular focus area of
machine learning, with one of the most popular method being the probabilistic
latent semantic analysis (pLSA) originally propose in [92]. For a song, s, the
observation is a song-word vector, xs ∈ NV , of counts of each word, v, in the vo-
cabulary, V, originating from the sequence of words, ws = [ws,1, ws,2, ..., ws,Ns

].
pLSA assumes that the occurrence of a particular word ωv ∈ {0, 1} with index
v ∈ [1 : V ] in the vocabulary V, can be modelled as a mixture over socalled

topic distributions, θ̂s = p(z|s), and a topic specific word-topic distribution
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φ̂z = p
(
ωv=[1:V ]|z

)
Hence, the probability for observing a vocabulary word in

a particular song, s, is given by p (ωv = 1|s) =
∑Z
z=1 p (ωv|z) p (z|s).

Hence, the pLSA model defines Z latent groups of words also referred to as
topics. The graphical model of this simple mixture is shown in Fig. 2.2, which
shows the underlying generative story (effectively resulting in the mixture),
that for all words with position i in a particular song a topic zs,i is drawn from
p(z|s) after which a word ws,i ∈ [1 : V ] is drawn from p(ω|z). We of course

require
∑V
v=1 p (ωv|z) = 1 and

∑Z
z=1 p (z|s) = 1, such that the draw is from a

Categorical distributions.

Multiple modalities with each their vocabulary, V(m), is modelled by assuming
conditional independence between modalities,i.e.,

p
(
ω(1)
v ,ω(2)

v , ...,ω(M)
v |s

)
=
∑Z

z=1
p (z|s)

∏M

m=1
p
(
ω(m)
v |z

)
(2.1)

This results in a modality specific word-topic distribution p(ω(m)|z). Estimation
of the model parameters, i.e. the point estimates of all the vectors denoted
θ̂s = p(z|s) and φ̂z = p(ω|z), is done by observing that given a song and a
modality, words are generated independently. Thus, the total data likelihood

for a sequence of observed words, w
(m)
s , in a modality is simply a function of

the number of counts of each word indexed by v, thus adhering to the bag-of-
words representation. The likelihood of a corpus with counts, X, consisting of
S songs with M modalities, is typically performed using maximum likelihood

based on the total data log likelihood given as, p (X) =
S∏
s

M∏
m
p
(
x

(m)
s

)
due to

the conditional independence between word and between modalities. Hence, the
log likelihood becomes,

logL (θ; X) =

S∑

s

M∑

m

Xs,v.m log

(
Z∑

z

p
(
ω(m)|z

)
p (z|s)

)

where Xs,v.m = n(w
(m)
s = v) denotes the count of the modality specific vo-

cabulary words in each song, i.e. the bag-of-words representation. θ denotes
all the model parameters. The likelihood can be maximized by standard tools
such as the Expectation Maximization (EM) algorithm easily derived, also for
the multimodal version, and suggested in the original pLSA formulation [92].
Another, but equivalent approach is based on the easy recognizable relation to
Non Negative Matrix factorization (NMF) [58] applied for music analysis in for
example [7][157]4. The equivalence is based on the direct use of Kullback-Leibler
divergence as the NMF objective (as opposed to the ’indirect’ use in the EM
case) to derive the multiplicative updates [123][58].

4Although with the least-squares objectives and an appropriate normalization
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Contribution [H] extends the popular (multimodal) pLSA model by considering
the Bayesian version for music modelling, namely the Latent Dirichlet Allocation
(LDA). LDA was introduced in [29] with the aim to provide a valid generative
model for text documents/songs, which is formally lacking in the pLSA model
[29], since there is no way of generating a new document, i.e. obtaining a topic
distribution for it.

The LDA model accomplishes this by considering the topic distribution, θ̂s,
a real random variable and not a fixed parameter given the song, as in the
pLSA model. With the topic distribution being a random variable, θs, LDA
specifically places a common Dirichlet prior over it. The generative story now
holds, since a new document may be generated by drawing a topic distribution
from this common prior. Now it is possible draw a particular topic , zs,i, for
a word at position i in song s. Secondly, in the smoothed extension of LDA,
a Dirichlet prior is also introduced over the word-topic distribution, such that
with a particular topic zs,i, a word at position i is draw from p(ω|φzs,i), a
categorial distrbution. The graphical model for the smoothed LDA model is
shown in Fig. 2.2.

The multimodal LDA, mmLDA, is a straightforward extension of standard LDA
topic model [29], as shown in Fig. 2.2. The model is easily understood by the
way it generates a new song by the different modalities. The generative process,
which defines the model, is given by

• For each topic z ∈ [1;Z] in each modality m ∈ [1;M ]

Draw φ(m)
z ∼ Dirichlet(β(m)).

This is the zth topic’s distribution over vocabulary Vm in modality m.

• For each song s ∈ [1;S]

– Draw θs ∼ Dirichlet(α).
This is the sth song’s distribution over the topics [1;Z].

– For each modality m ∈ [1;M ]

∗ For each word position in the song i ∈ [1;Nsm]

· Draw a specific topic z
(m)
s,i ∼ Categorical(θs)

· Draw a word w
(m)
s,i ∼ Categorical(φ

(m)

z(m))

The important aspect to notice is that each song has a particular distribution
over topics drawn from the common Dirichlet prior, and that each modality has
its own word-topic distribution. The joint probability of observations, ws, and
the latent variables, zs, for each song and modality in the full corpus W and Z
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can thus be written

p (W,Z,Θ,Φ|α, β) = (2.2)

S∏

s

p (θs|α)

[
Z∏

z

M∏

m

p
(
φ(m)
z |β

)[Nsm∏

i

p
(
W

(m)
i,s |φ

(m)
z=Zs,i

)
p (Zs,i|θs)

]]
(2.3)

where Θ = {θs}s=1:S
and Φ =

{
φ(m)

}m=1:M

denotes the model parame-

ters. Inference of these model parameters is intractable and contribution [H]
resorts to Gibbs sampling. This is done by first collapsing the likelihood,
i.e.,p (W,Z|α, β) =

∫ ∫
p (W,Z,Θ,Φ|α, β) dΘdΦ. Noting that the Dirichlet

prior is conjugate to the Multi-nominal (and hence the Categorical)) distri-
bution; it is after some manipulating found that the Gibbs procedure yields
5 updates close to and generalizing the original LDA Gibbs updates [78]. The
Gibbs sampler then amounts to sampling the topic assignment for each observed
word [78] in each modality based only the counts of the individual words, not the
sequence, hence still adhering to the a bag-of-words representation as in pLSA.
The hyperparameters, α and β, controlling the concentration of the Dirichlet
priors, is in contribution [H] estimated by optimizing the marginal likelihood
[228].

Evaluation of the resulting model is in [H] performed by taking the best sam-
ple from the Markov chain (after burn-in), based on the marginal likelihood.
Evaluating the performance of topic models is somewhat of a problem (see e.g.
[227] for a discussion). It has for example been argued that only a subpart of
the test song observation should be used for estimating p(θs∗|α), in order to
avoid over estimating the predictive log-likelihood. In contribution [H] folding
is performed on the full set of words in the test song, s∗, by implicitly fixing the
training versions of Φ and Θ based on the ’MAP’ sample. Then sampling of
the topic assignments for the test song is performed with the other parameters
fixed. This allows estimation of the topic distribution, θs∗, for the test song
by sampling and (re)assigning topics to each word in the test song in all the
modalities. A ’MAP’ estimate of the test song may then be obtained by again
selecting the best sample from the ’test’ chain. A point estimate, θ̂s∗ = p(z|s∗)
and φ̂

(m)

z = p(ω(m)|z), is then obtained by taking the expectation of the corre-
sponding Dirichlet distributions.

General alignment between the latent sematic structure - as defined by the
topic distribution - and top-down and interpretable aspects is an important el-
ement in evaluating topic models for real-world applications. In music retrieval
and prediction, tagging models such as [91] are often evaluated based on pre-

5It is beyond this report to derive the Gibbs updates, however, the derivation closely follows
the standard derivation (see e.g. [8])
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cision/recall and mean average precision [144], which focuses on the number of
correctly retried tags or possibly songs based on query tags. In contribution [H],
a different approach is suggested which aims at evaluating the general alignment
of the computational representation with a given (not included) view/modality,
m∗. The suggested approach makes use of the mutual information between the
computational representation given by the LDA model, in particular p(z|s∗)
and p(ω(m)|z). Given an auxiliary task/modality, m∗, we calculate the mutual
information between individual words ωm∗v ∈ {0, 1}, indicating the occurrence
of a particular word in the test modality or not, and the topic indicator variable
z ∈ [1 : Z]. Thus,

MI
(
ω(m∗)
v , z|s∗

)
= KL

(
p
(
ω(m∗)
v , z|s

)
||p
(
ω(m∗)
v |s

)
p (z|s)

)
(2.4)

=
∑

ω∈{0,1}

Z∑

z=1

p
(
ω(m∗)
v |z

)
p (z|s∗) log

p
(
ω

(m∗)
v |z

)

∑
z′
p
(
ω

(m∗)
v |z′

)
p (z′|s∗)

(2.5)

The probability of the particular word not occurring, i.e., ωm
∗

v = 0, is simply

p
(
ω

(m∗)
v = 0, z|s∗

)
= 1− p

(
ω

(m∗)
v = 1, z|s∗

)
.

The mutual information is normalized and averaged over all songs, thus the final

measure of alignment is the average mutual information, avgNMI(ω
(m∗)
v ), for

each test word ω
(m∗)
v .

This relatively simple approach supports evaluating the alinement of a represen-
tation with auxiliary top-down views by ranking the auxiliary words by avgNMI,
thus finding the test words which are best explained by the representation. This
is for example analysed in [H], where the alignment of a multimodal music rep-
resentation (based on bottom-up features) is evaluated against the top-down
view (as represented by open vocabulary tags).

2.4.3 Discussion and Extensions

The joint representation relies on information originating from the top-down
view, i.e., data generated from users expressing their conscious or unconscious
view on the object or the system output. This is usually a time consuming and
expensive process to obtain these user generated data, and does seldom provide
any direct and obvious benefit to the users. An example includes the last.fm
in which it is possible to tag each song, however the immediate gain in doing
so is not apparent. However, the combined tagging space is presumable used
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to recommend new songs. There is a number of machine learning elements,
which may be employed to address this issue of experimental cost and perceived
burden. The first step is to turn the information finding process or system
optimization into a interesting game or application [13], which entices the user
to use and interact with the system in a way where the uses expresses view is
obtained without any particular perceived extra burden. Such games or simply
interesting user interfaces has been an ongoing area in the MIR community with
suggest such as [120][107][221].

The second element is to ensure that the system - based its needs - only requests
annotations, which are useful in learning or adapting the computational repre-
sentation. This is the field of active learning [194] (or experimental sequential
design), which is specifically addressed in the setting of (discriminative) prefer-
ence learning in Sec. 3. For the specific (generative) topic models (pLSA/LDA)
only a limited body of studies exists [115][114]. It is speculated that this user
driven adaption of topic models becomes an important part of further research
in the field of MIR, as indicated by recent interest in the field of adaptive music
representations [208].

Contribution [H] is a relatively simple extension of existing music topic mod-
els, but a required step towards more advanced model. A more advanced model
should consider correlated topic models [27][63] for allowing different topic distri-
butions in each modality. Supervised and discriminative topic models [117][28]
for task and prediction driven learning, and potentially non-parametric exten-
sions for added flexibility based for example on the hierarchical Dirichlet process
(HDP) [212]. Finally, extensions to the base model should potentially support
continuous observations, i.e., allowing for Gaussian observations typically en-
countered in music. This is for example considered [90] in the HDP setting, and
as been evaluated for the pLSA model as well [239].

2.5 Summary

This chapter gave a overview of standard audio representations based on the
bottom-up and top-down view of audio and music information systems. The
chapter outlined popular bottom-up features of which some has been applied in
contributions. The chapter furthermore outlined a number of top-down aspects,
which are found relevant to music information retrieval, analysis and organiza-
tion. The chapter further gave a short introduction to multi-modal integration
in the music information retrieval field. Finally, a specific and realized sys-
tem for multi-modal integration was described based on contribution H and the
Million Song Dataset.



Chapter 3

Preference Learning with
Gaussian Processes

Ranking and rating of objects by human subjects is a common source of top-
down information in many multimedia systems such as online movie recom-
mendation services [166], book stores [6] and music services [1]. A noticeable
characteristic of these examples is the human and cognitive implication since all
examples depends on some subjective understanding of the objects and what
relevance, similarity and preference is in relation to the those objects. We will
generally consider such ranking and rating scenarios under the common term of
preference learning, however the principle has applications much beyond pref-
erence learning and modelling.

The response is given by subjects who are asked to convey some notion of
preference in the form a response, y, towards one or more objects from the
(choice1) set C = {xi|i = 1...C, C <∞,x ∈ X}, where X is a set of N input
instances, X = {xi|i = 1...N,x ∈ X}. This can for example be a ranking of
multiple objects, a rating of similarity between two objects, or directly assigning
a noisy absolute value to the object. The resulting set of K such observations
is denoted Y = {(yk; Ck) |k = 1...K, y ∈ Y}2.

1Only called a choice set in case of discrete choices
2The notation (yk; Ck) is used to indicate that yk is dependent on the choice set, not part

of the set as such.
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This response- or observation types, can along with many others, be divided
into two fundamentally different groups, namely

• Relative (or indirect scaling [16]) Comparing (a finite set) of ob-
jects and ranking them in order (discrete choice / permutation model, e.g.
[220][17]) or assigning value to the similarity between them. Depending
on the setting, yk ∈ {−1, 1} yk ∈ [1 : C], yk ∈ P where P denotes all
possible permutations of the C objects, e.g. yk = {4, 1, 3, 2}.

• Absolute (or direct scaling [16]) Assigning an absolute value to each
object (regression model), e.g. yk ∈ R or yk ∈ [0, 1].

The main assumption is, regardless of the response type, that each object x ∈ X
has a latent value f(x) and the response given by the subject is dependent on
these latent values, whether this being in terms of one value (the absolute case)
or in terms of multiple values, e.g. difference or rations between values (relative
case).

The relative (or indirect) case typically calls for models based on discrete
choice models in which either: a) one and an only one outcome is selected or b) a
specific permutation of C objects is chosen, indicating the ranking of the objects.
Modelling such discrete choices was considered by Thurstone [216] in his seminal
paper ’The law of comparative judgement’, which lays the groundwork for the
probit choice model considered in Sec. 3.2, and the basic working principle
of socalled Thurstonian models. Later Bradley and Terry [35] developed the
Bradley-Terry (BT) model, in effect a logit model for pairwise comparisons.
Luce later extended this view with the Bradley Terry Luce (BTL) model [135]
- or unordered multinomial/generalized logit - which laid the groundwork for
’Luce’s axoim of choice’ and the specific incarnation of the logistic function as
choice model.

These discrete choice models can be extended to likelihood functions over per-
mutations of objects, such as the Placett-Luce model originating from the BTL
model [178], and a similar principle based on probit model [238], albeit the latter
with much more difficult estimation/inference than the Placett-Luce. An even
more general view can be obtained by considering general exponential forms for
permutations such as the Mallow models [141], which is however not considered
here.

A particular special case of discrete ranking models arises when only partial
rankings are observed (C < N and typically C << N), and the focus in this
chapter is mainly on the special case when only two objects are considered at
the time, i.e. y ∈ {−1, 1}. The resulting pairwise scenario results in a number



35

of paired observations where two different objects are ranked. Furthermore,
the comparison between the two objects could potentially result in assigning
a value to the difference between objects or degree of preference indicating for
example beliefs or confidence in the decision. This latter aspect is considered in
contribution [C].

In direct scaling paradigms i.e. the absolute case the subject assigns an ab-
solute value to each object, essentially calling for regression models. Typically
such ratings are given on a bounded or/and ordinal scale, in which case, a
consistent modelling framework requires specialized noise/likelihood models as
considered in Sec. 3.2.

Modelling these specialized response types is a major questions. In order to
narrow down the possibilities, a number of properties is considered, often found
in multimedia objects and elsewhere in machine learning, namely

I) High dimensional features spaces

II) (Relatively) few labeled examples

III) Unknown - or varying - task complexity (linear/non-linear)

IV) Multiple and heterogeneous sources of information

V) Limited time for experimentation (a cause of the few labeled samples)

VI) Possibility to predict f(x∗) for unseen examples,x∗

The last aspect is not a must in a frequentist view using classical hypothesis
tests. However, with the system and machine learning applications in mind,
this is a requirement and immediately calls for modelling the latent preference
values as a function. Aspect I-III calls for robust and flexible regression frame-
works, and aspect IV calls for a flexible data representations. Aspect V calls
for the ability to express (at least predictive) uncertainty such that sequential
experimental design becomes feasible.

With these aspects in mind, the choice of modelling framework has fallen on
Bayesian approach, and in particular a non-parametric versions based on Gaus-
sian process priors on the function, f(·). In this Bayesian formulation, prior
information can ensure robust and flexible modelling even given the adverse
properties listed above. The non-parametric nature, furthermore, allows for
arbitrary flexibility in the underlying function only assuming some notion of
smoothness .

In this Bayesian framework, it is only assumed that the likelihood function can
be parameterized by the function, f(·), and can be written in a factorized form
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Figure 3.1: Plate model for the general setup

as p (Y|X ) =
K∏
k=1

p (yk|fk,θL) where fk = [f (xk,1) , f (xk,2) , .., f (xk,C)]
>

, where

it is assumed that all elements in X are present in the union of all C′ks.

Priors can now be placed on all the parameters, including f , and inference can
(for now) be performed considering the full posterior,

p (f ,θ|Y,X ) =
p (θGP) p (f |θGP ,X ) p (θL) p (Y|f ,θL)

p (Y|X )
, (3.1)

where θ = {θL,θGP}. The marginal likelihood - or model evidence - is given as

p (Y|X ) =

∫ ∫ ∫
p (θGP) p (f |θGP ,X ) p (θL) p (Y|f ,θL) dθGPdθLdf . (3.2)

Where the prior on, f , is a Gaussian process, which we will return to in Sec.
3.1. The graphical model in Fig. 3.1 shows the simplicity of the model, which,
despite its appearance, is able to model and support the following four aspects:

• Many response/observation types (the likelihoods)

• Gaussian process prior for robustness and flexibility (the prior)

• Practical inference via analytical approximations (the inference)

• (Bayesian) active learning / sequential design (the sequential design)

The general setup includes many variants of each of these elements and Tab. 3
provides an overview of the many likelihoods functions (left), the Gaussian pro-
cess prior (top), the inference methods (bottom), and the sequential design
methods (right). Many of the elements are based on prior work in the field
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and some are merely included to provide a coherent and complete overview and
taxonomy, but not yet realized. Contributions [C],[G] and [D] can be seen as
development steps towards the general setup, whereas contributions [E],[F] and
[I] are direct applications of the realized setup.

Outline: The rest of this chapter aims to explain the elements of the overview
shown in 3 starting with a short review of Gaussian processes and a basic
overview of inference methods considered in Sec. 3.1. This is followed by an
overview in Sec. 3.2 of how and why Gaussian processes can/should be applied in
ranking and preference learning scenarios. Sec. 3.2 furthermore describes some
of the contributes to the field, in particular new likelihood functions relevant for
the preference and ranking modelling. Sec. 3.3 provides a combined overview
of sequential design methods and sparse Gaussian processes - with focus on
learning and computational complexity for preference leaning and ranking.

3.1 Gaussian Processes

The modelling element differentiating the preset setup from other choice mod-
elling frameworks such as generalized linear models (GLM) [220][36] is the par-
ticular prior placed on the function values, f(x), namely the Gaussian process
(GP). The Gaussian process is simply defined as: ’A collection of random vari-
ables, any finite number of which have a (consistent) joint Gaussian distribu-
tion’, [182]. It is here denoted, f ∼ GP

(
m (x) , k (x, ·)θGP

)
.

The GP is defined by its mean function, E {f (x)} = m (x), and a covariance
function k(x, ·|θGP) which - given the hyperparameters collected in θGP - de-
fines the correlation between all individual variables, f(·). For a zero mean
GP the correlation function is E {f(x)f(x′)} = k (x,x′)θGP . Since each ran-

dom variable, f(x), is correlated with another random variable f(x′) though
the covariance function, the function must necessarily have some smoothness.
Furthermore, the ’nice’ marginalising and conditioning properties of the multi-
variate Gaussian distribution makes the GP itself tractable. Fig. 3.2(a) shows
the graphical model for a GP.

By considering the function value of any input a random variable, the GP defines
a prior over functions. From this prior, we may draw a finite number of function
values, f = [f(x1), f(x2), ..., f(xN )], and given the definition, we may continue
drawing function values for an infinite number of different inputs. Fig. 3.2(b)
shows a number of functions drawn from an unconditioned GP. If observation
about f(x) the GP is simply defined by conditioning on these observations, Fig.
3.2(c) shows functions drawn from a conditioned GP.
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Table 3.1: General preference learning setup. Left: Likelihood func-
tions Top: The GP prior specification Bottom: Inference methods Right:
Sequential design elements. Note that elements form different directions
(top/bottom/left/reight) are not exclusive, i.e., may in particular select both
sparsity by the pseudo input and the PPK covariance function. And the se-
quential design in the active learning setting is required to select both a com-
putational option and a task/criterior. Elements marked with ** has not been
implemented in the setup but is often a part of other GP toolboxes such as the
GPML toolbox [67]. Elements marked with * has not yet been implemented or
only partly (*), e.g. EP only exists for pairwise probit and absolute Beta/ trun-
cated Gaussian (Truncated G.). Variational Bayes (VB) [167] has been omitted
since not considered in the thesis.

So the GP is nothing more than a prior over functions, indicating that the GP
encompasses many different function classes, only assuming smoothness. Any
likelihood which can be parameterized by variables corresponding to particular
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(b) Prior samples
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(c) Conditioned samples

Figure 3.2: a) Chain model of the standard GP model showing the correlation
between all f’s as a solid bar. b) Samples drawn from the same zero-mean
Gaussian Processes with a so-called squared exponential covariance function.
c) Samples drawn conditioned on other variables showing how the GP effec-
tively defines the function and is able to interpolate between observed samples.
The variation of the different realizations indicate the predictive uncertainty in
between the observed (and conditioning) points.

input, x, may have its parameterizing function,f(·), equipped with a Gaussian
process prior. Such likelihood functions include the standard Gaussian noise
model[182] and the Student-t [223] for regression. GP models for classification
typically rely the probit and the logit models [182]. These standard classification
and regression settings of Gaussian process has been covered in a vast body of
literature such as [182][139][26], and this section will only provide a minimal
introduction to the subject sufficient for reading the associated contributions.

The simplest - yet highly applied - model relying on Gaussian process is regres-
sion with a standard Gaussian likelihood model, i.e., p(yk—fk) = N (yk|fk, σi)
where σi denotes the observation noise and the mean is parameterized by the
function drawn from a GP. If all variables/hyperparameters in the posterior
from Eq. 3.1 are kept constant except for f , predictions for a set of test in-
puts collected in X∗ ∈ RNtest×D can derived for a new input x∗ depending on
previously observed responses collected in y as

E {f∗} = KXX∗
[
KXX + σ2

i I
]−1

y (3.3)

V {f∗} = KX∗X∗ −KXX∗
[
KXX + σ2

i I
]−1

KXX∗ (3.4)

where f∗ denotes the multivariate variable f ∈ RN∗ . KXX is a covariance matrix
with element between all training inputs, X. KXX∗ is the covariance matric
between training and test sets. KX∗X∗ is the covariance matrix between all
test inputs. This leads to so-called correlated predictions which is not typically
employed in standard machine learning using GP regression and classification,
but highly relevant for the preference learning model considered later.
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The expression for the predictive mean E(f∗), is highly informative in under-
standing the Gaussian process model. In particular the mean prediction which
is simply a linear combination of the observations. This emphasizes the non-
parametric form of the GP where the predictions are not dependent on any
parameters, but only ont the observations themselves and the hyperparameters
in the covariance function. The predictive (co)variance for this Gaussian model
is further characterized by not having any dependence on the observations.

The nice properties and analytical tractability implied here, is unfortunately
not a general property for the model with arbitrary likelihoods interesting to
the ranking and rating applications. If the likelihood - as in many of the sec-
tions to follow - is not Gaussian, the posterior and predictive distribution are
not analytically trackable - even when holding all other variables constant - and
we are forced to resort to approximation of the posterior for f and possibly the
hyper parameters. Luckily there exists a multitude of approximation methods
for Gaussian processes of which we will shortly discuss the Laplace approxi-
mation, Expectation Propagation (EP) and a full Bayesian simulation/MCMC
approximation in Sec. 3.1.2.

3.1.1 Mean & Covariance Functions

The defining part of the GP prior is the mean and covariance functions, which
effectively defines how flexible the function can be. The mean function, m(x)
- as the name suggest - defines a particular prior belief regarding the expecta-
tion of the latent function. A common choice is the zero-mean function, such
that m(x) = 0 ∀x. Other easy to handle mean functions are constants and
polynomials of varying order [182].

The covariance function is a much more subtle, and in turn powerful tool, since
defining the correlations between individual function values in effect results in
smoothness. This lets us predict beyond the current observations as already
indicated by the examples in Fig. 3.2(c). The standard covariance function
in machine learning is the so-called squared exponential covariance function,
which is the default in most kernel methods employed in machine learning. The
generalized version of this covariance function is given by

k (x,x′) = σs exp

(
− 1

σ`
(x− x′)

>
Λ−1 (x− x′)

)
(3.5)

where Λ is a positive definite matrix defining the correlation between input
dimensions or features.

Automatic Relevance Determination (ARD) Letting the matrix in 3.5 be
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diagonal,i.e.,

Λ =




σ
(1)
`

σ
(2)
`

...

σ
(D)
`




with individual σ’s leads to the so-called automatic relevance determination
covariance function, by allowing individual feature dimension to be scaled indi-
vidually. Thus, in the case of large dispersion between individual σ`’s it makes
sense to rank features according to their individual values, where small σ` indi-
cates dimensions with larger variance (less correlation) than ones with larger σ`
(high correlation).

Letting Λ be a full - yet still positive semi-definite matrix - provides a principled
way of formulating metric learning3 with Gaussian processes. However, this
typically requires more involved inference than the methods considered in the
following. In contribution [I] a constant Λ was proposed for the task of elicitation
preference in a system with assumed correlation between input dimensions.

Multiple Kernel Learning (MKL) With the ARD covariance function it is
often difficult to obtain robust and interpretable results on individual feature,
however another way to consider relevance determination is on a group level (of
features) though multiple kernel learning (MKL), in which multiple individual
kernels are linearly combined to form a joint feature space. This can be written
as

k (xi,xj) =

M∑

m=1

αm k(m)
(
x

(m)
i ,x

(m)
j

)

where αm ≥ 0. This expression indicates that each individual (possibly differ-
ent) covariance function may operate on the full input space - or if seen as a
group level ARD kernel, each kernel can also operates on non-overlapping subset
of the feature space, i.e. different dimensions of x. The main issue is the infer-
ence of each α, which in the Gaussian process setting may be performed using
evidence maximization, which also has a strong link to the risk minimization
view of MKL [168].

MKL has an important purpose in the context of this thesis, namely to fuse
heterogeneous data sources in for example multi-media, as suggested in [D] for
music, or sensor fusion [4] by the use of multiple kernels. The structure of these
additive kernels has links to ANOVA type analysis, which in the GP framework

3See e.g. for an a metric learning principle with SVMs [147], where the learning takes place
in kernel, i.e. Hilbert, space, in contrary to the outlined possibility which defines the metric
directly in the input space.
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can be obtained through the use of additive kernels [59] allowing interpretation
of complex interactions between individual features.

Multi-Task (MTK) The GP covariance function further provides a simple,
but easy and intuitive way of defining a multi-task model, without resorting to
more advanced hierarchical structures such as [22]. The simplest form of such
multi-task kernel was proposed in [32] and is simply given by a product kernel

k
(
xi,xj

)
= k

(
[x

(a)
i ,x

(b)
i ]
>
, [x

(a)
j ,x

(b)
j ]
>
)

(3.6)

= k
(
x

(a)
i ,x

(a)
j

)
k
(
x

(b)
i ,x

(b)
j

)

This means that the kernel matrix can be written as the Kronecker product
between the two individual kernel matrices, i.e. K = K(a) ⊗ K(b) yielding
a relative easy implementation. A comprehensive review of such multi-task
methods is given in [5] in the setting of multiple output learning with general
kernel methods.

The multitask-kernel approach provides a simple way of defining a multi-user
model by correlating user by their features x(user), as applied in contribution
[J]. However, more elaborate methods has been prosed for the particular task for
preference learning such as an hierarchical approach [24], and a more traditional
collaborative filtering approach [93] comparing the aforementioned methods.

Probability Product Kernel (PPK) The PPK kernel [97] (as previously
mentioned in connection with audio modelling) is an elegant method for com-
bining the discriminative nature of the Gaussian process model with generative
properties of the input data by directly defining the covariance functions as the
inner product between two probability distributions, p(x|θ) and p(x|θ′), i.e.,

k
(
p (x|θ) , p

(
x|θ′

))
=

∫ (
p (x|θ) p

(
x|θ′

))1/q
dx

where q > 0. In effect this implies that each object can be represented by a
probability distribution, which is highly relevant for audio where models such
as Gaussian mixture models, Markov models and even Hidden Markov Models
(HMM) are frequently used models of low levels audio features as outlined in
Sec. 2). In contribution [F]D, the PPK was used based on GMM models for
individual audio objects.
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3.1.2 Inference & Model Selection

The main element required for Bayesian inference is naturally the posterior
defined in Eq. 3.1, which combines the observations (via the likelihood function)
with the arbitrarily complex prior. In the current preference learning setup the
posterior is of the same form given by,

p (f ,θ|Y,X ) =
p (θGP) p (f |θGP ,X ) p (θL) p (Y|f ,θL)

p (Y|X )
, (3.7)

where we differentiate between the the parameters directly entering the likeli-
hood - and the hyperparameters θ. In the ideal case all priors would be conjugate
to the likelihood, i.e., resulting in a closed form posterior [26]. This is not often
the case, especially in the current setting. Instead, we turn to approximations
methods as often the case when it comes to non-trivial Bayesian models.

The interest from the machine learning community in Gaussian process models
during the nineties and since has resulted in a massive body of literature on
inference for Gaussian process models: from Laplace approximations [231][26],
to variational methods [26], expectation propagation [154] and sampling meth-
ods [165]. This thesis takes advantage of a few of the well-established ones
for the particular task of practical and robust preference learning in real-world
applications, where robustness and speed is of the essence.

Eq. 3.1 defines the full posterior over all parameters which is often a very diffi-
cult distribution to deal with, and in the current we are often interested in the
posterior over f . In general a vast number of inference schema and techniques
have been suggested for dealing with the full posterior including exact/numerical
marginalizing over θ, approximate (possibly a factorized version) the full pos-
terior - or focus on inferring p(f |·) with fixed θ. Given the focus in this thesis,
we will describe the the latter approach, i.e. focus on p(f |·) with fixed θ due to
its simplicity and effectiveness.

A two step approach: Analytic approximations to the full posterior are
typically applied in a two-stage, iterative inference approach, where the first
level inference regarding the posterior over f is performed with all other param-
eters fixed. Subsequently a second level inference is performed finding point
estimates, θ̂, of the hyper parameter (or alternatively marginalizing over them)
as discussed in Sec. 3.1.2. This conceptual leads to a two step approach w
is then iterated until convergence, which often provides a simple yet effective
algorithm , i.e.,

I Approximate first level posterior, p(f |θ,X ,Y) using Laplace or EP with θ
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fixed.

II Find ML/MAP-II point-estimates of the hyperparemetrs θ̂ based on marginal
likelihood approximation, provided by the first level approximation.

... iterate until convergence of θ̂ or the marginal likelihood / evidence.

Thus, the first level inference considers the following posterior p(f |X ,Y, θ̂)

where θ̂ is a set of fixed hyperparameters (e.g. in the covariance function).
Given the posterior, predictions for general likelihoods easily follows from the
Bayesian realm. Both the latent function value of the new inputs, f∗ and the
final observation, y∗, which is dependent on one or more latent function values
though the likelihood. Hence, first finding the multiple latent function values of
a number of inputs (for the relative likelihoods) collected in X ∗,

p
(
f∗|X ,Y, θ̂,X ∗

)
=

∫

f

p (f∗|f ,X ∗) p(f |X ,Y, θ̂)df (3.8)

= N
(
f∗|µf ∗,Kf

∗) (3.9)

µ∗f is referred to as the predictive mean of f(·) and K∗f is referred to as the
predictive (co)variance of f(·). The predictions for the relative likelihoods are
multidimensional and correlated due to the likelihoods being dependent on two
or more f(·) variables, also for predictions.

Generally, we are interested in the prediction of the observed variable which is
given by,

p
(
y∗|X ,Y, θ̂,X ∗

)
=

∫

f∗
p
(
y∗|f∗, θ̂L

)
p
(
f∗|X ,Y, θ̂,X ∗

)
df∗ (3.10)

=

∫

f∗
p
(
y∗|f∗, θ̂L

)
N (f∗|µ∗,K∗)df∗ (3.11)

which is referred to as the predictive distribution. Whether the latter integral
is tractable depends on the particular likelihood.

The defining element is of course still the posterior, p(f |X ,Y, θ̂), which needs
to be approximated in many cases. It not the aim to provide a complete and
detailed overview of GP inference, and in the classification case, we refer to
[167] for an excellent review. Here a number of inference methods is outlined
for the general preference learning, which often requires custom realizations of
the standard GP methods, due to the multiple dependencies on f(·).

Exact : Exact inference, even at the first level, is only possibly in a subset
of the models considered here such as the Normal likelihood. Noticeable
and important cases include the so-called Warped likelihood models [200],
which provides predictions of the same form as the Normal regression case.
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Laplace : The Laplace approximation is a general tool for approximating in-
tractable integrals. For GP based models, the starting point is the first
level posterior. This posterior is approximated by a second order Tay-
lor expansion around the mode, which provides a multivariate Gaussian
approximation, i.e,

q (f | X ,Y,θ) , N
(
f |f̂ ,A−1

)
(3.12)

where f̂ denotes the mode and A denotes the covariance matrix of the
multivariate approximation. Thus, the main task is to find the mode and
the covariance matrix for this approximating distribution, which in turn
becomes an optimization problem. This is a standard problem of moment
matching, which is done by considering the unnormalized log-posterior and
its first two derivatives. If the log-likelihood is log-concave this is a convex
problem and can be solved by standard Newton step [182, Sec.3.4.1].

The standard Laplace approximation for binary classification with Gaus-
sian processes [182, Sec.3.4.1], i.e., the model denoted as absolute-discrete-
bounded-probit in Fig.3.3, assumes that the Hessian of the cost function is
diagonal since the likelihood only depends on one variable, f(x). However,
in the preference learning scenario with relative models (relative-discrete-
pairwise, BTL and Planket-Luce) this does not hold true, and custom im-
plementation is required. The Laplace approximation was suggested for
the pairwise probit model in [48], and the setup presented in Tab.3 con-
tains a general Laplace implementation supporting both absolute, relative
observation for both the pairwise, and the general BTL and Plackett-Luce
models. For robustness and fast convergence, the setup has the option
to use a damped Newton step. Furthermore, for non-log concave likeli-
hoods the setup applies a simple but effective methods of thresholds the
second derivative of the likelihood function as suggested in [232] to obtain
a robust approximation, despite possibly non-unique solutions.

The Laplace approximation is also directly applied in approximate the
marginal likelihood - or evidence - defined by the integral in Eq. 3.2.

Expectation Propagation : The Laplace approximation is a simple, but ef-
fective approximation method and relatively fast to derive for a number of
new models based on the setup in Tab. 3.1, however, it simply assumes a
local expansion around the mode of the posterior. The EP does not make
this local assumption and considers a factorized posterior with individual
approximations to each likelihood terms. The approximation can thus be
written as

q (f |X ,Y) ,
1

ZEP
p (f)

∏
tk

(
fk|µ̃k, Σ̃k, Z̃k

)
= N (µEP ,ΣEP ) , (3.13)
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where tk

(
fk|µ̃k, Σ̃k, Z̃k

)
is the approximation to each likelihood term and

taken to be a (unnormalized) Gaussian distribution. ZEP is a global nor-
malizing term ensuring that the global multivariate Gaussian approxima-
tion is consistent, i.e., integrates to one. In the case of relative observations
with more than one f(·) variable in each likelihood term, the tk terms be-
comes an (unnormalized) multivariate Gaussian distribution.

The inference then amounts to estimating the so-called site parameters,
µ̃k and Σ̃k which is done using the fixed-points algorithm proposed in
[154] consisting of the following steps

For each observation k ∈ [1 : K]

1 q/k (f)← q (f |·) /tk (f |·) =
∏
k 6=l

tl (fl|·)

2 tk
new (fk|·)← arg min

tk(fk|·)
DKL

(
p (yk|f) q/k (f) ||tk (fk|·) q/k (f)

)

3 q (f)← tk
new (fk|·) q/k (f)

...repeat until convergence

where q/k is used to denote that the likelihood term originating from obser-
vation k has been removed. The minimization of the KL divergence (DKL)
in step 2 is a matter of moment matching since using the (un)normalized
Gaussian distribution as site approximation.

The setup in Tab.3 includes a custom EP implementation for the discrete
pairwise probit model, which is an extended version of the standard EP
models for probit models originally proposed in [46], alltough EP inference
for general relative models is not currently supported.

It should be emphasized that EP can be used in a ’online’ setting [53] in
which the iteration only runs for a single sweep though all the data points
[53]. This, however, still requires maintaining the site parameters for all
the observations.

Sampling A different approach, not considered in detail in the thesis, is to
perform inference through simulation by drawing Ns samples, f (s), from
the posterior in Eq. 3.1, from which we can evaluate the moments of the
posterior of both the latent variables, f , and the hyperparameters, θ and
can in turn calculates expectations of for example the first level posterior

as, Ep(f |X ,Y,θ){f} ≈ 1
Ns

Ns∑
s=1

f (s).

Sampling in Gaussian process models is usually performed using variations
of Markov Chain Monte Carlo (MCMC) methods as outlined in [165] pos-
sibly combined with other sampling steps such as slice sampling [162] for
sampling hyperparameters. Given the applied nature of the preference
learning setup, sampling is only used for evaluation of other approxima-
tion, i.e., as a golden standard.
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The particular inference approach used for estimating p(f |·) is typically depen-
dent on the actual likelihood / model, but the applications considered in the
contributions usually rely on the relatively simple Laplace approximation, which
has proven a easy, reliable and robust method for the relative models.

Hyperparameters and Model Selection In the two step procedure out-
lined above, the first level inference focused (mainly) on the posterior of f , i.e.

p(f |X ,Y, θ̂), however, the hyperparameters, θ̂, are as mentioned also critical
model parameters (as indicted by the full posterior in Eq. 3.1) and should in
principle not be considered any different than f in a full Bayesian treatment.
If we do not need to infer actual values/distributes for the hyperparameters,
we may marginalize over them either as part of part of a full MCMC infer-
ence step or a combination with the level one analytical/approximation, and/or
numerical methods.

However, in the two-step approach which is the focus, we may turn to a op-
timization approach which is an effective alternatively to the often computa-
tional expensive marginalization approach. We thus abandon the full Bayesian
schema indicated by Eq. 3.7 and aim only a a single ’good’ point estimate for
the hyperparameters. This corresponds to the second level of inference out-
lined above, and is based on the notion of model evidence and Bayesian model
comparison.

The model evidence - or marginal likelihood - is an important and and much
debated entity in the Bayesian framework. The marginal likelihood is a expres-
sion of how likely it is to generate the given data, D, given a particular model
and model parameters [26]. So if the hyperparameters are fixed, we may con-
duct Bayesian model comparison by the ratio between the marginal likelihood
resulting in the so-called Bayes factor,

BF =
p (Y|X ,M1)

p (Y|X ,M2)
=

∫
p (Y|f) p (f |X ,M1) df∫
p (Y|f) p (f |X ,M2) df

If the true data generating distribution is contained in the model this factor can
on average be shown to select the correct model [26]. Hence, the model with
the highest marginal likelihood is preferred and finding the ’best’ point value of
the hyper parameters,θ̂, can be an integrated part of the inference by directly
optimizing the marginal likelihood as part of the inference. This procedure is
known under different names including maximum likelihood II (ML-II), empir-
ical Bayes [41] or in the machine learning literature as evidence optimization
[136].

The second level inference/estimation therefore involves finding point esti-
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mates of the hyperparamters in the covariance functions, θ̂GP , and in the likeli-
hood function θ̂L. This can be done by approximating the marginal likelihood
as previously discussed, which is readily available given the Laplace and EP
approximation (or can be estimated numerically, e.g. using quadrature). The
general preference learning setup and model furthermore allows for specific sim-
ple and constant hyperpriors on the covariance and likelihood parameters as
indicated in Fig.3.3. In a point-estimation procedure this setup is referred to as
maximum posterior II (MAP-II) estimation. Computational this is still only a
part of the second level inference. At the present the preference learning setup
include Gamma priors C or weakly informative half Student-t priors [73]I, the
latter inspired by their use in [222].

The actual problem of optimizing the evidence is typically carried out using
gradient methods or a generic BFGS method. For the Laplace approximation
this requires a certain number of derivatives [182, Sec5.5] or [G]. The EP ap-
proximation is often simpler in this regard and does not require as many higher
order derivatives as the Laplace approximation [182, Sec.5.5.2]. Regardless of
applying the Laplace or EP approximation, the problem of evidence maximiza-
tion is often highly non-convex and global solution can seldom be guaranteed,
although it has been found robust in many of the applications considered in
contributions.

In real applications, where systems based on Gaussian process acts as the com-
putational representation (Fig. 1.1), the notion of model evidence is a clear
advantage over its non-Bayesian relatives such as kernel generalized linear mod-
els [242] and support vector machines [197] often relying on cross-validation for
model comparison. Cross-validation is typically also used in the described GP
models as model evaluation, however the pure option of evidence optimization,
allows for stand-alone models without the need for cross-validating the hyper
parameters, as for example the case in contribution [I].
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3.2 Rating & Ranking with GPs
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Table 3.2: Taxonomy of likelihood functions. The second layer is whether the
observations is a relevant or absolute (direct) scale. The third layer specifies
whether the observations are discrete or continuous the fourth layer then deter-
mines the particular aspects of the observations (pairwise, bounded etc). Here
G’lized P/L refers to Generalized probit or Logit models. In the absolute case
these are also known as unordered P/L or simply multinomial models. In the
relative case these are known as ordered P/L models. The fifth layer specifies
the particular likelihood function. The sixth row specifies a number of non-
exhaustive but relevant reference, favoring links to GP versions. The bottom
row indicated which contribution makes use of the likelihood and potentially
which section describes them in detail later in this section.

The standard classification and regression setting of Gaussian processes are by
now well established tools in the machine learning community (happily com-
peting with other kernel methods such as SVMs and kernel GLM) [182], and
extensions and variations are being applied in a number of non-standard set-
tings. One such non-standard setting is the ranking and preference which calls
for a special kind of observational models regardless of it being a discrete choice
model or a continuous bounded rating.
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The related contributions applies and proposes a number observational models
for Gaussian processes in the model defined in Fig. 3.1. In the following the the
most often applied models are outlined and motivated.

3.2.1 Relative-Discrete-Pairwise-Probit/Logit Model

One of the most popular experimental paradigms for eliciting perceptual and
cognitive effects is the two alternative forced choice, i.e., the choice set consist of
two objects xuk

∈ X and xvk ∈ X . These are presented to a subject and asking
him/her to select one, i.e., yk ∈ {−1, 1}. By repeating this for many different
objects results in K responses on pairwise comparisons between any two inputs
in X , Y = {(yk;xuk

, xvk)|k = 1, ...,K}

A classic modelling approach towards such pairwise choices is based on Thur-
stone’s ”law of comparative judgements” in which the choice is assumed to be
the effect of internal but noisy utilities for each object, i.e., the utility for an
object xu is f(xu) + εu and the utility for object xv is f(xv) + εv where ε is
the noise. The general starting point for both the probit and pairwise choice
models comes from considering the probability of a subject selecting xu, i.e.

P (f (xu) + εu > f (xv) + εv) = P (f (xu)− f (xv) > εv − εu) (3.14)

=

∫
I (f (xu)− f (xv) > εv − εu) p (ε) dε (3.15)

where I(·) is an indicator function, returning 1 if the argument is true; other-
wise zero. The main aspects to consider is the noise distribution, p (ε), on the
internal utilities which effectively leads to difference choice models such as the
probit or logit. In [216] Thurstone suggested a Normal distribution which re-
sults in the probit model [30], while the a pairwise logit model assumes ε to be
logistically distributed [30][220]. Following Thurstones approach, p(ε), is nor-
mally distributed and depending on the assumptions regarding the correlated
variables; we obtain a number of the case which Thurstone outlines in [216].
However, the simplest one, case 5, is derived by assuming that the noise on
individual objects are uncorrelated and have equal variance, σL. Fortunately,
this results in the multidimensional integral in Eq. 3.14 being tractable and can
be shown to result in the cumulative Gaussian (the probit model) such that the
likelihood becomes

p (yk|fk, σ) = Φ

(
yk
f (xuk

)− f (xvk)√
2σL

)

with fk = [f (xuk
) , f (xvk)]

>
. This defines the likelihood (actually the probabil-

ity) of the choice, yk, however the estimation of the function values themselves is



3.2 Rating & Ranking with GPs 51

the main interest here. By assuming uncertainty on the values of f(·), we place
the Gaussian process over the latent function values. Such as model was first
considered in [48]. Since the model now has dependencies on two latent function
values the graphical chain model is slightly different than in the standard case
and depicted in Fig. 3.3.

The primary model applied in contributions [C],[G][D][F] is the probit choice
model described above. Compared to the standard setup proposed in [48], we
allow for simple priors on the hyperparameters, which has been found useful and
robust in many of the applications. Assuming a squared exponential covariance
function [182, Cha.4], with two hyper parameters, σ` and σs, the combined
model can be specified as

σs|ξs ∼ half Student-t /Gamma

σ`|ξ` ∼ half Student-t /Gamma

fk|σs, σ` ∼ GP
(

m (xk) , k (xk, ·)σs,σ`

)

πk|fk, σL = Φ (f (xuk
)− f (xvk))

yk ∼ Bernoulli (πk)

where ξ is a set of parameters in the hyperprior, for example scale and degree
of freedom parameters for the half Student-t prior [73].

This model requires approximation of the posterior, and the setup currently
supports both Laplace and EP. Predictions for a new choice set C = {xr,xs}
is (with the Gaussian approximation) analytical in the form of a cumulative
Gaussian.

Figure 3.3: Graphical chain representation of the pairwise model. Compared to
the standard GP classification model, the output variables y now each depend
on multiple f variables.
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3.2.2 Relative-Continuous-Pairwise-Beta Model

The classic probit likelihood is mainly chosen for its robustness compared to e.g
continuous/absolute scaling experiments. However, the pairwise comparisons is
potentially a slow way of learning in a high-dimensional input space and with
many objects to consider. It may therefore be advantageous to exploit the extra
information from continuous responses to get a faster method for preference
elicitation without jeopardizing the robustness from standard binary responses.
This can be done by observing a degree to which either is preferred alongside
the binary decision of xu and xv. Such a setting is some times refereed to as
sureness or confidence [230]. In the preference learning scenarios, we refer to it
as degree of preference (DoP).

To address this setting a continuous, but bounded response y ∈ ]0; 1[ is defined,
observed when comparing the two options in xu and xv. The first option, xu, is
preferred for y < 0.5. The second option, xv, is preferred for y > 0.5 and none
is preferred for y = 0.5. Hence, the response captures both the choice between
xu and xv, and the degree of the preference. One could consider the two choices
separately and assume that continuous DoP choice always follows the binary
choice such that it can not change the binary choice to ensure robustness. This
can however easily be shown to lead to the same modelling considerations.

Modelling this type of continuous response is slightly more involved than mod-
elling the discrete choice in the discrete pairwise case. First of all, the likelihood
must adhere to the binary choice and furthermore be bounded in its support
since y ∈]0, 1[. In contribution [C], we proposed a model using a Beta type
distribution with its mean parameterized by the cumulative Gaussian function
through the shape parameters α and β. The general model can be written

σs|ξs ∼ half Student-t /Gamma

σ`|ξ` ∼ half Student-t /Gamma

fk|σs, σ` ∼ GP
(

m (xk) , k (xk, ·)σs,σ`

)

β(fk) = ν(1− µ(fk)), α(fk) = νµ(fk)

yk ∼ Beta (α(fk), β(fk)) (3.16)

Where ν relates to the precision of the Beta distribution and is not parame-
terized by f . The shape parameters of the Beta distribution is a function of
of the GP, and we applied a well-known re-parametrization of the Beta distri-
bution [66]. The mean function of the Beta distribution is given as µ (fk, σ) =

Φ
(
f(vk)−f(uk)√

2σ

)
. The precision term ν in Eq. 3.16 is inversely related to the

observation noise on the continuous bounded responses. In general, ν, can be
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viewed as a measure of how consistent the scale is used in a given comparison.4.

Approximation for this model is primarily based on the Laplace approximation.
Despite the Gaussian approximation predictions are problematic due to the
Beta distribution. The probability for yk > 1/2 defines the binary choice of
option xu and must be evaluated by numerical methods, whereas the binary
choice itself i.e. the hard choice of either xu or xv can easily be evaluated due
to the symmetric likelihood. However, the expectation of y can be evaluated
analytical due to the specific parametrization which provides insight into the
effective choice model, a topic for further investigation (see [J]). Alternatively,

one may rely on maximum-a-posterior analysis of p(f |X ,Y, θ̂) which provides a
closed form expression [C], but compromises the Bayesian principle.

In the applied versions of the model ([C] and [170]) the warping function, which
maps the latent function to the likelihood, has been limited to a single fixed
cumulative Gaussian based on the principle from standard choice models. How-
ever, a more general warping (or cumulative link) function is the (so far finite)

sum of such functions, i.e., g (f(x)) =
∑Ng

i=1 Φ (f(x)|µi, σi), which includes find-
ing the parameters of the warping function by evidence optimization. Very
recent advances in warped GPs has furthermore shown potential to use non-
parametric functions for the warping potentially generalizing many of the out-
lined models relying on some kind of link or warping function [122].

3.2.3 Absolute-Continuous-Bounded Beta Model

Modeling absolute bounded responses, e.g. y ∈]0; 1[, has relevance to many
applications in finance, survival analysis, and here preference learning, where
users are asked to rate object on an absolute scale which is inherently bounded.
In [J], a Gaussian process model was proposed for modelling continuous ratings
on bounded scales for a particular dataset based on Beta and Truncated Gaus-
sian distributions. Thus, the setting strongly resembles the classical regression
case with Gaussian likelihood [182] or Student-t likelihoods [223] - but with a
bounded support.

4In memorandum, it is noted that a similar likelihood has been proposed for generalized
linear models but not realized or evaluated in [225]
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The model can be written

σs|θs ∼ half Student-t / Gamma (3.17)

σ`|θ` ∼ half Student-t / Gamma (3.18)

fk|σs, σ` ∼ GP
(

m (xk) , k (xk, ·)σs,σ`

)
(3.19)

β(fk) = ν(1− µ(fk)), α(fk) = νµ(fk)

yk∼ Beta (α(fk), β(fk)) (3.20)

The idea is similar to the pairwise Beta model used for relative modelling de-
scribed in 3.2.2, i.e., parameterizing the mean of the Beta distribution with
the latent Gaussian process though a warping function given by the cumulative
Gaussian.

The inference is based on the Laplace approximation or the EP approximation
in which a numerical integration is used to evaluate the partition function (see
[J]) for details. The model is in essence a non-parametric version of the model
proposed in [66] also extended to support Truncated Gaussian observations by
parameterizing the mean or the mode of the Truncated Gaussian distribution
[J].

The models has a strong link to Copular processes (e.g. [232]) which will not
be explored further in the present thesis, but is topic for further investigation.

3.2.4 Releative-Discrete-General Bradley-Terry-Luce and
Plackett-Luce

The pairwise model applying probit and logit models is limited by the amount
of information each experiment yields. It is possible to extend both the probit
and the logit (Bradley Terry) model to multiple alternatives, i.e. C-alternative
forced choice forced [220]. However, the generalized probit results in a likelihood
which needs to be evaluated analytically, we therefore focus on the extension of
the logit model as proposed by Luce [135], which results in analytical likelihoods.
The Bradley-Terry-Luce (or ordered generalized logit) is defined as

p (yk ∈ [1 : C] |fk) =
e
f
(
xy

k

)
∑C
i e

f(xi)

Inference in the Bradley-Terry-Luce (BTL) model is challenging, due to the
many dependencies in the likelihood, however, in the Laplace case this does
not matter due to the global approximation of the posterior, i.e. there is no
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approximation to each term, and the first level approximation simply requires
the first and second derivative with regards to all variables entering into the
each likelihood term.

The Plackett-Luce (or exploded logit) now effectively extends the BTL in defin-
ing a model over permutations given as [178],

p (yk|fk) =
C−1∏

j=1

e
f
(
xy

k(j)

)
∑C
i=j e

f
(
xy

k(i)

)

where yk is a permutation of the C object in the choice set, e.g. yk = {4, 2, 3, 1}.
Analytical probabilistic predictions are currently made on the pairwise level, i.e.
resulting in the standard pairwise logit and applying the logit approximation in
[182] also used in the GPML toolbox [67]. Probabilistic predictions for a full
permutation is based on simulation. Alternative MAP predictions may prove a
use full, however, enumerating all possible permutations is still a cumbersome
task, which requires further investigation.

The Laplace approximation provides a stating point for examining the Plackett
Luce model for preference learning in real-applications, however other approxi-
mations should certainly be explored. Some work on the Plackett-Luce models
has shown a potential route for such work in terms of a EP version for a non-GP
version of the model [80].

3.2.5 Additional Models

The specific models outlined above provides a non-exhaustive, but general overview
to modelling within the setup defined in Fig. 3.1.

Not yet realised observational models, include the ordinal likelihoods (also known
as cumulative link models) previously considered in the GP literature [47] for
absolute settings. This is highly relevant to ratings both in the pairwise and
absolute case since many experimental paradigms consider e.g. the Likert scale
[128], where the scale is divided into discrete intervals.

The observation/response types outlined in Tab. 3.2 covers the ones encoun-
tered and found relevant during the construction of the setup, however many
more variations may be considered for modelling real-world scenarios, including
triangle tests, odd-one-out and other experimental paradigms [16] where the
Gaussian process approach may very well provide a flexible modelling frame-
work.
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3.3 Sequential Design & Sparsity

The motivation for the setup presented in Fig.3.3 is based on elicitation of vari-
ous aspects of human perceptual and cognition through experimental. However,
just one experiment, involving human users, can be both costly and time con-
sumption. In real applications, it is therefore important to minimize the burden
for the users and the computational time required. This can be done by mini-
mizing the number of experiments which potentially limits the information. An
alternative method is socalled sequential design - or active learning - in which
experiments are proposed as the ratings come in and the models gets better.
This will optimally ensure that the system does not require more experiments
than needed in order to solve the task and find a appropriate model. However,
while GP based classification and regression models often perform better or
similar to other models regardless of the setting [182], a price is often paired in
terms of the computational requirements due to an inherently O(N3) scaling in
terms of the number of labeled examples. These two aspects can both been seen
as a way to reduce the number of inputs, but from two different perspectives
outlined as follows;

Directly: The experimental design used to obtain the data obviously deter-
mines how many observations are obtained. Directly limiting the number
of observations can roughly be performed in two ways:

a From a fixed set of labeled points include only a subset, the active
set.

b From a (infinite) set of unlabeled inputs obtain only labels/values for
a subset (and include in the dataset).

An overview and review is provided in 3.3.1 placing methods applied con-
tribution [I] in context with other methods in the field.

Indirectly: Modelling can reduce the effective number of points which is here
generally refereed to as sparsity which also was two approaches: 5.

b Inducing: Define the number of effective points (and locate them
anywhere according to some measure of performance). An overview
and review provided in 3.3.2 placing contribution [H] in context.

a Inferred: Infer the number of points, often a subset of the original
inputs. Examples are Support Vector Machines and the Releveance
Vector Machines (RVM) [217]. This setting is not considered in the
current thesis.

5The orthogonal notion of sparsity, obtained by removing individual feature dimensions is
not considered here (see e.g. the ARD kernel)
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3.3.1 Sequential Design & Natural Sparsity
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Table 3.3: Overview of the sequential design aspects of preference learning.
The second layer indicates whether we consider the sequential selection of
instances from the point of view of scarification (iterative / active set methods)
or a sequential experimental design approach denote active learning. The third
layer in the active learning case illustrates two aspects of active learning,
the framework under which the value of an experiment is computed, e.g. by real
planning or a greedy approach. The other aspect indicate the criterion which
determines the objective of the sequential design, e.g. finding the optimum of
a function vs. finding the general function. The second row from the bottom
indicates relevant references whereas the bottom row indicates contributions or
work by co-authors applying principles outlined here.

The direct and simples way to reduce the O(N3) complexity of a standard GP
classifier is to simply limit the number of training points, the active set. This
can be done in a number of ways depending on the actual setting, in particular,

• Random design implies randomly selecting a number of candidates from
a finite/infitice candidate set (used as reference in [I]).

• Fixed design Before experimenting, construct an experimental design
with a number of fixed experiments, K, using classical statistical methods
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of experimental design [158]. This could be performed using factorial
designs or combinational design like Latin squares [158]. For standard
GP regression with fixed hyper parameters, this may even be specified
beforehand by selecting the design that minimizes the posterior/predictive
entropy/variance 6.

• Iterative/Active Set methods is the general setting where the algo-
rithm (iteratively) either removes or adds labeled points based on some
criterion from a fixed candidate set, such as the Informative Vector Ma-
chine (IVM) and its predecessors [121],[191][192] and the recently proposed
approach considering the predictive uncertainty [86]. In general, this prin-
ciple is characterized by the label being known for all candidate points.

• Active Learning/Sequential Design or interactive learning implies
that experiments are added sequentially based on some criterion, which is
dependent, in some way, on the current model posterior and/or predictive
distribution. This setting is typically characterized by the fact that the
label of the experiments are unknown before experimentation. This is the
case for all intended purposes of the preference learning setup.

The differentiating property between iterative set vs. active learning is thus,
whether the label is known for the candidate set or not. While iterative/active
set methods are certainly interesting; the main interest is the active learning
setting since human labels are often difficult to obtain. Furthermore, the ap-
plication is typically intended for novel situation where where no labels are
available at all. In this situation a clear advantage of GPs over non-Bayesian
models is the representation of both posterior and predictive uncertainly, which
makes them highly suitable for introducing active learning/sequential design
with the purpose to learn as efficient/fast as possible based on some notion of
gain in information.

Sequential Design / Active Learning

This section continues with a general overview of active learning or sequen-
tial design in the GP setting. This includes a general view of many of the
stand-alone contribution in the applied GP literature. First, we differentiate
between two aspects outlined in Tab. 3.3, namely computation and criterion,
which together defines how the value of conducting an experiment is evalu-
ated. An experiment is in the GP setting a number of inputs which is part

6Since the predictive variance does not depend on the actual response, y, as seen from
Eq.3.3
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of the experiment, i.e. one, two or more candidate input points collected in
E = {x∗1,x∗2, ...,x∗E}.

The main setting considered here is the greedy one-step-ahead selection of ex-
periments7, thus the aim is to considering the next experiment only - not con-
sidering multiple steps ahead which refereed to as planning in Tab. 3.3

Many of the current methods in the GP literature [96][113][31] can be seen as
reductions of the following general formulation

∂

∂E

∫
p(yk|Ek,D)︸ ︷︷ ︸
prior predictive

× U(p (f |D)︸ ︷︷ ︸
prior

p (fEk|Ek, D) , p (yk|Ek, D)︸ ︷︷ ︸
prior predictive

p (f |yk, Ek,D)︸ ︷︷ ︸
posterior︸ ︷︷ ︸

V OI

)dy

︸ ︷︷ ︸
EV IO︸ ︷︷ ︸

G(E)V IO

(3.21)

The G(E)VIO refers to the gradient of the VIO / EVIO function (as mentioned
in [172]). The EVOI formulation is nothing more than a formulation of Lindley’s
expected information of an experiment (see e.g. [131][130, Sec. 12])8. The
addition of the gradient version G(E)VOI is mainly computational, whereas the
possible reduction to VOI can be both an explicit utility choice or computational
issue.

Experiments are selected in a greedy fashion by either of the four options out-
lined

arg max
E

VIO (E) arg
E

GVIO (E) = 0

∣∣∣∣
E0

(3.22)

arg max
E

EVIO (E) arg
E

GEVIO (E) = 0

∣∣∣∣
E0

(3.23)

where E0 indicates the starting position of a gradient search. The function and
distribution involved are:

• U(·) defines the actual criterion/utility based on all or a subset of the
listed arguments in Eq. 3.22.

7This is strictly not a requirement since many of the methods considered can be generalized
to a dynamic programming setting however of course at an increased cost. See e.g. [71][172]
for examples for such an approach

8In the view of inference, not the decision theoretic view in which a decision loss is also
defined [130, Sec. 4]
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• p (f |D) is the current prior over the function (after seeing the data D, but
before seen a new candidate experiment).

• p (f
k
|Ek,D) given the current prior, this is the predictive distribution for

the function values for the inputs in the candidate experiment. This is
called the prior predictive distribution.

• p (yk|Ek,D) based on the p (f
k
|Ek,D) and the likelihood function this is

the predictive distribution for the observed variable y.

• p (f |yk, Ek,D) after seeing the response yk for the experiment Ek, we can
form the posterior, potentially needs to be approximated.

The criterion defining the utility function, U(·), is obviously a critical algo-
rithm/model choice and often dependent on the particular use of the resulting
model. If the aim is to learn a ’good’ model for the entire (feasible) input space
then, one should chose a criterion which ensures good generalization, often for-
mulated in terms of the parameters, i.e. f()9. If the task, on the other hand,
is to find input instance with the highest latent function value (or observed re-
sponse), we should select a criterion which ensures that we find the maximum;
not ensure that we learn the overall function. In the preference learning appli-
cations there is a need for both and in particular the combination of both (see
for examples of specialized [44] utilities in the Bayesian linear model setting).

In terms of generalization the machine learning litterateurs has considered a
large number of proposals for different models ranging from disagreement by
query-by-committee [195], to minimum margin methods [218], and criterions
based on statistical notions of uncertainty models such as [49][137]. The latter
is a good starting point for the Gaussian process view point, which is based on
the general notion of entropy [50],

(E)VIO Entropy : is a natural measure of information of an experiment which
was proposed by Lindley in early work [129], where the change in entropy
between prior and posterior over the parameters (here f) was considered.
Thus, the criterion U(·) is evaluated as

U (p (f |yk, Ek,D) , p (f |D)) ≡ S (f |yk, Ek,D)− S (f |D) (3.24)

=

∫
p (f |yk, Ek,D) log p (f |yk, Ek,D) df

−
∫
p (f |D) log p (f |D) df (3.25)

9The thesis will not consider utilities regarding the hyperparameters, θ, but [113] considers
this aspects in a Normal regression case. Furthermore, we do not take into account the input
density of x, p(x)
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While seeming simple, the first factor in the first integral implies evaluating
the posterior for each possible outcome y, but by taking the expectation
EVIO this can be avoided as seen by Lindley [131], using information
theoretic arguments, and the EVIO becomes,

EV IO (Ek) ≡
∫ ∫

p (fk|Ek,D) p (yk|fk,D) log p (yk|fk,D) dydf (3.26)

−
∫
p (yk|Ek,D) log p (yk|Ek,D) dy

Thus, no posterior calculation is to be calculated for every possible out-
come, however, the first integral still does not (often) result in closed
form expressions. Numerical or analytical approximations is often required
(currently the first option is a part of the setup). A specific approximation
was proposed recently for probit based models [93]. For the pairwise case
(not GPs) this utility was first considered in [75] .

An equivalent information theoretic view10 was taken to yield the same re-
sult for the Normal regression case [113] showing general properties of this
in standard regression. They also considering the implications imposed by
the hyperparameters in sequential design.

VOI is often considered in the entropy case by only taking into a account
the entropy of the predictive distribution over f , and the utility becomes

U (p (f
k
|Ek,D)) ≡ S (f

k
|Ek,D) (3.27)

which does not depend on the observation, yk, and reduces to the VOI
setting. For multiple inputs this requires evaluating the entropy of a multi-
variate Gaussian, which is available in closed form [50]. In the case of a
single value likelihood this corresponds to the predictive variance of f∗.

A particular case is obtained for standard regression with a Normal like-
lihood, i.e., a single f∗,. Here the entropy is simply a monotone function
of the predictive variance which does not depend on the observation, and
the design can be made before observing any observations. This is also
known as variance reduction or uncertainty sampling.

Response entropy: The approach considered so far was framed in terms
of the parameter space, i.e., f(·). A different approach is based on the pre-
dictive aspect, thus considering the change in entropy between the predic-
tive distribution of a particular response y∗ before and after conducting
the experiment. However, the simplest version of this is the VOI set-
ting in which the predictive entropy/variance can be used as the utility,
U ≡ S (yz|Ek,D) (see e.g. [233] for a short discussion).

10The easiest way to arrive at Eq.3.26 is by using information theoretic arguments with
conditional entropies and mutual information.
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In the case of optimization; the field of design and analysis of computer exper-
iments (DACE) and global optimization has in many years made use of Gaus-
sian process models to perform global optimization [96][156][101]. The machine
learning community has adopted many of these methods of which we will review
a few, most relevant to the preference learning setup.

(E)VIO Probability of Improvement (PoI) is an old [116] yet intuitive
measure [101], when attempting to optimize the latent function f . For
the regression case, i.e. a single candidate point in the experiment, it is
simply defined as P (f (x∗) ≥ fmax) with x∗ ∈ E and fmax is the current
maximum of the latent function. For regression this this amounts to eval-
uating a simple integral, resulting in a probit function. Seemingly this
approach has not been investigated together with the relative observation
methods, such as pairwise comparisons.

(E)VIO Expected Improvement (EI) is a criterion for selection new can-
didate points taking in to account the potential change for each candidate
points [156][101][172]. Given the focus on the latent function is typically
applied in the VIO setting (and often in normal regression), i.e., based
on the predictive distribution for f(·). First consider the improvement,
I, between the candidate point, x∗ and the point with the current max-
imum latent value, fmax = f(xmax), thus the improvement is defined,
I(x∗) = f(x∗)−f(xmax). Only considering the positive improvement and
evaluation the expectation yields,

EI =

∫ ∞

0

I × p(I)dI (3.28)

which is defined as the expected improvement [102][96][156]. Since f(·)
and f(x∗) are jointly Gaussian, this results in a closed form expression for
the utility, namely [96]

U ≡ σEI · N
(
µEI
σEI

)
+ µEI · Φ

(
µEI
σEI

)

where µEI = µ∗−µmax and σ2
EI = (σ2)∗+σ2

max−2σ,max
∗ where µ∗ is the

predictive mean for the candidate points and the σ’ are the variances and
covariances between the currently best input and the candidate.

It is noted that the VIO depends both on the mean and the variance and
gets bigger with both, i.e., an trade off between selection candidates with
high mean value and candidates with high variance. This is often referred
to as exploration and exploiting trade-off.

Contribution [D] applies this approach in an interactive system for a pref-
erence model with bounded absolute responses. Other applications in ma-
chine learning includes [79] for standard regression. [31] applies a variant
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of the expected improvement in a EVIO setting for a pairwise likelihood
which is seemingly computation infeasible for large problems.

For completeness, we notice that one could formulate the expected im-
provement on a continuous response variable, i.e., maximizing y instead
of f . In GPs where the latent function often close follows the response
variables through the mean or mode, it is questionable if this is necessary
and even feasible for most specialized likelihoods. Similar ideas has been
proposed in for example [44, Sec 2.4] for standard Bayesian linear models.

UCB-GP : The UCB (Upper Confidence Bound) algorithm is a popular GP
algorithm [205][79] for optimization tasks which effectively combines the
predictive variance and means in order to find the maximum of the latent
function. While often applied in a heuristic manner, recent and required
theoretical work has shown regret bounds for the UCB-GP algorithm [205].

Thompson GP : Thompson Sampling is an old method not specific to Gaus-
sian processes and can be applied in more versatile settings than opti-
mization with GPs [215][214]. However, in the optimization setting for
GP regression; the Thompson approach amounts to sampling a function
for the full experiment set, E . Hence,

f̂∗ ∼ p (f∗|E ,X ,Y, θ)
f̂∗ =

[
f̂ (x∗1) , f̂ (x∗2) , ..., f̂ (x∗E)

]

x∗ = arg max
x∗

f̂∗

This has been considered in a few studies for standard regression [132], but
not for the particular use with relative likelihoods, where the procedure
must be altered.

The Thompson sampling approach introduces an implicit exploration el-
ements, which is similar to Criterion Weighted Sampling (CWS),
which is a heuristic proposal for providing an (extra) exploration element
to any of the criterions above. The principle simply draws a index of the
candidate point xi ∈ E as follows,

i ∼Multinomial(λ)

where

λ (xi
∗) =

(E)V OI (xi
∗)

∑
i′

(E)V OI (xi′∗)

The principle is like many of the other sequential methods, without any
theoretical foundation, and still awaits a full empirical validation. It has
so far been applied by co-authors in [170].
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3.3.2 Induced Sparsity

Reducing the number of labeled inputs, N , by clever selection of the actual
points as outlined in the previous section is one way of reduce the computa-
tional complexity. Another way is to use socalled inducing points proposed
for the standard regression case in [199]. By effectively introducing a set of
pseudo-inputs and from these predicting the actual function variables used in
the likelihood function the complexity can be reduced to O(N · L2), where L
is the number of inducing points. The great advantage of this approach is that
the pseudo points can freely be located as part of the model inference includ-
ing ML-II / MAP-II approach. In high dimensions and relatively many pseudo
points, L, this becomes a daunting task, however the increased predictive speed
may justify the increased cost in approximating the posterior.

The original idea [199] has later been extended and covered in a vast body of
literature [179][164][226][222] where the current general view of sparse GPs is
the fully independet (training) condition FI(T)C and the partially independent
(training) conditional, PI(T)C, approximations framed in the excellent review
[179]. These generalizations can be realised in standard GP models by simply
constructing effective covariance functions [222] which for FI(C)T is equivalent
to the original pseudo-input formulation for standard regression and classifi-
cation. The PI(T)C is slightly more involved approximation which does not
assume all the conditional function values (random variables) to be indepen-
dent, but typically divided into blocks of inputs which are when conditionally
dependent on the block level. An overview of this particular approach is given
in [222, p.23-24].

3.3.2.1 ...for Pairwise Likelihoods

There are in essence (at least) three approaches to obtain sparse approximations
to the pairwise model: the pseudo-input, the FITC and the PITC approach.
Unlike the standard regression case none of these are necessarily equal. The
main aspect to recall is that the likelihood depends on two function values and
introducing the inducing points under the FITC approximation will render these
conditionally independent. Considering the PITC approximation will allow for
correlation inline with the original model, however, if all pairwise observation
are made and strictly blocking into pairwise blocks then the PICT will after all
combinations - or even just a reasonable amount - results in a dense posterior
with a covariance matrix of size N ×N as the original model.

With this in mind the first attempt to derive a sparse version of the model in
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Sec. 3.2 starts with the original pseudo input formulation which is described
in contribution [G]. Generally this follows the ideas in [199], i.e., given a set of
pseudo-inputs X̄, the functional values f̄ comes from a GP like the real latent
function values f . Therefore, we can directly place a GP prior over f̄ , i.e.,
p
(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
, where the matrix KX̄X̄ is the covariance matrix of

the L pseudo-inputs collected in the matrix X̄ = [x̄1, ..., x̄L].

The overall idea of the pseudo-input formalism is now to refine the likelihood
such that the real f values which enter directly in the original, non-sparse like-
lihood function (through fk), exist only in the form of ’predictions’, i.e. con-
ditional distribution, from the the pseudo-inputs f̄(X̄). It can easily be shown
that the sparse pairwise likelihood is of the similar form as the original, namely

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

= Φ

(
yk
µuk
− µvk
σ∗k

)
(3.29)

where µk = [µuk
, µvk ]>, µuk

= k>uk
K−1

X̄X̄
f̄ , µvk = k>vkK−1

X̄X̄
f̄ and

Σk =

[
σukuk

σukvk

σvkuk
σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 + σukuk
+ σvkvk − σukvk − σvkuk

, which all together
results in the pseudo-input likelihood

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

= Φ (zk) , (3.30)

where zk = yk (ku − kv) K−1
X̄,X̄′

f̄/σ∗k. Thus, the likelihood is still a cumulative

Gaussian, however, with elements ’predicted’ from the pseudo inputs via the
covariance between pseudo inputs X̄ and real inputs, ku and kv - and the L×  L
covariance matrix between pseudo-inputs, KX̄X̄. This results in a scaling of
O(N · L2) compared to the O(N3) scaling of a standard GP.

The primary issue in this type of sparsity is the inference of the L pseudo
inputs. Like traditional models with pseudo inputs, the setup considers only
ML/MAP-II type inference, however considering the number of parameters in
say 5 dimension and 10 pseudo inputs, the solution is very likely to be prone
to local minimum which is left for further investigation. Details regarding the
ML/MAP-II inference can be found in contribution [G].

3.4 Evaluation Methods

Evaluating the models outlined above is an important part of the modelling and
system aspects. This section provides a overview of the methods and means
considered in the contributions divided by the response types defined in Sec. 3.2.
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Absolute For the models presented in Sec. 3.2 relying on absolute ratings the
evaluation is similar to standard Gaussian process evaluation methods
[182]. The recent review [224] provides a excellent and comprehensive
overview of evaluation methods, however, we will simply mention a few
standard metrics commonly applied in contributions,

Predictive log-likelihood: The predictive distribution is the basis for
many Bayesian evaluation metrics, i.e. a prediction y∗, may be ob-
tained by considering the mean or the mode of the predictive distri-
bution p (y∗|D, x∗). However, the most commonly used metric is the
predictive log-likelihood, i.e. log p (y∗|D, x∗).

Mean Square Error (MSE) is the natural error metric in least squares
regression due to the normally distributed noise assumption. Based
on a point prediction, y∗ , (e.g. the mode or mean of the predic-
tive distribution) it is defined for all test input K, as usual, i.e,

MSE = 1
K

K∑
k

(y − y∗k)
2

whereas Mean Absolute Error (MAE) is typ-

ically applied, when the noise is not assumed to be Normally dis-
tributed, for example for bounded regression models outlined above.

It is defined by MAE = 1
K

K∑
k

|y − y∗k|

Relative Evaluating rankings is a general topic in information retrieval (see
e.g. [144] for retrieval), where search results are subject to many evalu-
ation studies. In the current setting, which effectively spans both such
information retrieval settings and smaller elicitation problems, one can
generally differentiate between two settings, namely

Ranking In the ranking scenario, we are generally interested in ordering
a fixed set of objects, not predicting for new objects. The evalu-
ation metric is whether the ordering is correct or not, not how the
model predicts to new unseen objects. In this setting, cross-validation
is performed by for example holding out a single pairwise observa-
tion between two objects and training on the remanding observations
(comparisons). A test is then performed to check if the heldout com-
parison is explained by the ordering. This means that the held out
aspect is the relation, not the objects per say.

Predictive The main interest in the current report relates to the pre-
dictive setting, in which predictions are made for left out objects.
Creating proper training, test and validation splits is an added com-
plication in evaluating predictive ranking scenarios since one must
hold-out both the object and the relations to other objects in order
to obtain a valid cross-validation.
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Choosing performance metrics for ranking of objects is a ongoing research
field in information retrieval [144], and also heavily relates to the setting
of preference learning. Common evaluation metrics include,

Predictive log-likelihood: The predictive log-likelihood is again a sen-
sible measure, however, not directly applied in the contributions on
relative but exploited indirectly in action learning settings.

Error rate
The simplest and most often used metric in the contributions is the
error rate of for example pairwise relations. These predictions are
given by the predictive distribution or can in most cases be obtained
directly from f. Considering M observations, the error rate is simply
defined by ER = Mincorrect

M . This gives a metric similar to the error
rate in standard classification

Kendalls tau
Evaluating the correlation between two different orderings of M ob-
jects can be performed using Kendalls tau defined by
KT = 2Mcorrect−Mincorrect

M(M−1) , with KT ∈ [−1; 1]. For a perfect align-

ment between rankings KT = 1, and for a perfectly reverse ranking
KT = −1. If the two rankings are independent KT = 0, for example
if one of the rankings is permuted randomly.

Precision/Recall and DCG/nDCG
A particular application of the ranking scenario is the retrieval of ob-
jects by their ordering. For this purpose metrics such as Recall and
Precision are typically applied. Other similar aspects are the Dis-
counted Cumulative Gain (DCG) and normalized DCG which weights
the relevance by its position in the ranking. We refer to [144] for an
introduction to this aspects of ranking and retrieval.
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3.5 Alternatives

Preference learning and ranking with Gaussian processes is not by any means
the standard approach to modelling ratings and ranking - on the contrary. A
number of other approaches has been proposed for both ranking and special-
ized regression. The following provides a short overview of the most common
approaches with focus on the machine learning literature.

Generalized Linear Models (GLM) The framework of GLM is very well-
described in standard statistic literature (see e.g. [145]) with the comfort
of having standard hypothesis tests and diagnostic tools. Bounded regres-
sion GLM models has for example been proposed in [66] similar to the
absolute bounded GP model proposed here. Pairwise models has been
considered in [225] simply starting from logistic regression based on the
difference between two vectorial inputs i.e. the latent function is given as
standard regression on the difference fk = w>×(xuk

−xvk), which is used
as a baseline in contribution [E].

Non-linear versions of this may be constructed easily by the kernel trick
[26]. For example can a (presumably novel) version of the pairwise GLM
model be constructed resulting in a effective kernel similar to the recently
proposed Pairwise Judgment Kernel (PJK) [93]. This kernel can then
be applied in for example classic kernel logistic regression without any
further complications than calculating a special kernel between two sets
of pairwise comparisons, i.e. k

(
{xu,xv} , {xu,xv}′

)
.

Neural Networks Neural networks (NN) [25] for pairwise ranking has been
proposed in for example [37], and extended for listwise ranking using the
Plackett-Luce model as the basis in [40] and [236].

Support Vector Machines Application of SVM for ranking (so-called SVM-
rank) has been considered in [241] and [100] in general framework of struc-
ture output prediction with SVM. This method is for example applied [235]
for metric learning in music.

3.6 Summary & Perspectives

This chapter provided an overview of the general setup for ranking and ratings
with Gaussian processes, supporting different experimental paradigms, such as
pairwise comparisons and bounded ratings. The focus was especially on the
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application in real-world settings requiring sequential design, efficient and robust
inference methods with application in real audio, music, and other systems.

The framework can at present be applied in many settings, and further devel-
opment, beyond the scope of this thesis, will include further investigation of
sequential designs for Gaussian process based models in real-world scenarios.
The many sequential design principles outlined are in many regards heuristics
which calls for further theoretical justification in line with recent work on the
UCB-GP algorithms [205].

Further development is required for effective inference in the BTL and Plackett-
Luce model, in particular extending the current Laplace approximations to other
inference methods, like expectation propagation or variational Bayes. A further
modelling aspect is the relation between the bounded regression models pro-
posed here with the general framework of Copular processes [232], which may
generalize the ideas presented here and in contribution [J].

In order for the GP models to become standard tools not only in machine learn-
ing community, but also in established statistical domains such as sensormetric
and general statistical hypothesis testing, there is a need to develop statistical
test and inference methods ensuring robust results and interpretability. Some
progress has been made in this regard such as [59] proposing a ANOVA style
analysis based on specialized covariance function. However, the Gaussian pro-
cess approach still lacks robust estimation and interpretation of for example
explanatory variables.

An aspect not considered in dept is the multi-task or collaborative filtering set-
ting in which multiple users collaborate to lean their individual preferences or
other aspects (also known as transfer learning). Recent advances (see e.g. [93])
has proved that preference learning with GP’s can be scaled to such settings by
employing similar ideas as outlined in this section. While truly large scale sys-
tems will probably refrain from GP based models, collaborative systems based
on GPs may very well find its way into smaller domains which can surely ben-
efit from collaboration such as optimization of audio reproduction systems [I]
and hearing aid personalization [170][23]. This, however requires further re-
search into the current multi-task and hierarchical Bayesian models [93][24] to
quantify the behavior and properties as initiated in [93][24].
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Chapter 4

Predictability of User Context

Knowing the current and future context of users is an important element towards
truly personalized systems, where user’s information needs changes according to
for example location and social setting. With modern portable devices, such as
smartphones, it has become feasible to monitor and record at least some aspect
of human context such as human location and social interactions, which makes
it possible to characterize humans (or the users from the system perspective),
based on aspects of location and proximity to other people. A more subtle
aspect is the predictability of the context such as location, i.e. can the location
be predicted based on the past.

In this chapter, we consider the particular task of predicting the next context
state Xn+1, such as location, conditioned on previously observed states resulting
in one-step-ahead forecasting of discrete time series. A multitude of machine
learning models/algorithms can be considered for this task ranging from N-order
Markov models [50], Hidden Markov Models [180, 26] or neural networks [25]
and so on. Such machine learning algorithms, both unsupervised clustering or
supervised classification, can in essence be seen as a way to reduce or compresses
the often noisy and high dimensional data into something less complex with the
aim to provide a representation which has a higher interpretability or usabil-
ity. The simplest example is possibly binary classification where data living in
a potentially high dimensional input space is grouped by a classifier into two
classes. By assigning a simple label to a complex high dimensional represen-
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tation of an object, we in effect provide a compression of the raw information.
The predictability can then be determined by the number of correctly classified
assignments.

Instead of having to decide on a model, estimating parameters and performing
the predictions, this chapter addresses the problem from another angle. Instead
of actually performing the compression as outlined above, we apply the tools
usually considered when describing more general aspects of compression, namely
information theory. Based on these, we estimate bounds for the predictability,
based - not on the number of correctly classified predictions - but on a bound
derived from information theoretic measures. This results in bounds for the
context predictability, e.g. location, and provides a general characteristic of
human behavior and of a given user. The methods are largely variations of the
approach suggested in [201] with some refinements and extensions.

Outline: this chapter continuous in Sec. 4.1 with a basic overview of informa-
tion and randomness from an information theoretic view. Sec. 4.1 continuous
to describe a relatively recent view on predictability based on measures of infor-
mation. This results in so-called predictability bounds and the chapter provides
a simple proof of these bounds in Sec 4.2.

4.1 Basic Measures of Information

We consider the problem of quantifying the predictability obtainable in a dis-
crete time process, X = (X1, X2, .., Xn), where n is the time index and X is the
state variable with M discrete states. This is to a large degree motivated by
previous work on predictability, complexity and learning see e.g. [?]),

Here predictability is defined as the probability of an arbitrary algorithm cor-
rectly predicting the next state. Hence, given the history, the main distribution
of interest is P (Xn+1|X1, X2, .., Xn). In the case where we have no information
regarding the history, the distribution naturally reduces to P (X). When P (X)
is uniform, i.e., each of the M states have the same probability of occurring, the
Shannon entropy (in bits) is defined as Srand (X) = log2M .

In the case where the distribution of X is non-uniform, the entropy is given as

Sunc (X) = −
N∑

n=1

p (xn) log (p (xn)) (4.1)

with p (x) = P (X = x). This in turn represents the information available when
no history is available, hence, the acronym unc (uncorrelated).
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The entropy rate of the process, or the average number of bits needed to
encode the states in the process, can be estimated taking into account the
complete history. This is done by defining the stationary stochastic process
X = {X1, X2, ..., XN}, which have the entropy rate [50] defined as

S (X) = lim
N→∞

1
N S (X1, X1, ..., XN ) (4.2)

= lim
N→∞

1

N

∑N

n=1
S (Xn|Hn−1) Chain rule for entropy) (4.3)

where the variable Hn−1 at time step n is Hn−1 = {X1, X2, ..., Xn−1}, i.e. the
history. Generally, we have that 0 ≤ Strue ≤ Sunc ≤ Srand < ∞, where Strue

denotes the true entropy rate of the process.

Predictive Information is an interesting measure which can immediately be
derived from the already measures namely the so-called predictive information
as defined in [21]. It is defined as

Ipred = lim
N→∞

1

N

n∑

n=1

S (Xn)− S (Xn|hn−1) (4.4)

= Sunc (X)− S (X) (4.5)

In effect Ipred represents the mutual information between the distributions corre-
sponding to knowing and not knowing the past history. Hence, it quantifies the
fundamental information gain in knowing the (complete) past when predicting
the future (one step ahead).

4.1.1 Entropy Rate Estimation

A challenge in using these information theoretic measures based on real and
unknown processes is the estimation of the entropy rate, S(X). A number of
ideas has emerged based on compression techniques such as Lempel-Ziv (LZ)
(including string matching methods) and Context Weighted Trees for binary
processes. [70] provides a general review of such methods. An appealing aspect
of these non-parametric methods is that it avoids directly limiting the model
complexity as would be necessary if we applied parametric or semi-parametric
models. One of the simplest entropy rate estimators are LZ based estimators as
described in [111, 70] and also applied in [202]. The entropy rate estimate for a
time series/process, X, of length N is given by

S(X)est =

[
1

N

∑N

n=1

Ln
log2n

]−1

(4.6)
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where Ln is the length of the shortest substring starting at time step n, which
has not been seen in the past. The consistency under stationary assumptions is
established in [111].

4.2 Bounds on Predictability

The entropy rate itself is a difficult measure to interpret and understand from
an predictive and algorithmic point of view. In order to provide a measure
directly expressing the predictability, we start from Fano’s inequality [64][50]
relating the conditional entropy of a variable with the probability of seeing an
error, P e, or more relevant the probability of a success, P s. Thus, P s expresses
the probability that the prediction X̂n equals the correct state Xn as given by,
P s = P (Xn = X̂n) = 1−P e, when prediction Xn based on on another variable,
namely the history (variable) Hn−1 with outcomes hn−1 ∈ H where H denotes
all possible past/historic outcomes. Fano’s inequality now reads [50],

S (Xn|Hn−1) =
∑

hn−1∈H
P (Hn−1 = hn−1)S (Xn|Hn−1 = hn−1) (4.7)

≤ Hb (e) + P enlog2 (N − 1) (4.8)

= Hb (s) + (1− P sn) log2 (N − 1) (4.9)

= −P snlog2 (P sn)− (1− P sn)log2 (1− P sn) + (1− P sn)log2 (N − 1)
(4.10)

= SFANO−S (P sn) , (4.11)

where the binary entropy function with a positive outcome is defined as

Sb (P sn) = − (1− P sn) log2 (1− P sn)− P snlog2 (P sn) . (4.12)

In [202] this positive version of Fano’s inequality is proved from scratch.

Assuming stationarity, the definition of entropy rate is given as, S (X) = lim
N→∞

1
N S (X1, X2, ..., XN ),
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thus

S (X) = lim
N→∞

1
N S (X1, X2, ..., XN ) Definition of entropy rate (4.13)

= lim
N→∞

1
N

∑n

n=0
S (Xn|Hn−1) Chain rule for entropy (4.14)

≤ lim
N→∞

1
N

∑n

n=0
SFANO (P sn) Fano (4.15)

≤ SFANO−S
(

lim
n→∞

1
N

∑N

n=0
P sn

)
Concave (4.16)

= SFANO−S (〈P sn〉n) (4.17)

= SFANO−S (P s) . (4.18)

Thus, given the entropy rate of a process, S(X), the one-step-ahead predictabil-
ity can be bounded from above by, P s, solving the following equality S (X) =
SFANO−S (P s) for P s. Given the monotone behavior of SFANO−S this provides
a unique solution, and can easily be found by standard numerical methods.

4.2.1 Upper Bound

Given the estimated entropy rate of the observed process, S(X)est, we may di-
rectly find the upper bound on the one-step ahead predictability, P s,max, solving
Eq.4.13. This upper bound is the main focus of [201][202] and contribution [A]
and [B]. The interpretation of the this predictability bound should be performed
with the entropy estimation in mind, since the provided estimates defines the
quality/accuracy of the bound.

4.2.2 Lower Bound

The bound proposed by [201] is the upper bound on the predictability, however,
it is equally important to consider a lower bound in order to for example evaluate
the triviality of the problem, i.e., the upper bound may be close to one for
trivial/constant processes. In order to obtain such a lower bound, it a natural
choice is to consider the simplest model adhering to the one-step-ahead setting,
namely a first order Markov process. Thus, the probability of the next state
being r is given by a transition probability Prs = P (Xn+1 = r|Xn = s)

P (Xn+1 = r) =
∑

r∈R
PrsP (Xn = s)
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The entropy rate of this process is given in closed form as

S (X) = −∑
n

∑
j

µiPij logPij , where µj is the stationary distribution of the pro-

cess which can be found by solving the following equations, µj =
∑
µiPij ∀ j.

Thus, given the general bound in Eq. 4.13-4.18, it is possible to find the maxi-
mum predictability given this simple model. However, this is still a bound and
a more direct measure is the actual predictability of this minimally complex
model, i.e., the actual percentage of correctly classified states. This was ap-
plied in [A] where classification is based on standard maximum likelihood, i.e.,
arg max

r
Prs (Xn+1 = r|Xn = s).

With the lower bound in place, it is possible to compare the lower and upper
bound for the given process, X. In combination with the measure of predictive
information in Sec. 4.1, this indicates the real gain in applying a more advanced
predictive models compared to the simpler one and effectively determines the
operating range of any sensible algorithms.

4.3 Summary

The information theoretical view on predictability provides a relatively simple
and easy way to obtain bounds on the one-step-ahead predictability of discrete
time series. These bounds can then be applied in engineering systems for e.g.
resource allocation or in information processing systems as outlined in Chap-
ter 1 for providing context aware systems or for characterizing users by their
predictability.



Chapter 5

Summary & Conclusion

The overall aim of the thesis was to investigate elements of the general system
described in Chapter 1. The focus has been the on integration of bottom-up
and top-down information eliciting and modelling of perceptual and cognitive
aspects and finally quantifying the predictability of context. The thesis first of
all contributes with a holistic and general system perspective towards the inte-
gration of top-down and bottom-up for audio and music organization presented
in 1. The three focus areas, outlined in the summary report - and considered in
the contributions - each contribute with new methods and/or results relevant
to the field of audio and music organization. These focus areas (and related
contributions) are shortly summarized and concluded individually.

Computational representation of music
The first aspect under investigation was the integration of top-down and bottom-
up views of music. To this end a general review of bottom-up audio features
was presented in the summary report (Sec.2.2) focusing on low-level features
and how they can be representation on a song level for use in machine learning
algorithms. The summary report further outlined how these two views can
be integrated in a single model based on probabilistic topic models. This was
described in some detail (Sec.2.4) providing a natural route from the well known
multi-modal pLSA to the multi-modal LDA model, which is evaluated in H.

In conclusion, it was found that the bottom-up representation, based on audio
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feature and lyrics, was more aligned with genre based tags than personal or
emotional tags. It was found that the joint representation including tags, lyrics
and audio performed best in a genre and style classification task, as expected.
The combination of lyrics and audio improved the classification performance
over individual audio and lyric representation.

Preference learning
The primary focus of the thesis has been the realization of a general Bayesian and
modular setup for learning and modelling preference and other cognitive aspects
(such as the expressed emotion music), which supports specialized experimental
paradigms and observation types, ranging from special bounded regression and
ranking of objects.

The summary report provided a general overview of the realized setup and
placed the individual contribution in the general context of learning and mod-
elling preference and other cognitive aspects.

• Contribution [C] proposed and realised a novel likelihood model for letting
the user convey a degree of preference for paired comparisons. Based on
simulations on a toy problem it was concluded that learning with such as
response is faster than a standard binary response type also under adverse
noisy conditions.

• Contribution [G] proposed and derived a sparse likelihood model which
allows scaling the pairwise likelihood to larger problems. Based on both
toy and a relatively simple real-wold data, it was concluded that the sparse
model is an effective tool in pairwise learning by comparing it to a standard
GP.

• Contribution [D] proposed to use pairwise comparisons in modelling and
predicting personal music preference, modelling this by audio feature and
the probability product kernel. The approach was evaluated on a small
three-genre dataset, and it was concluded that the model was able to
predict the preference, but that a larger dataset is required to provide
more support for this claim.

• Contribution [F][E] considered the modelling and representation of ex-
pressed emotion in music. The contributions demonstrated how to elicit
and model such complex cognitive task in a novel and robust way us-
ing the proposed setup. The contributions concluded that the resulting
ranking is inline with common understanding of expressed emotion, and
that the pairwise Gaussian process approach performed better or equal to
generalized linear models.
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• Contribution [I] applies the setup for interactive elicitation of preference
used in optimizing an audio reproduction system with many parameter
settings. It is concluded that the active learning approach based on Ex-
pected Improvement (EI) is significantly more efficient than a random
design, and a feasible approach forward.

Based on the individual investigations and findings it can be concluded that the
setup provides a feasible and modular approach for elicitation and modelling
in many different and real-world applications. Finally, it is concluded that the
setup provides a viable foundation for further investigation and applications in
for example music and audio applications.

Predictability
The thesis finally investigated the predictability of human location as repre-
sented by location using mobile phone location as a proxy. This was quantified
by bounding the predictability using information theoretic methods as described
in the summary report Sec. 4. Contribution [A][B] applied the methods on a
dataset obtained by sensing location by WLAN and GSM associations for four-
teen users as a proxy for human location location. The contributions presented
results on the predictability on many different time scales and for different sen-
sors. The results in [A][B] indicates that we as humans are highly predictable
in line with previous results [201], but also on much lower time scale than pre-
viously considered.
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ABSTRACT

Quantification of human behavior is of prime interest in

many applications ranging from behavioral science to prac-

tical applications like GSM resource planning and context-

aware services. As proxies for humans, we apply multi-

ple mobile phone sensors all conveying information about

human behavior. Using a recent, information theoretic ap-

proach it is demonstrated that the trajectories of individual

sensors are highly predictable given complete knowledge of

the infinite past. We suggest using a new approach to time

scale selection which demonstrates that participants have

even higher predictability of non-trivial behavior on smaller

timer scale than previously considered.

1. INTRODUCTION

How predictable are human whereabouts? Very. At least ac-

cording to a recent study by Song et al. [1][2] based on the

predictability of location trajectories. When including the

full history of the participants, the upper bound for predic-

tion the next location lie in the 93 % range based on 45.000

participants. Song et al. use an information theoretic ap-

proach and by the use of Fano’s inequality they show [2]

that the entropy rate transforms into an upper bound of the

predictability.

The study in [1] is, however, not the first study on hu-

man predictability using mobile phones as sensors and the

area of mobile phone computing have received considerable

attention recently (see e.g. [3]). Of interest to the present

study is Eagle et al. [4], who have made extensive stud-

ies based on the Reality Mining dataset. Using a Hidden

Markov model and the time of day they show prediction ac-

curacies (home, work, elsewhere) in the range of 95 %. Us-

ing principle component analysis they furthermore analyze

the temporal patters extracted as the eigenvectors showing

clear temporal patters in daily life. Similar results have been

found by Farrahi et al. [5] by analyzing the same dataset us-

ing unsupervised methods such as LDA [5] also with the

purpose to extract patterns in everyday life.

While Eagle and Farrahi et al. use explicit modeling of

the data and extract concrete patters, Song et al. provide a

estimation of the information content using non-parametric

methods altogether resulting in the upper and lower pre-

dictability bounds of the participant behavior. We refer to

Bialek et al. [6] for further discussion on information com-

plexity in parametric and non-parametric models.

In this paper we apply a similar information theoretic

approach as in [1] to the problem of human predictability. In

comparison, we analyze a smaller but more detailed mobile

phone based dataset. This means fewer participants, similar

time span, but considerably more mobile phone sensors and

in particular higher temporal resolution.

Our goal is twofold: The possibility to analyze multi-

ple sensors is quite unique and will provide valuable insight

into the predictability of each unique sensor. The combina-

tion of sensors will furthermore convey considerably more

information about location than e.g. a GSM cell alone [1].

We show that the location and proximity based sensors all

have relatively high predictability for the entire population.

Whereas Song et al. provide important results on location

prediction, the multiple sensors in our scenario can poten-

tially provide a much richer description of context in gen-

eral. If the extended set of sensors share the predictability

of GSM cell location they may contribute additional useful

information.

Secondly, we present extended results of predictability

on different time scales which indicate that it is possible to

predict non-trivial behavior on much smaller scales than the

hour based prediction considered in [1]. In addition, we

suggest applying mutual information - or prediction infor-

mation [6] - as a method to easily estimate the optimal scale

in a non-parametric fashion.

2. MOBILE DATA

We start out describing the experimental setup underlying

the so-called lifelog dataset obtained and used in the further

analysis.

In the experiment standard Nokia N95 8GB mobile pho-

nes were used to collect data from embedded sensors in-

cluding accelerometer, GSM, GPS, Bluetooth, WLAN, and

phone activity (calls and messages) as shown in Table 1.



Sensor Sampling Data collected

Accelerometer 30/minute 3D accelerometer values

GSM 1/minute CellID of base station

GPS 2–3/hour Coordinates

Bluetooth 20–40/hour MAC, name, and type

WLAN 1/minute MAC, SSID, and RX level

Phone activity Event Phone no. and direction

Annotations Event Free text

Table 1. Embedded mobile phone sensors and sample rate

(non-uniform) included in the experiment.

The mobile phones were running the standard Symbian S60

operating system with standard applications installed, and

they were equipped with the Mobile Context Toolbox soft-

ware [7], running silently in the background not to infer

with user behavior.

All sensor recordings were time stamped using the mo-

bile phone embedded timer. The accelerometer values were

sampled every 2 seconds. GSM cellular information ac-

quired included the Cell ID with country code, operator

code, and location area code. The phone software API in

the present system only allows reading the CellID of the

GSM base transceiver station to which the phone is cur-

rently connected (not the ones visible). GPS was only sam-

pled 2–3 times an hour due to the fact that the sensor is

by far the most expensive sensor in terms of energy con-

sumption. Bluetooth scanning was done approximately ev-

ery 1.5-3 minutes. The sampling rate varies as the Bluetooth

discovery time increases with the number of Bluetooth de-

vices available within discovery range. WLAN scanning

was done approximately once a minute, recording MAC ad-

dress, SSID, and RX level of discovered Access Points. Fi-

nally phone activity (SMS, MMS, and calls) were recorded

whenever it occurred (phone number and direction). In ad-

dition, our software application allowed the participant to

manually label his/her present location and activity using a

text string.

Our experiment included continuous use by 14 partic-

ipants, each equipped with a mobile phone with the soft-

ware pre-installed. The participants used the mobile phone

as their regular mobile phone for a period of five weeks or

more, as they were given instructions to insert their own SIM

card into the phone. They were furthermore instructed to

make and receive calls, send messages, as they would usu-

ally do, and generally use the phone as they would use their

own phone. Therefore, no particular instructions were given

as to carry the phone as we wanted to establish data from

regular usage of the mobile phone, and thereby acquire real

life data. This means that the participants would not neces-

sarily carry the phone on the body all the time, such as car-

rying the mobile phone in a pocket. The sampling of sensor

on the phone, as shown in Table 1, was based on optimizing

the resource consumption, so that the participants should

only need to recharge the phone once a day (typically dur-

ing the night). Yet, this allows for considerably finer time

scale than e.g. considered in [1]. Situations where no data is

recorded may occur due to the phone running out of battery

or actively being switched off. In addition, sensors can fail

individually and not return any data, which corresponds to

a unknown/no-connection state for that particular sensor.

The experiment started on October 28, 2008 and ended

January 7, 2009 and the participants were students and staff

from Technical University of Denmark volunteering to be

part of the experiment and consented to use the data for re-

search purposes. Thus, the participants were mainly situ-

ated in the Copenhagen area, Denmark. The participants

took part in the experiment between 31 and 71 days, result-

ing in approximately 675 days worth of mobile data record-

ings (approximately 20 mill. data points). The average du-

ration in which data was recorded was 48.2 days. It is worth

noticing the number of unique Bluetooth devices, unique

GSM cells, and unique WLAN access points discovered

during the experiment by all participants: 20408, 2837, and

28110 respectively. In total 9479 readings of GPS position

were recorded with great variability among participants, due

to the nature of the GPS technology. A total of 6538 calls

and messages took place during the experiment. Approxi-

mately half of these are outgoing which corresponds to the

data available in [1]. The density of our calls is, however,

not high enough to reliably localize the participants on e.g.

an hourly basis. Instead we use the much more detailed

WLAN, GSM, Bluetooth and acceleration data to provide

insight into human predictability.

3. METHODS

The dataset in Section 2 allows for a large number of dif-

ferent models and analysis methods. In this study we will,

as mentioned, apply an information theoretic approach, al-

though before describing the details involved in this we con-

sider the preprocessing required for the final analysis.

A fundamental issue in obtaining discrete times series

is the number of quantization levels and sample rate of the

true process [6]. The present dataset provides a number of

challenges in this regard. The scan cycles are non-uniformly

sampled and the scan cycles are of different lengths for each

sensor. We therefore derive a commonly aligned time series

for each sensor by construction non-overlapping frames of

a given window length and assigning the original samples

falling within the frame to it. If multiple samples are avail-

able for each frame they are merged, which is logical for

the indicator type of sensors (WLAN, GSM, BT). We can

think of this as combining states in a Markov model, effec-

tively altering the state transitions. A similar idea is used

for the acceleration sensor where the feature is calculated
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Fig. 1. Participant 1’s GSM data for 11 weeks, with * de-

noting noon. The figure shows the top 20 most visited GSM

cell towers as rows in each week. The time series is con-

sidered in a vector space representation, hence each unique

column corresponds to a state.

as the average power within a window represented as a dis-

crete levels, i.e. XACC ∈ {off, 1, 2, 3}. For example, us-

ing the WLAN and integrating all the nets seen into a state

effectively means that the predictive variable becomes the

WLAN state and not the location as such. If a location is

required we could lookup the WLANs positions and gener-

ate a location variable from that. The alternative choice of

directly working on a location variable generated from the

WLANs is not considered here.

The proposed representation is a very detailed descrip-

tion of the participant state. On the contrary the alternative,

as used in [1] [2], suggest using only the location (GSM

cell) seen the most within a time window as the state. Both

methods involve a quite complex quantization of the origi-

nal data into windows. To evaluate the consequence of this

on predictability we consider the change in predictability

bounds as the window length is increased from one minute

to one hour based on the GSM series.

3.1. Information Theoretic Measures

We consider the task of quantifying the predictability possi-

ble in our discrete time series, X = (X1, X2, .., Xn), where

n is the time index. This is largely inspired by previous

work on predictability, complexity and learning (see e.g.

[6]) on dynamical systems, and the recent development on

a similar dataset as ours [1]. Here predictability quantifies

the probability of an algorithm correctly predicting the next

state. Thus, given the history the fundamental distribution

of interest is P (Xn+1|X1, X2, .., Xn). In the case where

we have no information regarding the past the distribution

reduces to P (X). When P (X) is uniform, i.e. each of N
states have the same probability, the Shannon entropy (in

bits) is defined as Hrand (X) = log2 N .

If, however, the distribution of X is non-uniform, the

entropy is given as Hunc (X) = −∑
i∈I p (xi) log (p (xi)),

with p (x) = P (X = x). We use a maximum likelihood

plug-in estimate of p(x). This in turn represents the infor-

mation when no history is available, hence the acronym unc

(uncorrelated).

The true entropy of the participant, or the average num-

ber of bits needed to encode the symbols in the sequence,

can be estimated taking into account the infinite history.

Formally this the done by defining the stationary stochas-

tic process X = {Xi} which have the entropy rate given by

H (X) = lim
n→∞

1
n

∑n
i=1 H

(
Xi|hi−1

)
, where the history hi

at time step i is hi = {X1, X2, ..., Xi−1}. In our case it is

noted that 0 ≤ H ≤ Hunc ≤ Hrand < ∞.

An appealing aspect of these non-parametric methods

is that we avoid directly limiting model complexity as in

any parametric or semi-parametric models. However, a ma-

jor challenge in using these information measures based on

real and unknown processes is the estimation of the entropy

rate. A number of ideas have emerged based on compres-

sion techniques such as Lempel-Ziv (LZ) (including string

matching methods) and Context Weighted Trees (we refer

to [8] for an overview). In this study we estimate the en-

tropy rate using the efficient and fast converging LZ based

estimator as described in [9][8] and also applied in [2]. The

LZ based estimate for a time series of length n is given by

Hest =
[
1
n

∑n
i=1

Li

log2n

]−1

, where Li is the shortest sub-

string starting at time step i, which has not been seen in

the past. The consistency under stationary assumptions is

proved in [9] where it is applied to English text.

Given estimates of the entropy and the entropy rate we

consider a related quantity, namely mutual information - or

predictive information [6] - defined using the information

measures above.

Ipred = lim
n→∞

1

n

n∑

i=1

H (Xi)−H
(
Xi|hi−1

)
(1)

= Hunc (X)−Hest (X) (2)

Ipred represents the mutual information between the distri-

butions corresponding to knowing and not knowing the past

history. That is, it quantifies the fundamental information

gain in knowing the (complete) past when prediction the

future and we propose it as a way to evaluate optimal quan-

tization and time scale selection. We illustrate the behavior

of the measure on a time scale selection problem.



3.2. Predictability Bounds

We consider the probability, Π, that an arbitrary algorithm

is able to predict the next state correctly.

Based on the entropy rate and Fano’s inequality Song et

al. derive a bound so Π ≤ Πmax (H (X) , N) with Πmax

given by the relation H (Πmax) = −Πmaxlog2 (Π
max)−

(1−Πmax) log2 (1−Πmax) + (1−Πmax) log2 (N − 1).
This non-linear relation between Πmax and the estimate of

H(X) is easily solved using standard methods (see [2] for

a full derivation). .

By applying this approach we obtain three upper bounds

based on the entropy estimates previously mentioned. The

first, Πrand, provides an upper bound on a random predic-

tor. The second upper bound is Πunc which bounds the per-

formance obtainable with a predictor utilizing the state dis-

tribution. Finally, the most interesting bound, Πmax, pro-

vides a upper limit for the performance of any predictor uti-

lizing the infinite past.

Equally interesting as the upper bound is a lower bound

on the predictability, i.e. the worst we can expect from any

predictor. Song et. al. shows how a simple lower bound

can be constructed based on the so-called regularity. The

regularity is in essence a simple predictor based on the most

likely situation given the time of day. This is an intuitive

measure for some time periods such as daily patters, e.g.

utilizing where a person is most likely to be each morning

at 6.00. However, if the time scale is in the minute range it

does not necessarily make sense to consider the regularity.

We propose instead to use a predictor using the imme-

diate past as the representative of the lower predictability

bound. Hence, we select a first order Markov model with

the transition probabilities estimated from our finite process.

For generalization purposes we use a resampling scheme

in which the entropy and the next state distribution is esti-

mated based on 2/3 of the data and tested on the remaining

1/3. This is performed for nine repetitions in a compromise

between accuracy of the generalization estimate and the re-

quired samples in order for the entropy estimator to con-

verge. The resampling further allows us to verify that the

LZ entropy estimate converges to reasonable similar values

for separate temporal sections of the participants life. Any

variation over sections will result in a greater variance of the

predictability.

3.3. Missing data

Missing data constitutes a major issue in applying mobile

phones as proxies for human behavior. Our dataset contains

two types of missing data: A well-defined off-state and a

state where an individual sensor is off/disconnected. The

current dataset does not provide any option to differentiate

the latter case from not being in range of e.g. any Bluetooth

devices, and will consequently be treated as the same state.

We can either predict the true off-state or simply ignore

it. Based on initial studies it was found that the convergence

of the entropy estimate was more consistent when not in-

cluding the off-state and instead representing off-states by a

single terminal symbol in the LZ based estimation.

An alternative suggested by Song et al. [1] provide an

ad-hoc method for extrapolating the entropy corresponding

to a missing data fraction, q, of zero. They show empir-

ically that the ratio ln (Hest/Hunc) has a linear relation-

ship across a wide range of missing data fractions. Unfor-

tunately we are not able to obtain such a linear relationship

in our data set except for four participants. When extrap-

olated, these participants show precision within ≤10 % for

q = [0; 0.5], however, the majority, of participants (ten) de-

viates with ≫10%, which is not found acceptable for our

study.

4. EXPERIMENTAL RESULTS

We apply the methods described in Section 3 and illustrate

the potential predictability by analyzing the GSM, WLAN,

BT and acceleration data, described in Section 2. From the

results of the 14 participants we estimate the probability

density function using a standard kernel density estimator

with fixed width for each density across all experiments.

4.1. Sensors

Initially we consider the estimated predictability bounds com-

paring individual sensors at the same time scale, specifically

15 minutes. Fig. 2 shows the predictability bounds of the

GSM, WLAN, BT and activity variables. By examining

the difference between Πmax and Πunc we find that there is

considerable gain in knowing the past. From the difference

between the Markov model ΠMarkov and the upper bound,

ΠMax, we see that knowing more than just the previous state

seems on average to provide considerable benefit.

In the uncorrelated model participants show consider-

able differences in the entropy, Hunc, for all sensors as

typically expected in a real population. However, condi-

tioned on the past, the variability is typically lower (except

for WLAN), indicating that on average, participants with

high entropy have a relative predictable trajectory. This

corresponds well with the results observed in [1] for GSM

based localization. The Bluetooth data does, as mentioned,

contain a considerable fraction of unknown states (not off-

states), which will tend to underestimate the true entropy.

This means that the bounds are most likely overestimated

for Bluetooth.

The GSM, WLAN and Bluetooth sensors are inherently

location or proximity oriented sensors, and the estimated

distributions all have modes in the high range above 80%,

but with noticeable difference in variability. Whereas GSM



Fig. 2. GSM, WLAN and Acceleration. Crosses indicate

individual participant estimates.

provides small variability among participants, WLAN seems

to provide a much larger difference among participants. This

is not surprising since WLAN is considerably more noisy

than GSM and captures a more local and detailed state than

GSM. Thus, some participants tend to have a relatively low

predictability while others are just as predictable as using

GSM. The GSM complexity is more similar between mo-

bile phone users. Thus, the WLAN sensor will probably

provide the more interesting data, but it is the harder sensor

to predict. At least when using the very detailed representa-

tion.

In order to do a preliminary analysis of the information

shared between the sensors, we consider the averaged nor-

malized mutual information (not conditioned on the past) in

Table 2. We generally see that the location/proximity driven

sensors show some redundancy as expected, while the activ-

ity seems to provide a different element of human behavior.

4.2. Time Scale

Fig. 4 shows the effect of varying the window length from

one hour to one minutes for the GSM sensor given the state

representation described in 3. In doing so, we note that

the number of states reduces (see Πrand). From Fig. 4 we

find that the increase in window length towards 3600 sec-

Fig. 3. GSM predictability vs. window length in sec. (log

scale). The density estimate of Πrand is removed for clar-

ity. Participant 3 is furthermore removed for clarity due to

his/her outlier nature.

onds tends to remove the correlation effectively rendering

the process more random seen by the decrease in estimated

predictability. It should be noted that the behavior of these

time selection graphs are highly influenced by the repre-

sentation applied, i.e. the way the different series are con-

structed (see Section 3).

An important point to emphasize, is the fact that the in-

creased predictability is not only an effect of a trivial behav-

ior (i.e. constant). This would imply that the markov model

would perform nearly as good as the upper bound suggests.

Hence, the increase in predictability can actually be used

to predict a non-trivial behavior, and improve for example

context-aware applications.

In examining the predictive information Fig. 2 we find

an optimal window of approx. 4-5 minutes. Hence, this is

the point where we obtain the highest gain in knowing the

infinite past when predicting the future. We note that the

simpler Markov model actually continues to improve as the

window length decreases. This indicates that the process

becomes more and more trivial (although not completely)

and the gain decreases at the very lowest window length.

GSM WLAN BT ACC

GSM 1.00 0.45 (0.17) 0.42 (0.14) 0.07 (0.02)

WLAN 1.00 0.55 (0.17) 0.10 (0.03)

BT 1.0 0.08 (0.05)

ACC 1.00

Table 2. Average, normalized mutual information and stan-

dard deviation across participants. Normalization is per-

formed as I (X ;Y ) /max {H (X) , H (Y )}.
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Therefore, we aim for the time scale with some non-trivial,

but predictable behavior.

For direct comparison with the results in [1] we refer to

the one hour window in Fig. 4. We find that the estimated

bound and distribution is in the same range. However, the

datasets are inherently different and our results suggest a

slightly lower predictability with higher variability between

users at this time scale. Overall, though, our results at other

times scales supports the conclusion that human trajectories

on GSM cell scale are indeed very predictable despite the

apparent difference in the number of visited states.

5. DISCUSSION

A major issue in the method proposed by Song et al. [2] is

the quality (bias/variance) and convergence of the entropy

estimator, which is not addressed in [1]. Secondly, the as-

sumed stationarity does not per default apply to all partici-

pants, hence quantifying the effect on the entropy estimate

is of vital importance. In order to provide reliable results,

we have verified a reasonable convergence on the individual

subsections, however, the reported upper bound should only

be considered a rough estimate. Future work will attempt to

improve the apparent issues using the entropy estimate.

An obvious extension of the current analysis is evalua-

tion of sensor combinations. However, computing e.g. the

mutual information conditioned on the past is rendered diffi-

cult by the present lack of statistics for the LZ based entropy

estimator.

6. CONCLUSION

In this study we presented a new dataset offering vast possi-

bilities of modeling human behavior. In this initial analysis

we adopted an implicit modeling approach based on infor-

mation theoretic methods to provide bounds for the perfor-

mance potentially obtainable using explicit modeling.

We presented novel results on the predictability of mul-

tiple mobile phone sensors, showing that the findings in [1]

generalizes to many more location based sensors. This out-

lines interesting potential for future context-aware mobile

services and applications.

Finally, we showed that the prediction of human mo-

bility is not limited to the one hour time scale previously

studied. In particular, we find that predictability seems to

further improve at time scales down to about 4-5 minutes.
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Abstract. Prediction and understanding of human behavior is of high
importance in many modern applications and research areas ranging from
context-aware services, wireless resource allocation to social sciences. In
this study we collect a novel dataset using standard mobile phones and
analyze how the predictability of mobile sensors, acting as proxies for hu-
mans, change with time scale and sensor type such as GSM and WLAN.
Applying recent information theoretic methods, it is demonstrated that
an upper bound on predictability is relatively high for all sensors given
the complete history (typically above 90%). The relation between time
scale and the predictability bound is examined for GSM and WLAN
sensors, and both are found to have predictable and non-trivial behavior
even on quite short time scales. The analysis provides valuable insight
into aspects such as time scale and spatial quantization, state representa-
tion, and general behavior. This is of vital interest in the development of
context-aware services which rely on forecasting based on mobile phone
sensors.

1 Introduction

The wide acceptance of sensor rich mobile phones and related applications en-
ables deep studies of human behavior. According to a recent study by Song et
al. [11, 12] based on mobile phone location trajectories, individual human mo-
bility patterns are highly predictable. When including the complete history of
the participants they derived an upper bound on prediction of the next location
of 93% in a large cohort of 45,000 users. The upper bound is based on informa-
tion theory. Using Fanos inequality it was shown in [12] that the entropy rate
transforms into an upper bound of the predictability.

Interest in understanding human behavior using mobile technology is increas-
ing, see e.g., the recent review by Kwok [9]. The work of Eagle et al. [4] on the
Reality Mining dataset, marks an early and important contribution. Using a
Hidden Markov model and the time of day, they demonstrate explicit prediction
accuracies (home, work, elsewhere) in the order of 95%. Furthermore, they use
principle component analysis (PCA) to visualize temporal patterns in daily life.
The stability of these temporal patterns was confirmed by Farrahi et al. [5] in
the same dataset using unsupervised topic models.



While Eagle et al. focus on finding statistical regularities in behaviors at the
group level using parametric models Song et al. [11] are interested in individual
predictability using non-parametric methods and argue that inter-participant
variability is significant and in fact power-law distributed. For a further discus-
sion on parametric and non-parametric models, and the relation to information
theory, we refer to Bialek et al. [3].

We follow the implicit modeling approach by Song et al., i.e., using bounds
rather than explicit predictors to discuss human behavior in a novel mobile
phone data set that complements the analysis of Song et al. Our data set has
significantly higher temporal resolution and involves more sensors, however, in
a much smaller cohort (N = 14).

The opportunity to analyze multiple sensors is quite unique and produces new
insight both on the predictability of each sensor and on sensor dependencies. We
show that all the location and proximity based sensors have a relatively high
predictability bounds for the entire population. Whereas Song et al. [11] provide
important results on location prediction, the multiple sensors applied in our
study can potentially provide a richer description of context beyond location.
And as the extended set of sensors enjoys similar high predictability rates, it
may contribute additional useful information on human behavior and support
more general context dependent services.

Furthermore, we are interested in the predictability on different time scales,
and to probe whether it is possible to predict non-trivial behaviors on smaller
scales than the one hour time scale considered in [11]. Finally, we suggest apply-
ing mutual information - or prediction information [3] - as a method to easily
estimate an optimal time scale in a non-parametric fashion. The information
theoretic approach is based on upper and lower bounds on predictability. In this
paper we use the upper bound proposed by Song et al., and derive and analyze
a tighter lower bound based on a first Markov model [7], rather than the zero
order model of [12].

An early version of this work was presented to the machine learning commu-
nity in [7]. The present paper extends this work with; 1) an extended description
of the experimental setup; 2) comparison between WLAN and GSM, in particu-
lar in relation to optimal time scale; 3) extended discussion and interpretation.

The paper first gives a presentation of the experimental setup and the ac-
quired mobile phone dataset. In Section 3 we present the information theoretic
tools necessary to follow the analysis of the dataset. The result of the study is
presented and discussed in Section 4, followed by the conclusion in Section 5.

2 Experimental Setup

Within the last decade there has been a number of studies of real-world dataset or
lifelogs reflecting human life [1, 2]. In this section we present a software platform
for obtaining such lifelogs using standard off-the-shelf mobile phones functioning
as individual wearable sensor platforms.



Fig. 1. Mobile Context Toolbox architecture [10]. The bottom two layers provide low-
level access to the embedded sensors, whereas the adapters and context widget layers
provide high-level Python interfaces to sensors and inferred information for applica-
tions.

2.1 Mobile Context Toolbox

Since utilizing multiple sensor inputs on mobile devices can be a complex task we
have used our Mobile Context Toolbox [10], which provides an open extensible
framework for the Nokia S60 platform running the Symbian mobile Operating
System present in mobiles phones such as Nokia N95. The framework provides
access to multiple embedded mobile phone sensors, including accelerometer, mi-
crophone, camera, etc., as well as networking components such as phone appli-
cation data (calendar, address book, phone log, etc.), and phone state (profile,
charge level, etc.).

In principle, mobile devices can acquire information from the surrounding
environment as well as from online sources, but in the present study we focus on
information that can be acquired through the large variety of sensors embedded
in the device. The framework has multiple layers (as depicted in Fig. 1) on top of
the Nokia S60 platform. The framework uses Python for S60 (PyS60) with a set
of extensions for accessing low-level sensors and application data. The adapters
layer provides interfaces for the low-level sensors, whereas the context widgets
uses one or more adapters to infer higher-level contextual information. Finally,



the application layer utilize contextual information inferred from context widgets
and/or directly from context adapters. Further details and explanation of the
Mobile Context Toolbox is provided in [10].

2.2 Logging Data From Embedded Sensors

For the purpose of using mobile phones as an instrument for gathering lifelog
information we have built a Context Logger application, which subscribes to all
sensors through the relevant system components and then continuously records
all events received from the multiple adapters and widgets. In effect all accessible
sensor data is recorded, as shown in Table 1.

All sensor recordings are time stamped using the embedded mobile phone
timer. The accelerometer was sampled every 2 seconds. Samples are read-out
every 30s, in batches of 15 samples. The purpose of reading in bursts is to en-
able reading short bursts with higher sampling rate. GSM cellular information
acquired included the Cell ID with country code, operator code, and location
area code. In the present system the phone software API only allow reading the
CellID of the GSM base transceiver station to which the phone is currently con-
nected (not the ones visible). Since the GPS sensor is the most energy expensive
sensor, it was only sampled 2–3 times an hour to reduce the energy consump-
tion. Bluetooth scans was performed approximately every 1.5-3 minutes. The
sampling rate varies as the Bluetooth discovery time increases with the number
of Bluetooth devices available within discovery range. A discovery of a Bluetooth
device will always produce the unique MAC address of the device, however, the
lookup of the Bluetooth ”friendly name” and device type might fail as more time
is required to obtain this information. WLAN scanning is performed approxi-
mately once a minute, recording MAC address, SSID, and RX level (power ratio
in decibels – a measurement of the link quality) of discovered Access Points. Fi-
nally, phone activity (SMS, MMS, and calls) were recorded whenever it occurred
(phone number and direction).

In addition to the above mentioned sensor data, the Context Logger applica-
tion allows a user to manually label his/her present location and activity. The
label is a text string which can be entered by the user on the mobile phone,
such as, home, running, and having dinner. Entered labels will be stored and
subsequently shown on a list to pick from in order to avoid re-typing location
and activity labels. Users can manually choose to label location and activity by

Sensor Sampling Data

Accelerometer 30/minute 3D Accelerometer values
GSM 1/minute CellID of GSM base transceiver station
GPS 2–3/hour Longitude, Latitude, and Altitude
Bluetooth 20–40/hour Bluetooth MAC, friendly name, and device type
WLAN 1/minute Access Point MAC address, SSID, and RX level
Phone activity Event Phone number and direction of call or message
Table 1. List of embedded mobile phone sensors used for collecting data



selecting a menu item in the Context Logger application, however, this mech-
anism is further enhanced with the ability to automatically prompt for labels.
Thus, a user can choose to enter a label at any point in time, but the application
will also prompt the user to label a location and activity 2–3 times a day in order
to receive feedback. The data location and activity data recorded on the mobile
phone is a key-value pair along with the time stamp. There are no pre-defined
location and activity labels defined in the application and the labeling is com-
pletely free form with the users determining, how they want to write their text
labels.

Situations with missing data may occur due to the phone running out of
battery, being switched off, or simply not able to acquire data through one or
more sensors (for instance no GSM reception).

2.3 Data Collection

An initial deployment of the system included continuous use by 14 participants,
each equipped with a standard mobile phone (Nokia N95) which had the Mobile
Context Toolbox pre-installed along with the Context Logger application that
would continuously record the data acquired from all sensors currently supported
by our framework. The participants were using the mobile phone as their regular
mobile phone for a period of five weeks or more, as they were given instructions
to insert their own simcard into the phone. Furthermore, they were instructed
to make and receive calls, send messages, etc., as they would usually do, and
generally use the phone as they would use their own phone. Therefore, no par-
ticular instructions were given, since we wanted to establish data from regular
usage of the mobile phone, and thereby acquire real-life data. This means that
the participants would not necessarily carry the phone on the body all the time
such as carrying the mobile phone in a pocket.

As the survey is completely dependent on the cooperation of the participants
and due to increased use of sensors, the lack of battery time was considered a
risk in terms of participants leaving the survey. Thus, the sensor configuration
of sampling on the phone was based on optimizing the resource consumption,
so that the participants should only need to recharge the phone once a day
(typically during the night).

The experiment started on October 28, 2008 and ended January 7, 2009 and
the participants were students and staff members from The Technical University
of Denmark volunteering to be part of the experiment. Thus, the participants
were mainly situated in the greater Copenhagen area, Denmark. The 14 partic-
ipants took part in the experiment between 31 to 71 days, resulting in approxi-
mately 472 days of data covering data collection periods totalling 676 days. The
average duration was 48.2 days. An overview of the collected data is provided in
Table 2.

During the experiment a total of approximately 20 million data points were
collected with the accelerometer contributing the most with 14.5 million data
points. A summary of recordings from Bluetooth scans, WLAN scans, GPS
readings, and GSM readings can be seen in Table 2. It is worth noticing the



Part. Accel BT. BT.* GPS GSM GSM* Ann. PA. WLAN WLAN* Days

1 1474480 54349 2846 516 69458 529 533 544 224101 6387 71

2 2045773 38028 2478 1514 75669 603 596 1062 364272 6040 66

3 318597 27329 790 12 37217 98 222 21 125600 630 31

4 875287 7880 743 2 17750 228 134 620 186421 2394 52

5 1117147 13575 2373 4058 56206 227 386 277 251016 2347 48

6 711490 23702 1141 95 51702 235 82 839 92396 2119 50

7 1184457 13327 1765 3 45826 955 272 581 139466 4017 46

8 700258 42346 2080 614 74250 172 212 74 154108 3359 41

9 1101926 42346 1050 119 37393 100 104 497 104576 1804 38

10 1103086 21676 2104 419 63937 419 414 116 192338 2650 48

11 1122315 12492 655 929 46158 929 163 121 295716 2286 47

12 796452 30610 2317 40 51548 40 143 151 97769 2403 50

13 1024276 27550 1741 1114 49349 1114 137 949 171951 5463 51

14 971558 21502 1303 44 40017 44 149 686 118687 1263 36

Total 14547102 350879 20408 9479 716480 2837 3547 6538 2518417 28110 48.2

Table 2.Overview of collected data for each participant in the experiment: Participant,
Accelerometer, Bluetooth, Unique Bluetooth devices, GPS, GSM, Unique GSM cells,
Annotations, Phone Activity, WLAN Access Points, Unique WLAN Access Points,
Duration in days.

number of unique Bluetooth devices, unique GSM cells, and unique WLAN ac-
cess points discovered accumulatively during the experiment by all participants:
20408, 2837, and 28110, respectively. In total 9479 readings of GPS position
were recorded, but the recordings varies a lot among the participants due to the
nature of the GPS technology. As a GPS position typically can not be obtained
indoor only a subset of users have sufficient recordings of GPS position. For
instance, if they typically place the mobile phone near a window when indoor
where a GPS position can be obtained. A total of 6538 calls and messages took
place during the experiment.

The participants provided 3547 annotations of locations and activities in
total. On average the participants provided 253 annotations during their par-
ticipation, with an overall average of 5.3 labels provided per user per day. The
most active participants provided 8-9 labels per day on average, whereas the
least active participants provided 2 labels per day on average.

3 Methods

In this study we will apply an information theoretic approach in the analysis
of the dataset obtained and described in Section 2. Although before describing
the details involved in this, we consider the preprocessing required for the final
analysis.

A general issue in obtaining discrete times series is the number of quantization
levels and sample rate of the true process [3]. The scan cycles used to obtain the



present dataset are non-uniformly sampled and the scan cycles are of different
length for each sensor. We therefore construct a commonly aligned time series for
each sensor by creating non-overlapping frames of a given window length. The
original samples falling within the frame is then assigned to it. If multiple samples
falls within a frame they are merged, which is reasonable for the indicator type
of sensors (WLAN, GSM, BT). This is similar to combining states in a Markov
model effectively altering the state transitions. In case of the acceleration sensor,
the feature is calculated as the average power within a window represented as
a discrete levels1, i.e., XACC ∈ {off, 1, 2, 3}. Considering the WLAN sensor
and integrating all the networks seen into a state effectively means that the
predictive variable becomes the WLAN state and not the location as such. If a
specific location is needed a lookup to a database could return the position of the
WLAN access point and generate a location variable from that. An alternative
would be to directly work on a location variable generated from the WLAN
access point, but this is not considered here.

The proposed representation constitutes a very detailed description of the
participant state. An alternative suggested in [11, 12], represents the state as the
most visited GSM cell location within a time window. Both approaches involve a
relatively complex temporal quantization and resampling of the original data. To
evaluate the consequence temporal scale, we consider the change in predictability
bounds as the window length is decreased from one hour to one minute.

3.1 Information Theoretic Measures

We consider the problem of quantifying the predictability obtainable in a dis-
crete process, X = (X1, X2, .., Xi), where i is the time index and X is the state
variable. This is to a large degree motivated by previous work on predictabil-
ity, complexity and learning (see e.g. [3]), and recent development on a similar
dataset [11]. Here predictability is defined as the probability of an arbitrary al-
gorithm correctly predicting the next state. Hence, given the history the basic
distribution of interest is P (Xi+1|X1, X2, .., Xi). In the case where we have no
information regarding the history, the distribution naturally reduces to P (X).
When P (X) is uniform, i.e., each of M states have the same probability of
occurring, the Shannon entropy (in bits) is defined as Hrand (X) = log2 M .

In the case where the distribution of X is non-uniform, the entropy is given
as

Hunc (X) = −
∑

i∈I
p (xi) log (p (xi)) (1)

with p (x) = P (X = x). This in turn represents the information when no history
is available, hence, the acronym unc (uncorrelated).

The entropy rate of the participants trajectory, or the average number of
bits needed to encode the states in the sequence, can be estimated taking into

1 An equiprobable quantization is used, i.e., each level has the same frequency of
occurrence within the entire dataset.



Fig. 2. Participant 2. Time series for WLAN (top 100) and GSM data (top 30). The
time series are considered in a vector space representation, hence, each column is a
state vector.

account the complete history. This is done by defining the stationary stochastic
process X = {Xi} which have the entropy rate defined as

H (X) = lim
n→∞

1

n

∑n

i=1
H

(
Xi|hi−1

)
, (2)

where the history hi at time step i is hi = {X1, X2, ..., Xi−1}. It is noted that
0 ≤ H ≤ Hunc ≤ Hrand < ∞.

A challenge in using these information measures based on real and unknown
processes is the estimation of the entropy rate. A number of ideas have emerged
based on compression techniques such as Lempel-Ziv (LZ) (including string
matching methods) and Context Weighted Trees for binary processes. For a
general overview, we refer to [6]. An appealing aspect of these non-parametric
methods is that we avoid directly limiting model complexity as would be nec-
essary if we applied parametric or semi-parametric models. In this study we
estimate the entropy rate using a LZ based estimator as described in [8, 6] and
also applied in [12]. The entropy rate estimate for a time series of length n is
given by

Hest =

[
1

n

∑n

i=1

Li

log2n

]−1

(3)

where Li is the shortest substring starting at time step i, which has not been
seen in the past. The consistency under stationary assumptions is proved in [8]
where the method is applied to the analysis of English text.



Given estimates of the entropy and the entropy rate we consider a related
quantity, namely mutual information - or predictive information [3]. This mea-
sure is already available given the information measures above as

Ipred = lim
n→∞

1

n

n∑

i=1

H (Xi)−H
(
Xi|hi−1

)
(4)

= Hunc (X)−Hest (X) (5)

In effect Ipred represents the mutual information between the distributions cor-
responding to knowing and not knowing the past history. Hence, it quantifies the
fundamental information gain in knowing the (complete) past when prediction
the future, and we propose it as a easy way to evaluate quantization and time
scale effects. We illustrate the behavior of the measure on a time scale selection
problem in Section 4.

3.2 Predictability

In order to construct bounds on the predictability we consider the probability,
Π , that an arbitrary algorithm is able to predict the next state correctly.

Based on the entropy rate and Fano’s inequality Song et al. derives a bound
so Π ≤ Πmax (H (X) ,M) with Πmax given by the relation [12]

H (X) = H (Πmax) + (1−Πmax) log2 (M − 1) (6)

with the function, H (Πmax), given by

H (Πmax) = −Πmaxlog2 (Π
max)− (1−Πmax) log2 (1−Πmax) (7)

This non-linear relation between Πmax and the estimate ofH(X) is easily solved
using standard methods (for a full derivation see [12]).

Adopting this approach we obtain three upper bounds based on the entropy
estimates previously mentioned. The first, Πrand, provides an upper bound on
a random predictor. The second upper bound is Πunc which bounds the per-
formance obtainable with a predictor utilizing the observed state distribution.
Finally, the most interesting bound, Πmax, provides a upper limit for the per-
formance of any algorithm utilizing the complete past.

The upper bound is of course interesting in understanding the potential pre-
dictability, although we find a lower bound equally important in the analysis.
Song et. al. [11] show how a simple lower bound can be constructed based on
the so-called regularity. The regularity is in essence a zero order Markov model
based on the most likely state at any given time of the day, i.e., using only the
time of occurrence and no sequence information. This is an intuitive measure for
some time periods such as daily patterns, e.g., utilizing where a person is most
likely to be each morning at 7.00. However, if the time scale is in the minute
range it does not necessarily make sense to consider the regularity.

Instead we propose to use a predictor using the immediate past as the repre-
sentative of the lower predictability bound. For this purpose we use a first order



Markov model with the transition probabilities estimated from the finite process.
Thus, the next state prediction is based on the distribution P (Xi+1|X1, X1, ..., Xi) =
P (Xi+1|Xi).

To avoid overfitting which tends to render the bounds overly optimistic, we
use a resampling scheme in which the entropy and the next state distribution
is estimated based on 2/3 of the data and tested on the remaining 1/3. This
is performed for nine distinct subsections in a compromise between accuracy of
the estimate and the needed samples for the entropy estimator to converge. The
resampling further allows us to verify that the LZ entropy estimate converges to
reasonable similar values for separate temporal sections of the participants life.
Any variation across subsections will result in a greater variance of the estimated
bound.

4 Results

In order to provide insight into the predictability of mobile phones sensors and
thereby indirectly insight into human behavior, we apply the information theo-
retic methods described in Section 2. The density estimates of the bounds are
all made using a standard kernel based density estimator (the bandwidth is
hand-tuned for visualization).

4.1 Individual Sensors

One of the goals in this study is to analyse the potential predictability of dif-
ferent sensors and to that end we provide the predictability bounds for the four
prominent sensors in the dataset, specifically GSM, WLAN, Bluetooth and ac-
celeration at 15 min. window length. Fig. 3 shows the predictability bounds for
the GSM, WLAN, Bluetooth and acceleration/activity sensors. By examining
the difference between Πmax and Πunc we find that there is considerable gain in
knowing the past. From the difference between the Markov model ΠMarkov and
the upper bound, ΠMax, we see that knowing more than just the previous state
seems to provide considerable benefit.

In the uncorrelated case, Hunc, participants show considerable differences in
the entropy for all sensors as typically expected in a real population. However,
conditioned on the past, the variability is typically lower (except for WLAN)
indicating that participants with high entropy have a relative predictable tra-
jectory. This corresponds well with the results observed in [11] for GSM based
localization. The Bluetooth data does, as mentioned, contain a considerable frac-
tion of unknown states (not off-states), which will tend to underestimate the true
entropy. This means that the bounds are most likely overestimated for Bluetooth.

The GSM, WLAN and Bluetooth sensors are inherently location or proximity
oriented sensors, and the estimated distributions all have modes in the high range
above 80%, but with noticeable difference in variability. Whereas GSM provides
small variability among participants, WLAN seems to provide a much larger
difference among participants. This is not surprising since WLAN is considerably



more noisy than GSM and captures a more local and detailed state than GSM.
Thus, some participants tend to have a relatively low predictability while others
are just as predictable as using GSM. The GSM complexity is on the other hand
more similar between mobile phone users. In effect WLAN is most likely the
more interesting sensor, but harder to predict, at least using the very detailed
representation.

Fig. 3. Detailed representation: Predictability of GSM, WLAN, Bluetooth and Accel-
eration sensors. Crosses indicate individual participant estimates. The mode at 0.99
and 0.98 in the GSM and WLAN densities are due to participant 3 which is left out in
the further analysis for clarity.



4.2 Time Scale

A primary goal in this study is the analysis of the time scales involved in the
prediction of location based sensors with the aim to provide support for context-
based services and general understanding of human mobility. The focus in this
part is thus focused on the GMS and WLAN sensors and the predictability
on a wide range of window lengths - and the examination of the optimal scale
suggested by the predictive information.

Figure 4 shows how the predictability bounds changes with the window
length. Noticeable are the GSM results in Figure 4(a) which are directly com-
parable with the original results in [11]. The bounding box indicates that the
predictability is in the same range, although smaller in our case, possibly due
to the more detailed representation utilized here. However, we obtain a similar
upper bound at approximately 10 min. scale. This trend towards a high upper
bound continues as the scale progresses downwards to 60 seconds.

In general there are various fundamental ways why this might happen. First
of all, we may simply oversample a constant process leaving the resulting times
series highly trivial to predict. The second reason is that the fundamental de-
pendencies are removed when aggregating the cell at long scales and the shorter
time scale provides the best representation. A simple way to examine the first
options is to look at the predictability suggested by the first order Markov model
and determine how far it is from reaching the upper bound. We notice that the
despite ΠMarkov approaching ΠMax, there seems to be some non-trivial behav-
ior which is not predicted by the first order model. Not surprisingly this indicates
that the first order Markov model is too simple. However, the bound provides a
very convenient indication of what a more complex model is able to obtain.

Whereas GSM provides a rather rough indication of mobility and specific
location, WLAN cells have quite high location resolution. Examining the time
scale for WLAN reveals that the complexity of the problem is very high com-
pared to the GMS case as seen on the pure results obtained by the Markov
model. Despite this, we notice that the upper bound is still quite high. This
suggests that there is an large unexploited potential in applying a more complex
model than for example a first order Markov model. As with the GSM sensor we
find that the shorter time scales provides a higher upper bound, and noticeably
that the variability among the participants are lower, in effect offering better
generalization of the predictability across multiple users.

As we have hinted, the optimal scale time scale for predictability for both
GSM and WLAN at small time scales, and to examine the precise scale at which
the past offers the most information in predicting the future we consider the
predictive information. This is depicted in Figure 5 showing how the predictive
information depends on the time scale. We find that the optimal scale is in the 3-
4 minute range for both types of sensors. This is our main result and supplements
the results in Song et al. [11] who focused on longer time scales (60 minutes).
The high predictability at short time scales is of great interest for applications
and is ”good news” for pro-active services based on predicting human needs
and behavior. Furthermore, the fact that the two distinct sensors operating on



(a) GSM

(b) WLAN

Fig. 4. Predictability vs. window length in sec. (log scale). Notice that participant 3
has been removed from the density estimate due to his/her outlier nature as noticed
in Figure 3

different spatial resolution yet still suggest the same optimal temporal scale,
indicates that there exists fundamental information at this scale where both the
upper bound on GSM and WLAN predictability are quite high. Yet, the exact
information available at this scale and implications of this is to be examined in
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Fig. 5. Predictive Information (normalized) vs. window length (log scale). Participant
3 is left out.

a future analysis, for example using explicit modeling paradigms such as (multi-
way) factor analysis and advanced dynamical models.

5 Conclusion

In this paper we described an experimental setup for obtaining so-called lifelog
data using embedded mobile phones. The resulting dataset offers many possibil-
ities for investigating interesting elements of human behavior.

In the analysis we adopted an implicit modeling approach based on recent in-
formation theoretic methods to provide bounds for the prediction one could hope
to obtain using explicit modeling. We presented results on the predictability of
multiple mobile phone sensors showing that the basic findings in [11] general-
izes to more location and proximity based sensors. Specifically, that the gain in
knowing the past is significant, which indicates interesting potential for context-
aware mobile applications relying on forecasting for example GSM and WLAN
associations.

Finally, we showed that the prediction of human mobility generalizes to
shorter time scales than the one hour time scale previously studied in [11]. In
particular, we showed that the collected GSM and WLAN have the same optimal
time scales for prediction, specifically 3-4 minute range. Despite this encouraging
result, the exact interpretation and relevance of the patterns at the suggested
scale needs further investigation and analysis, for example using explicit model-
ing.
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ABSTRACT

Human preferences can effectively be elicited using pairwise
comparisons and in this paper current state-of-the-art based
on binary decisions is extended by a new paradigm which al-
lows subjects to convey their degree of preference as a con-
tinuous but bounded response. For this purpose, a novel Beta-
type likelihood is proposed and applied in a Bayesian regres-
sion framework using Gaussian Process priors. Posterior es-
timation and inference is performed using a Laplace approxi-
mation.

The potential of the paradigm is demonstrated and dis-
cussed in terms of learning rates and robustness by evaluating
the predictive performance under various noise conditions on
a synthetic dataset. It is demonstrated that the learning rate
of the novel paradigm is not only faster under ideal condi-
tions, where continuous responses are naturally more infor-
mative than binary decisions, but also under adverse condi-
tions where it seemingly preserves the robustness of the bi-
nary paradigm, suggesting that the new paradigm is robust to
human inconsistency.

Index Terms— Pairwise Comparisons, Continuous Re-
sponse, Gaussian Processes, Laplace Approximation

1. INTRODUCTION

Traditionally, various aspects of human perception and cogni-
tion are assumed to be related to absolute psychological mag-
nitudes or intensities. This includes the classical findings by
Weber, Fechner and Stevens who, for example, investigated
the perception of light intensity. However, recently Lock-
head [1] has argued that every aspect of perception is relative,
even those apparently absolute aspects investigated by Weber,
Fechner and Stevens. In accordance with the theory in [1], we
investigate human perception from a relative viewpoint and
examine one such highly relative aspect, namely preference.

Formal treatment of relative aspects goes back to the ideas
of Thurnstone [2] and the principle of comparative judgments.

In the present context it was revisited by Chu et al. [3] who
formulated a Bayesian approach to preference learning using
Gaussian Process (GP) priors. This formulation has initiated
a number of related studies and applications, such as audio-
logical preference [4], multi-subject food preference [5] and
an extension for semi-supervised, active learning settings [6].

In this work we extend the likelihood model in [3] to sup-
port observations which in effect measure the perceived de-
gree to which one option is preferred over another. This de-
gree of preference can be obtained from a traditional paired
comparison test, which implies that a subject is asked to give
a subjective assessment of the degree to whether A or B is
preferred over the other. Specifically, we model the observed
degrees of preferences through a likelihood conditioned on a
functional value difference and support inconsistent observa-
tions by applying a re-parameterized Beta distribution.

In a traditional setting, users would not be trusted to be
able to quantify such an abstract and difficult aspect as degree
of preference. Instead, we would rely on massive repetitions
of a standard binary experiment to estimate the proportion of
A � B using this as an expression of the degree of any pref-
erences. However, we want to exploit the extra information
from continuous responses to get a faster method for pref-
erence elicitation without jeopardizing the robustness from
standard binary responses. The hypothesis is that we are able
to learn faster by (indirectly) observing the perceived proba-
bility of A � B as opposed to a binary decision. Applying
appropriate priors and noise modeling should ensure this to
be true also under adverse conditions.

In order to examine this hypothesis, we apply the novel
likelihood in a flexible Bayesian setup similar to [3] in which
the prior on the underlying preference function is defined by
a GP with a potentially complex covariance structure. The
Laplace approximation is used for inference and model se-
lection by maximum-a-posteriori (MAP) estimates. This pro-
vides a consistent probabilistic framework for making pre-
dictions and evaluating the predictive uncertainty. We use
simulations with different synthetic noise scenarios in order



to compare a standard binary decision with the novel model.
The performance of both methods is evaluated using the pre-
dictive performance.

2. MODELS FOR PAIRWISE OBSERVATIONS

In the previous section, we motivated pairwise comparisons
from a cognitive perspective, yet pairwise comparisons can
be considered more broadly. It is usually possible to describe
any aspect of a pairwise comparison, such as preference, real
difference, or perceived similarity in terms of a latent function
[2].

In the following we will model the preference of two dis-
tinct inputs, u ∈ X and v ∈ X , in terms of the difference
between two functional values, f(u) and f(v). This implies
a function, f : X → R, which defines an internal, but latent
absolute preference.

The general setup is as follows: We consider n distinct
inputs xi ∈ X denoted X = {xi|i = 1, ..., n}, and a set of m
responses on pairwise comparisons between any two inputs
in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} ,
where yk ∈ Y. uk ∈ X and vk ∈ X are option one and two
in the k’th pairwise comparison, respectively. The main topic
of this paper is how the domain of the response variable influ-
ences the learning rate of the latent function f in relation to
the number of paired comparisons. As previously indicated,
we will consider two cases:

• binary where yk = dk, dk ∈ {−1, 1}
• continuous and bounded where yk = πk, πk ∈ ]0, 1[.

In both cases we consider y a stochastic variable, infor-
mally implying the definition of the conditional density
given by p (yk|fk (uk) , f (vk)), denoted by p(yk|fk) with
fk = [f (uk) , f (vk)]

>.

2.1. Binary Response

When restricting the response variable to be a discrete, two-
alternatives, forced choice, paired-comparison between the
two presented options, we define the response variable as
dk ∈ {−1, 1}. A preference for either uk or vk is indicated
by −1 or +1, respectively.

When considering noise on the forced decisions the re-
sulting random variable can be modeled by a classic choice
model such as the Logit or Probit [7, chapter 6]. In the cur-
rent setting we restrict ourself to the Probit model mainly for
analytical reasons.

Given a function, f , we can define the likelihood of ob-
serving a discrete choice dk directly as the conditional den-
sity.

p (dk|fk,θL) = Φ

(
dk
f (vk)− f (uk)√

2σ

)
, (1)

where Φ(x) is the cumulative Gaussian (with zero mean and
unity variance) and θL = {σ}. This classic Probit likeli-
hood is by no means a new invention and can be dated back
to Thurstone and his fundamental definition of The Law of
Comparative Judgment[2]. However, it was first considered
with GPs in [3] and later in e.g. [5] and [6].

2.2. Continuous Response

The primary contribution of this paper is a novel response
model allowing for more subtle judgments, where the re-
sponse variable describes the degree to which the prevailing
option is preferred.

For this purpose we formally define a continuous but
bounded response π ∈ ]0; 1[ observed when comparing u and
v. The first option, u, is preferred for π < 0.5. The second
option, v, is preferred for π > 0.5 and none is preferred
for π = 0.5. Hence, the response captures both the choice
between u and v, and the degree of the preference.

Instead of using the Probit function directly as the choice
model, it is used as a link function mapping from functional
differences to continues bounded responses. More precisely,
the Probit is used as a mean function for a Beta type distribu-
tion with parameterized shape parameters α and β, thus

p (πk|fk) = Beta (πk|α(fk), β(fk)) .

To express the shape parameters of the Beta distribution as a
function of the Probit mean function µ(fk), we apply a well-
known re-parametrization of the Beta distribution [8].

α(fk) = νµ(fk), β(fk) = ν(1− µ(fk)), (2)

where ν relates to the precision of the Beta distribution and is
not parameterized by f . Finally, our novel likelihood depicted
in Fig. 1 is described by

p (πk|fk,θL) = Beta (πk| νµ(fk, σ), ν(1− µ(fk, σ))) , (3)

where θL = {σ, ν} and µ(fk, σ) is given by

µ (fk, σ) = Φ

(
f (vk)− f (uk)√

2σ

)
.

The precision term ν in Eq. (2) and Eq. (3) is inversely related
to the observation noise on the continuous bounded responses.
In general, ν can be viewed as a measure of how consistent
the scale is used in a given comparison.

2.3. Gaussian Process Priors

At this point we have not specified any form, order or shape
of f , but referred to f as an abstract function. We maintain
the abstraction by considering a non-parametric approach and
use a Gaussian process (GP) to formulate our beliefs about f .



Fig. 1. Illustration of the proposed likelihood with p(πk|fk,θL) shown as a color level. The likelihood parameters θL are
σ = 0.1 and left: ν = 3, middle: ν = 10 and right: ν = 30

A GP is typically defined as ”a collection of random vari-
ables, any finite number of which have a joint Gaussian distri-
bution” [9]. Following [9] we denote a function drawn from
a GP as f (x) ∼ GP

(
0, k(·, ·)θc

)
with a zero mean function,

and k(·, ·)θc referring to the covariance function with hyper-
parameters θc, which defines the covariance between the ran-
dom variables as a function of the inputs X . The fundamental
consequence of this formulation is that the GP can be con-
sidered a distribution over functions, i.e., p (f |X ,θc), with
hyper-parameters θc and f = [f(x1), f(x2), ..., f(xn)]T , i.e.,
dependent on X .

In a Bayesian setting we can directly place the GP as
a prior on the function defining the likelihood. This leads
us directly to a formulation given Bayes relation with θ =
{θL,θc}

p (f |Y,X ,θ) =
p (Y|f ,θL) p(f |X ,θc)

p (Y|θ,X )
. (4)

The prior p(f |X ,θc) is given by the GP and the likelihood
p (Y|f ,θL) is either of the two likelihoods defined previously,
with the assumption that the likelihood factorizes as usual,
i.e., p (Y|f ,θL) =

∏
k=1:m

p (yk|f(uk), f(vk),θL)

The posterior of interest, p (f |Y,X ,θ), is directly defined
when equipped with the likelihood and the prior, but it is un-
fortunately not of any known analytical form in either the bi-
nary nor the continuous case.

3. INFERENCE & PREDICTIONS

Since the likelihoods considered in this paper do not result
in closed form solutions to the posterior in Eq. (4), we must
resort to approximations, such as the Laplace approximation,
Expectation Propagation or sampling. Since the main focus
of this work is to examine the general properties of the like-
lihood proposed in Sec. 2.2, we use the well-know and rela-
tively simple Laplace approximation. The required steps have
previously been derived for the binary likelihood [3] (see [10]

for a detailed derivation), and in the following it will be de-
rived for the proposed likelihood from Sec. 2.2.

3.1. Laplace Approximation

The main idea is to approximate the posterior by a single
Gaussian distribution, such that p (f |Y) ≈ N (f |̂f ,A−1).
Where f̂ is the mode of the posterior and A is the Hessian of
the negative log-likelihood at the mode. The mode is found
as f̂ = arg maxf p (f |Y) = arg maxf p (Y|f) p (f).

The general solution to the problem can be found by con-
sidering the unnormalized log-posterior and the resulting cost
function which is to be maximized, is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f

− 1

2
log |K| − N

2
log 2π.

(5)

where Ki,j = k(xi, xj)θc . We use a damped Newton method
with soft linesearch to maximize Eq. (5). In our case the basic
damped Newton step (with adaptive damping factor λ) can be
calculated without inversion of the Hessian (see [10])

fnew =
(
K−1 + W − λI

)−1

· [(W − λI)− f +∇ log p(Y|f ,X ,θL)] , (6)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj)
we apply the def-

inition Wi,j = −∑k∇∇i,j log p(yk|fk,θL). We note that
the term ∇∇i,j log p(yk|fk,θL) is only nonzero when both
xi and xj occur as either vk or uk in fk. In contrast to stan-
dard binary GP classification the Hessian W is not diagonal,
which makes the approximation slightly more involved.

When converged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |̂f ,

(
W + K−1

)−1)
. (7)

In the Beta case the required two first derivatives of the like-



lihood are given by:

∇i log p(πk | fk,θL) = I(xi) · ν · N (fk)

· [log(πk)− log(1− πk)− ψ(α) + ψ(β)] and (8)

∇∇i,j log p(πk | fk,θL) = −I(xi)I(xj) · ν2 · N (fk) ,

·
[
N (fk) ·

(
ψ(1)(α) + ψ(1)(β)

)
+
f(vk)− f(uk)

2νσ2

· (log(πk)− log(1− πk)− ψ(α) + ψ(β))] , (9)

where we for convenience write α and β without the de-
pendency on fk Eq. (2). ψ(z) and ψ(1)(z) are the digamma
function of zero’th and first order, respectively, N (fk) =

N
(
f(vk)−f(uk)√

2σ

∣∣∣ 0, 1
)

and I(z) is an indicator function de-
fined by

I(z) =





1 if z = uk
−1 if z = vk

0 otherwise.
(10)

We refer to [10] for a full derivation and for the required
derivatives for the binary case as first described in [3].

3.2. Hyper-parameter Estimation

So far we have simply considered the hyper-parameters θ =
{θL,θc} variables on which we can condition the primary
posterior, and not worried about their values or distributions.
In the following, we consider the hyper-parameters random
variables on which we place a prior and the full posterior
would be p (f ,θ|Y). However, since the focus in this work
is p (f |Y,X ,θ) we only use the prior on θ to make point
estimates of the hyper-parameters in terms of maximum-a-
posteriori (MAP) estimates.

We obtain the MAP estimates by iterating between the
Laplace approximation with fixed hyper-parameters, i.e.
finding p (f |Y,X ,θMAP), followed by a maximization step
in which θMAP = arg maxθp (θ|Y,X , f).

We first consider the standard evidence approach which
seeks to optimize the marginal likelihood given by

p(Y|θ,X ) =

∫
p(Y|f ,θL)p(f |X ,θc)df

= p(θ|Y,X )p(Y|X )/p(θ|X ). (11)

Our interest is in the posterior term, p(θ|Y,X ), so consid-
ering Eq. (11) in terms of the log-posterior of θ we obtain
log p (θ|Y,X ) = log p (θ|X )+log p (Y|θ,X )−log p (Y|X ),
where p (θ|X ) is the prior and typical considered indepen-
dent of X . The evidence term, log p(Y|θ,X ), is analytical
intractable in both likelihood cases, but we can approximate
it using the existing Laplace approximation to obtain [10]
log p (Y|θ) ≈ log p(Y|̂f ,θL)− 1

2 f̂
TK−1f̂− 1

2 log |I + KW |.
Now θMAP is found by maximizing log p (θ|Y,X ) with re-
spect to θ and noting that p(Y|X ) is independent of θ. We
perform the optimization using a BFGS gradient method. The
required derivatives and details are provided in [10].

The choice of particular priors is left for the simulations
in Sec. 4, however, if p(θ) is the Uniform distribution, we
obtain the traditional evidence optimization [9] as expected.
It is noted that the complexity of the posterior inference is of
the same order as standard GP regression described in [9].

3.3. Prediction

The main task is to estimate the latent function, f , with the
end goal to do predictions of the observable variable y for a
pair of test inputs r ∈ Xt and s ∈ Xt. In this paper, we are
especially interested in the discrete decision, i.e., whether r �
s or s � r. This can be obtained from both likelihood models,
thus allowing for direct comparison of the two formulations
in terms of predictive performance.

We first consider the predictive distribution of f which
is required in both cases, and for notational convenience we
omit the conditioning on X and Xt. Given the GP, we can
write the joint prior distribution between f ∼ p (f |Y,θMAP)

and the test variables ft = [f (r) , f (s)]
T as

[
f

ft

]
= N

([
0

0

]
,

[
K kt
kTt Kt

])
, (12)

where kt is a matrix with elements k2,i = k(s, xi)θMAP
c

and
k1,i = k(r, xi)θMAP

c
with xi being a training input. The con-

ditional p (ft|f) is obviously Gaussian as well and can be ob-
tained directly from Eq. (12). The predictive distribution is
given as p (ft|Y,θMAP) =

∫
p (ft|f) p (f |Y,θMAP) df . With the

posterior approximated with the Gaussian from the Laplace
approximation then p (ft|Y,θMAP) will be Gaussian too and is
given as N (ft|µ∗,K∗) with µ∗ = [µ∗r , µ

∗
s]
T = ktK

−1f̂ and

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − kTt (I + WK)kt,

where f̂ and W are obtained from Eq. (7). With the predictive
distribution for ft, the final prediction of the observed variable
is available from

p (yt|Y,θMAP) =

∫
p (yt|ft,θMAP

L ) p (ft|Y,θMAP) dft (13)

If the likelihood is an odd function, as in both our cases, the
binary preference decision between r and s can be made di-
rectly from p (ft|Y). In contrast, evaluation of the integral in
Eq. (13) is required for, e.g., soft decisions, reject options and
sequential designs.

3.3.1. Binary Likelihood

If p
(
ft|Y,θMAP) is Gaussian and we consider the Probit like-

lihood, the integral in Eq. (13) can be evaluated in closed form
as a modified Probit function given by [3]

P (r � s|Y) = Φ ((µ∗r − µ∗s) /σ∗) (14)

with (σ∗)2 = 2σ2 + K∗rr + K∗ss −K∗rs −K∗sr
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Fig. 2. The Griewangk function used to evaluate the predic-
tive performance. Crosses indicate discrete samples. The cen-
ter peak is slightly higher than the two others.

3.3.2. Continuous Likelihood

In the continuous case the observed variable, π, does not di-
rectly define the discrete observation which is the main focus
of this work. However, a binary preference can be derived
from the continuous likelihood via the predictive distribution
over π. With the suggested likelihood and mean function in
Sec. 2.2 the probability of the binary choice is obtained as
P (r � s|Y,θL) =

∫ π=1/2

π=0
p (πt|Y,θL) dπt, thus

P (r � s|Y,θMAP) =
∫
p(ft|Y,θMAP)Betacdf

(
1

2

∣∣∣α(ft), β(ft)

)
dft (15)

In the ideal case of a noise-free user, i.e., ν → ∞, the Beta
distribution reduces to a point mass at the mean defined by the
Probit function. Hence, in the limit of a completely consis-
tent user, the predictions from Eq. (15) reduces to a classical
choice model with predictions that follows Eq. (14).

4. EXPERIMENTAL RESULTS AND DISCUSSION

To study the performance of the models in a controlled set-
ting, we use a synthetic dataset generated from the deter-
ministic Griewangk function depicted in Fig. 2. We use the
predictive performance of the binary decision to compare the
learning rates of the binary response (BR) model as the base-
line and the continuous bounded response (CBR) model. In
each comparison, the two inputs are drawn randomly among
101 input points sampled uniformly from x = [−8; 8].

The training points πk are drawn from a Beta distribution
with the parameterization from Sec. 2.2 with the Probit link
function in Eq. (4), σ = 1, and the Griewangk function val-
ues as the two inputs. The noise level on the training data is
defined by the parameter νD corresponding to ν in the CBR
model. The binary decision dk is determined by whether πk
is smaller or larger than 0.5. For evaluation, we generate an
independent binary test set located equidistantly in between
the training points. Initial experiments showed that in or-
der to get a robust predictive model for all noise level, it is
important to learn the ν parameter in the CBR model. The

Simulation Data Noise θL θc

νD σ ν σf l
BR NoiseFree No Noise δ1 δideal δideal

BR {3, 10, 30} δ1 U1 U1

CBR NoiseFree No Noise δ1 δ→∞ δideal δideal

CBR Ideal {3, 10, 30} δ1 δ{3,10,30} δideal δideal

CBR {3, 10, 30} δ1 G(1, η){3,10,30} U1 U1

Table 1. Simulation conditions. δx is a point-mass, thus the
parameter is constantly equal to x. The δideal value is learned
as m → ∞. Ux is an uniform prior over ]0;∞[ with the
parameter initialized to x. G(1, η)x is a Gamma prior with
inverse scale parameter η = 0.05 and initialization x.

initial experiments also indicated that it is vital not to under-
estimate the noise, while an overestimation is not as crucial
and provides overall good predictive performance. This sug-
gests a prior with a monotonic increasing likelihood towards
the highest noise level. A natural choice is a Gamma(1,η)
prior with inverse scale parameter η.

The considered models, priors and parameters are listed in
Table 1 where the covariance parameters, θc, are applied in a
GP prior with a covariance function defined by the squared
exponential kernel kSE(x, x′) = σ2

f exp(−l−2‖x− x′‖2).
When a specific prior is not a point-mass/constant indicated
by δx in Table 1, the hyper-parameters are estimated (MAP)
either for each training set size (realistic scenario) or for m =
500 (ideal scenario). The latter is indicated by δideal.

The learning curves from Fig. 3 show that under ideal
conditions with nearly noise-free observations and a correct
noise setting (Fig. 3, right plot) the CBR model outperforms
the BR models as expected, since a continuous response will
essentially provide more information from each experiment
under ideal conditions than a binary response will. Also, in
both high and moderate noise conditions (Fig. 3, left and mid-
dle plot) the CBR model with a correct noise setting (CBR
Ideal) outperforms the corresponding BR model significantly
in terms of learning rates and actually shows similar learn-
ing rates as the BR model under noise-free conditions. Fi-
nally and most importantly, the learning rates are only slightly
lower when ν has been inferred from data via the MAP pro-
cedure (with different initializations) than when it is specified
correctly, which suggests that the parameter inference frame-
work with independent priors is robust in real-life-scenarios
without ideal model and noise conditions.

We have focused on a controlled example to highlight
properties of the model and inference, leaving a real-world
validation for future work. Future work also includes the
extension of the mean function, Eq. (4), using a mixture of
Probit functions to account for different user behavior such
as centering and contraction bias. For a real-world setting, a
natural extension is a suitable active learning criteria, such as
the expected value of information framework applied recently
in e.g. [5] for the BR model.



Fig. 3. Mean error test rates (MER) as a function of the number of experiments over 100 different realizations of the training
set generated with different νD. In the red and top green area MER are worse and better, respectively, than those obtained with
the BR model on the noisy data. In the lower green area MER are also better than those obtained by the BR NoiseFree, and
finally, the grey area corresponds to unrealistic MER better than those obtained with a CBR NoiseFree model with ν → ∞
evaluated with ν = 103 on a noise-free data set. The six rows of markers indicate if the MER of the corresponding CBR
model are significantly different from those resulting from the BR (squares) and from the BR NoiseFree (circles). If solid, the
zero-hypothesis of the two means being equal is rejected at the 5% level using a paired t-test.

5. CONCLUSION AND PERSPECTIVES

We have proposed a new model for preference learning with
Gaussian Process priors with the main purpose to increase
the learning rate compared to the standard binary model ap-
plied in [3]. We have outlined a robust and flexible inference
framework for the new model based on suitable priors and
the Laplace approximation. Simulations were used to present
properties and performance, which showed a significant infor-
mation increase from each experiment under ideal conditions
as expected but more importantly also under adverse condi-
tions. The performance is especially increased in a certain
window of opportunity.
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ABSTRACT
Music recommendation is an important aspect of many

streaming services and multi-media systems, however, it is
typically based on so-called collaborative filtering methods.
In this paper we consider the recommendation task from a
personal viewpoint and examine to which degree music pref-
erence can be elicited and predicted using simple and robust
queries such as pairwise comparisons. We propose to model
- and in turn predict - the pairwise music preference using
a very flexible model based on Gaussian Process priors for
which we describe the required inference. We further propose
a specific covariance function and evaluate the predictive per-
formance on a novel dataset. In a recommendation style set-
ting we obtain a leave-one-out accuracy of 74% compared to
50% with random predictions, showing potential for further
refinement and evaluation.

Index Terms— Music Preference, Kernel Methods,
Gaussian Process Priors, Recommendation

1. INTRODUCTION

Methods for music recommendation has received a great deal
of attention the last decade with most approaches typically be-
ing classified as collaborative filtering (top-down) or content-
based (bottom-up) methods, with hybrid methods (see e.g.
[1]) comprising both. Such hybrid systems exploits both rat-
ings and contents to make recommendations, but the focus
is still on the recommendation itself and not the basic ques-
tions of preference. Although from a fundamental point of
view it is also interesting how well human preference can be
elicited and represented without relying on the help of oth-
ers. This also includes the aim to answer basic questions such
as which properties of music determines the persons music
preference. Obviously the potential power of collaborative
filtering should not be discarded, but exploited in a princi-
pled manner in order to answer basic questions and hopefully

∗This work was supported in part by the IST Programme of the
European Community, under the PASCAL2 Network of Excellence,
IST-2007-216886. This publication only reflects the authors’ views.
∗∗ This work was supported in part by the Danish Council for Strategic Re-
search of the Danish Agency for Science Technology and Innovation under
the CoSound project, case number 11-115328.

provide an even better predictive model of individual music
preference.

Based on these observations we consider music prefer-
ence in a personalized setting by applying a Gaussian Process
regression model which takes into account both human rat-
ings and audio features. In contrast to many audio rating sys-
tems it is not based on absolute ratings of a single track, but
on a pairwise comparisons between tracks, which is typically
considered robust and have a low cognitive load (see e.g. [2]).

We furthermore propose to use a covariance function mo-
tivated from a generative view of audio features with a po-
tential multi-task part which lead to similar capabilities as
standard collaborative filtering, but with the added informa-
tion level provided by subject features. Posterior inference
in the resulting non-parametric Bayesian regression model is
performed using a Laplace approximation of the otherwise in-
tractable distribution. Any hyperparameters in the model can
be learned using an empirical Bayes approach.

We evaluate the resulting model by its predictive power
on a small scale, public available dataset [3] where 10 sub-
jects evaluate 30 tracks in 3 genres. We report and discuss
a number of aspects of the performance such as the learning
curves as a function of the number of pairwise comparisons
and learning curves when leaving out a track as test set.

2. METHODS

In this work we focus on modeling preference elicited by pair-
wise queries, i.e., given two inputs tracks u and v we ob-
tain a response, y ∈ {−1, 1}, where y = −1 corresponds
to a preference for u, and +1 corresponds to a preference
for v. We consider n distinct input tracks xi ∈ X denoted
X = {xi|i = 1, ..., n}, and a set of m responses on pairwise
comparisons between any two inputs in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} ,

where yk ∈ {−1, 1}. uk ∈ X and vk ∈ X are option one and
two in the k’th pairwise comparison.

We consider yk as a stochastic variable and we can then
formulate the likelihood of observing a given response as cu-



mulative normal distribution.

p (yk|fk,θL) = Φ

(
yk
f (vk)− f (uk)√

2σ

)
, (1)

with fk = [f (uk) , f (vk)], Φ(x) defines a cumulative Gaus-
sian (with zero mean and unity variance) and θL = {σ}. This
is in turn the well known Probit classification model, where
the argument is the difference between two latent variables
(functional values) and not just a single latent variable. This
in effect implies that the f(·) encodes an internal, but latent
preference function which can be elicited by pairwise com-
parisons via the likelihood model in Eq.( 1). This idea was
already considered by [4], but recently suggested in a Gaus-
sian Process context by [5].

2.1. Gaussian Process Prior

The real question remains, namely how f is modelled. We
will follow the principle suggested by [5] in which f is con-
sidered an abstract function and we can in turn place a prior
distribution over it. A natural prior is a Gaussian Process
(GP) defined as ”a collection of random variables, any finite
number of which have a (consistent) joint Gaussian distribu-
tion” [6]. Following [6] we denote a function drawn from a
GP as f (x) ∼ GP

(
0, k(·, ·)θc

)
with a zero mean function,

and k(·, ·)θc
referring to the covariance function with hyper-

parameters θc, which defines the covariance between the ran-
dom variables as a function of the inputsX . The consequence
of this formulation is that the GP can be considered a distri-
bution over functions, i.e., p (f |X ,θc), with hyper-parameters
θc and f = [f(x1), f(x2), ..., f(xn)]T .

In a Bayesian setting we can directly place the GP as
a prior on the function defining the likelihood. This leads
us directly to a formulation given Bayes relation with θ =
{θL,θc}

p (f |Y,X ,θ) =
p (Y|f ,θL) p(f |X ,θc)

p (Y|θ,X )
. (2)

The prior p(f |X ,θc) is given by the GP and the likeli-
hood p (Y|f ,θL) is the two likelihood defined previously,
with the usual assumption that the likelihood factorizes, i.e.,
p (Y|f ,θL) =

∏
k=1:m

p (yk|f(uk), f(vk),θL)

The posterior of interest, p (f |Y,X ,θ), is defined when
equipped with the likelihood and the prior, but it is unfortu-
nately not of any known analytical form, thus we rely on the
Laplace approximation.

2.2. Inference & Hyperparameters

We apply the Laplace approximation and approximate the
posterior by a multivariate Gaussian distribution, such that
p (f |Y) ≈ N (f |̂f ,A−1). Where f̂ is the mode of the pos-
terior and A is the Hessian of the negative log-likelihood at
the mode.

The mode is found as f̂ = arg maxf p (Y|f) p (f). We
solve the problem by considering the unnormalized log-
posterior and the resulting cost function which is to be maxi-
mized, is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f

− 1

2
log |K| − N

2
log 2π.

(3)

where Ki,j = k(xi, xj)θc
. We use a damped Newton method

with soft linesearch to maximize Eq. (3). In our case the basic
damped Newton step (with adaptive damping factor λ) can be
calculated without inversion of the Hessian (see [7])

fnew =
(
K−1 + W − λI

)−1

· [(W − λI)− f +∇ log p(Y|f ,X ,θL)] , (4)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj)
we apply the def-

inition Wi,j = −∑k∇∇i,j log p(yk|fk,θL). We note that
the term∇∇i,j log p(yk|fk,θL) is only nonzero when both xi
and xj occur as either vk or uk in fk. In contrast to standard
binary GP classification, the negative Hessian, W is not diag-
onal, which makes the approximation slightly more involved.
When converged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |̂f ,

(
W + K−1

)−1)
. (5)

We refer to [7] for a full derivation and for the required deriva-
tives as first outlined in [5]. Parameters in the likelihood and
covariance function, collected in θ, are found by evidence op-
timization using a standard BFGS method.

2.3. Predictions & Evaluations

Given the model, in essence defined by f , we wish to make
predictions of the observed variable y for a pair of test in-
puts r ∈ Xt and s ∈ Xt. We are especially interested in
the discrete decision, i.e., whether r is preferred over s de-
noted by r � s, or vice versa. Omitting the conditioning on
X and Xt, we can write the joint prior distribution between
f ∼ p (f |Y,θ) and the test variables ft = [f (r) , f (s)]

T as
[
f

ft

]
= N

([
0

0

]
,

[
K kt

kT
t Kt

])
, (6)

where kt is a matrix with elements k2,i = k(s, xi)θc and
k1,i = k(r, xi)θc with xi being a training input. The con-
ditional p (ft|f) is obviously Gaussian as well and can be
obtained directly from Eq. (6). The predictive distribution
is given as p (ft|Y,θ) =

∫
p (ft|f) p (f |Y,θ) df . With the

posterior approximated with the Gaussian from the Laplace
approximation, then p (ft|Y,θ) will be Gaussian too and is
given as N (ft|µ∗,K∗) with µ∗ = [µ∗r , µ

∗
s]T = ktK

−1f̂ and

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − kT

t (I + WK)kt,



where f̂ and W are obtained from Eq. (5). With the predictive
distribution for ft, the final prediction of the observed variable
is available from

p (yt|Y,θ) =

∫
p (yt|ft,θL) p (ft|Y,θ) dft (7)

If the likelihood is an odd function, as in our case, the bi-
nary preference decision between r and s can be made di-
rectly from p (ft|Y).

If p (ft|Y,θ) is Gaussian and we consider the Probit like-
lihood, the integral in Eq. (7) can be evaluated in closed form
as a modified Probit function given by [5]

P (r � s|Y) = Φ ((µ∗r − µ∗s) /σ∗) (8)

with (σ∗)2 = 2σ2 + K∗rr + K∗ss −K∗rs −K∗sr

2.4. Kernels for Audio Preference

We suggest a general purpose covariance function for audio
modeling tasks with GPs. It can easily integrate different
modalities and meta-data types, such as audio features, tags,
lyrics and subject features. The general covariance function
is defined as

k (x, x′) =

(∑Na

i=1
ki (xa, xa

′)

)
ku (xu, xu

′) (9)

where the first factor is the sum of all theNa covariance func-
tions defining the correlation structure of the audio part, xa,
of the complete instance, x. The second factor, or multi-task
part, is the covariance function defining the covariance struc-
ture of the subject meta-data part, xu. The practical evalua-
tion is limited to the a individualized setting using only xa,
thus k (x, x′) = k (xa, xa

′), where we apply the probability
product kernel formulation [8]. The probability product ker-
nel is defined directly as an inner product, i.e., k (xa, xa

′) =∫
[p (xa) p (xa

′)]qdx, where p (xa) is a density estimate of
each audio track feature distribution. In this evaluation we fix
q = 1/2, leading to the Hellinger divergence [8]. As custom
in the audio community, see e.g. [9], we will resort to a (fi-
nite) Gaussian Mixture Model (GMM) in order to model the
feature distribution. So p(x) is in general given by p (x) =∑Nz

z=1 p (z) p (x|z), where p (x|z) = N (x|µz, σz) is a stan-
dard Gaussian distribution. The kernel can be calculated in
closed form [8] as.

k (pa (x) , pa (x)) =
∑

z

∑

z′

(pa (z) pa′ (z′))
q
k̃ (p (x|θz) , p (x|θz′)) (10)

where k̃ (p (x|θz) , p (x|θz′)) is the probability product kernel
between two single components, which is also available in
closed form [8].

3. EXPERIMENT

In order to evaluate the model proposed in section in 2, we
consider a small-scale dataset which is publicly available [3].
Specifically it consist of 10 test subjects, 30 audio tracks and
10 audio tracks per genre. The genres are Classical, Heavy
Metal and Rock/Pop.

The experiment is based on a partial, full pairwise design,
so that 155 out of the 420 combinations was evaluated by
each of the 10 subjects. We extract standard audio features
from the audio tracks, namely MFCCs (26 incl. delta coeffi-
cients). A GMM was fitted to each track distribution with a
fixed model complexity of Nz = 2 and each components re-
stricted to a diagonal covariance structure. Parameters where
fitted using a standard maximum likelihood based EM algo-
rithm using K-means initialization.

The experiment itself was conducted using a Matlab in-
terface in a 2-Alternative-Forced-Choice setup inline with the
model. The interface allowed subjects to listen to the two
presented tracks as many times they wanted before making a
choice between them. A questionnaire gathered subject meta-
data such as, age, musical training, context and a priori genre
preference. This data is, however, not used in this individu-
alized evaluation, but can easily be applied in the multi-task
kernel suggested in Sec. 2.4.

In the evaluation we are primarily interested in two as-
pects. The first, and main result, is an estimate of the gen-
eralization error on new unseen tracks, e.g., relevant for rec-
ommendation purposes. In order to evaluate this, we make
an extensive cross-validation using a 30-fold cross-validation
in which each track (incl. all connected comparisons) is left
out once; the model with σ = 1 is then trained on 10 random
subsets of tracks for each training set size, which results in
an estimated of the average test error. The resulting learning
curve is shown in Fig. 1 with the box plot illustrating the dis-
tribution of the average subject performance. When consider-
ingNtracks = 29 we obtain an average prediction performance
of 74.2% , which is the main result in a typical (individual)
recommendation scenario.

Secondly, we investigate how many pairwise comparisons
the model requires in order to learn the individual preferences.
This is evaluated using a 10-fold cross-validation over the
comparisons which gives the learning curve in Fig. 2. We no-
tice that on average we only require approximately 40% or 56
comparisons in order to reach the 25% level, corresponding
to approximately two comparisons per track.

4. DISCUSSION & CONCLUSION

We have outlined a pairwise regression model based on Gaus-
sian Process priors for modeling and predicting the pairwise
preference of music. We proposed an appropriate covariance
structure suitable for audio features (such as MFCCs) based
on generative models of audio features. The general version
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Fig. 1. Mean learning curve (blue line) and box plot over
subjects. Leave-one-(track)-out test error as a function of the
number of tracks in the training set. Thus, there can maxi-
mum be 29 tracks in the training set to predict the preference
between the left out track and the rest. The baseline is 0.5
corresponding to random guessing.

of the covariance function allows for multi-task scenarios and
feature integration. We evaluated the setup in a individual sce-
nario in which we showed a 74% average accuracy. This indi-
cates that there might very well be a promising upper bound
on the number of required pairwise comparisons in this music
setting, in effect implying that the specified correlation struc-
ture makes sense. This will ensure that the required number
of pairwise comparisons does not scale quadratically when
including more tracks.

We furthermore observe a difference among the different
subjects indicating that some subjects may have a very con-
sistent preference, possibly aligning well with the applied co-
variance function, while others seem very difficult to predict
(observed as outliers in the box plot). We speculate that the
pairwise approach to music preference is only possible for
certain groups of subjects and/or in special contexts, which is
to be investigated in future research.

The current model is intended for modeling personal
preferences over a small/medium size dataset. For large
datasets with millions of tracks, we see sparse techniques
using pseudo-inputs and sequential selection as a powerful
combination to scale the model and only use informative
comparisons. Furthermore, a direct comparison between
classic collaborative filtering with absolute ratings is obvious
when a suitable dataset supporting is available.

In conclusion we have proposed a novel rating and mod-
eling paradigm for eliciting music preference using pairwise
comparisons. We conducted a preliminary evaluation of the
performance on a small dataset and find the results promising
for robust elicitation of music and audio preference in general.
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Fig. 2. Mean learning curve (red line) and box plot over
the subjects mean performance. Test error rate as a func-
tion of the number of pairwise comparisons in the the
training set. Notice that a fraction of one corresponds to
(155 · 90%) /420 ∼ 33.2% of all possible pairwise experi-
ments.
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2800 Kongens Lyngby, Denmark
{jenma,bjje,jl,jenb}@imm.dtu.dk

ABSTRACT

We introduce five regression models for the modeling of
expressed emotion in music using data obtained in a two
alternative forced choice listening experiment. The pre-
dictive performance of the proposed models is compared
using learning curves, showing that all models converge to
produce a similar classification error. The predictive rank-
ing of the models is compared using Kendall’s τ rank cor-
relation coefficient which shows a difference despite simi-
lar classification error. The variation in predictions across
subjects and the difference in ranking is investigated vi-
sually in the arousal-valence space and quantified using
Kendall’s τ .

1. INTRODUCTION

The possibility to recommend music which express a cer-
tain mood or emotion has recently gathered increasing at-
tention within the Music Information Retrieval (MIR) com-
munity.

Typically the recommendation is approached using com-
putational methods, where music is represented using struc-
tural features, such as features based on the audio signal
that mimic some functions of the human auditory percep-
tive system, and possibly features representing even higher
aspects of the human cognitive system. Research is on-
going in finding what features can capture aspects in the
music that express or induce emotions see e.g. [1]. Fur-
thermore, it is well known that there is a clear connection
between lyrics and the audio in music [2] and lyrical fea-
tures have equally been shown to produce good results [3].
Even contextual information about music can be utilized
for the prediction of emotions in music using social media
contents [4].

Despite the many meaningful audio features and repre-
sentations, most computational models are supervised and
rely on human participants to rate a given excerpt. These
ratings are mapped using supervised machine learning ap-
proaches under the assumption that the model is the same
for all musical excerpts, thus the projection into feature
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space is based on the same model for all excerpts and typ-
ically also for all participants. Instead of obtaining deci-
sions from subjects, unsupervised methods have recently
been proposed which can be used to find emotional cate-
gories of excerpts [5]. The decision of what machine learn-
ing method to apply is tightly connected to the chosen mu-
sic representation and what emotional representation [6],
and in this work we consider the supervised setting.

Expressed emotions in music are typically rated based on
simple self-reporting listening experiments [7] where the
scales are adapted to quantify for example the categori-
cal [8] or dimensional [9] models of emotion. Although
there is not one simple way of doing this and numerous
different approaches have been made to obtain these rat-
ings e.g. using majority ruling, averaging across ratings,
etc. in both domains even using combinations of the emo-
tional models [10]. Another aspect to take into account
when creating computational models of emotion, is that it
is well known that emotional expression in music changes
over time which could further refine a recommendation
method. Two main direction has been followed in obtain-
ing time depend ratings. The first is based on post rat-
ings of excerpts in the 15-30 s range under the assumption
that within this frame the emotional expression is approx-
imately constant. Machine learning techniques can then
be used to create models making predictions on a smaller
time scale using the post ratings of larger excerpts [12].
The other direction is to continuously measure expressed
emotions in music directly in e.g the arousal and valence
space (AV space) [11] and subsequently model this.

In [13] we proposed an alternative way of quantifying the
expressed emotion in music on the dimensions of valence
and arousal by introducing a two alternative force choice
(2AFC) post rating experimental paradigm. Given the rela-
tive nature of pairwise comparisons they eliminate the need
for an absolute reference anchor, which can be a problem
in direct scaling experiments. Furthermore the relative na-
ture persist the relation to previous excerpts reducing mem-
ory effects. We use 15 s excerpts to minimize any change
in expressed emotion over time, and large enough not to
cause mental strain on subjects. We proposed a proba-
bilistic Gaussian process framework for mapping the ex-
tracted audio features into latent subspaces that is learned
by the comparisons made by participants of musical ex-
cerpts evaluated on the dimensions of valence and arousal.
The underlying assumption is that given the features, the



projection made by the model mimic the cognitive decision
making by participants in making the pairwise compari-
son. We investigated how many comparisons are needed
per excerpt to reach acceptable level of performance by
obtaining all possible unique comparisons for 20 excerpts
and furthermore to investigate the individual subjective dif-
ferences. In [14] they proposed a greedy algorithmic ap-
proach converting pairwise comparisons into a ranking of
excerpts and modeling this using a RBF-ListNet algorithm.
They focused on the case of few comparisons for many ex-
cerpts, using comparisons from multiple participants ag-
gregating to one large dataset, neglecting the individual
differences between subjects. On the other hand, our re-
sults showed a great difference between participants which
the framework and approach accounts for along with noise
on the pairwise judgments.

These individual differences are further investigated in
this paper using the well known arousal and valance scores
in a 2D space. Furthermore, we introduce five models for
the modeling of the pairwise comparisons, where an ex-
tension to the existing framework is made using linear and
squared exponential kernels. Moreover, we compare the
Gaussian process model to three versions of a General-
ized Linear Model (GLM) namely the standard version and
two regularized versions using L1 and L2 norms. Learn-
ing curves are computed as a function of the misclassifi-
cation error and the number of (randomly chosen) pair-
wise comparisons in order to elucidate the difference be-
tween the five models. The differences between models
and the resulting ranking of excerpts is further illustrated
using Kendall’s τ rank correlation learning curves.

2. EXPERIMENT & DATA

2.1 Experiment

A listening experiment was conducted to obtain pairwise
comparisons of expressed emotion in music using a 2AFC
experimental paradigm. 20 different 15 second excerpts
were chosen from the USPOP2002 1 dataset, so that, 5 ex-
cerpts were chosen to be in each quadrant of the AV space.
The selection was performed by a linear regression model
developed in previous work. A subjective evaluation was
performed to verify that the emotional expression of each
excerpt was as constant as possible.

A sound booth provided neutral surroundings for the ex-
periment and the excerpts were played back using head-
phones to the 8 participants (2 female, 6 male). Writ-
ten and verbal instructions were given prior to each ses-
sion to ensure that subjects understood the purpose of the
experiment and to ensure that each subject were familiar
with the two emotional dimensions (valence and arousal).
Each participant compared all 190 possible unique com-
binations. For the arousal dimension, participants were
asked the question Which sound clip was the most excited,
active, awake? For the valence dimension the question was
Which sound clip was the most positive, glad, happy?. The
two dimensions was rated individually and the presentation

1 http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html

No. Song name
1 311 - T and p combo
2 A-Ha - Living a boys adventure
3 Abba - Thats me
4 Acdc - What do you do for money honey
5 Aaliyah - The one i gave my heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These r the thoughts
8 Alice Cooper - Im your gun
9 Alice in Chains - Killer is me

10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 UB40 - Version girl
20 ZZ top - Hot blue and righteous

Table 1. List of songs/excerpts.

of the 190 paired excepts was randomized. The details of
the experiment is available in [15].

2.2 Audio Representation & Features

In order to represent the 15 second excerpts in later math-
ematical models, each excerpt is represented by standard
audio features, namely Mel-frequency cepstral coefficients
(MFCC) (30 dimensional), that describes the log trans-
formed short-term power spectrum of the musical signal.
Furthermore a total of 9 features are included namely spectral-
flux, roll-off, slope and variation and 5 features describing
the temporal music signal including zero crossing rate and
statistical shape descriptors.

These features are extracted using the YAAFE toolbox 1

for 512 sample frames with 50% overlap, thus for each ex-
cerpt we obtain a 39x1292 feature matrix X. We create a
vector representation by first standardizing the features and
then estimating the mean, µ(·) and the variance of the ma-
trix var(·) over the frames and then applying the follow-
ing vectorization, x = [µ (X) , var (X)]. This (row) vector
representation can directly be used in standard modeling
tools and serves as a common ground for comparisons.

3. MODELS FOR PAIRWISE COMPARISONS

The pairwise observations presented in Section 2 poses a
special challenge since each output now depends on two
inputs and standard regression and classification tools do
not immediately apply since they are typically formulated
in a one to one relationship between inputs and outputs.
The modeling aspect will thus necessarily play an integral
part of this section, and we will initially outline the general
framework.

1 http://yaafe.sourceforge.net/



The audio excerpts presented in Section 2 are assembled
in the set X = {xi|i = 1, ..., n} with n = 20 distinct ex-
cerpts, each described by the feature input vector xi. For
each of the test subjects the dataset comprises of all unique
m = 190 combinations of pairwise comparisons between
any two distinct excerpts, u and v, where xu ∈ X and
xv ∈ X . Formally, we denote the output set as

Y = {(yk;uk, vk)|k = 1, ...,m} ,
where yk ∈ {−1, 1} indicates which of the two excerpts
that had the highest valence or arousal. yk = −1 means
that the uk’th excerpt is picked over the vk’th and visa
versa when yk = 1.

The main assumption in our setup is that the pairwise
choice, yk, between the two distinct excerpts, u and v,
can be modeled as a function of the difference between
two functional values, f(xu) and f(xv). The function
f : X → R hereby defines an internal, but latent abso-
lute reference of e.g. valence or arousal as a function of the
excerpt represented by the audio features.

In order to model noise on the decision process we con-
sider the logistic likelihood of the functional difference.
The likelihood of observing a discrete choice thus becomes:

p (yk|fk) ≡ 1

1 + e−yk(f(xuk)−f(xvk))
, (1)

where fk = [f(xuk
), f(xvk)]T . The remaining question is

how the function is modeled and how we in turn regard the
problem as a special regression problem. In the following
we consider two different frameworks, namely General-
ized Linear Models (GLM) and a flexible Bayesian non-
parametric approach based on the Gaussian process (GP).
In all cases we assume that the likelihood factorizes over
the observations i.e., p (Y|f) =

∏m
k=1 p (yk|fk).

3.1 Generalized Linear Models

Generalized Linear Models are powerful and widely used
extensions of standard least squares regression which can
accommodate many types of observed variables and noise
models. The canonical example in this family is indeed lo-
gistic regression, and here we extend the treatment to the
pairwise case. The underlying model is a linear and para-
metric model of the form fi = xiw

>, where xi may be
extended in a different basis but the base model is still lin-
ear in w.

If we now consider the likelihood defined in Eq. (1) and
reasonably assume that the model, i.e. w, is the same for
the first and second input i.e. xuk

and xvk . Which results
in a projection from the audio features x into the cognitive
dimensions of valence and arousal given by w which is the
same for all excerpts. We can then write

p (yk|w,xuk
,xvk) =

1

1 + e−yk((xuk
−xvk)w>)

. (2)

The resulting cost function, ψ(·), is given by the log likeli-
hood

ψGLM (w) =

m∑

k=1

log p
(
yk|xuk

,xvk
,w
)
.

Thus, the problem reduces to a standard logistic regression
problem only working on the difference in input space as
opposed to the standard absolute input. This means that
standard optimization techniques can be used to find the
maximum likelihood solution, such as Iterated Reweighed
Least Squares (IRLS) or other more general non-linear op-
timization method.

3.1.1 Regularized Extensions

The basic GLM formulation in Eq. (2) does work quite
well for many problems, however has a tendency to be-
come unstable with very few pairwise comparisons. We
therefore suggest to regularize the basic GLM cost with
L1 and L2 which are of course similar to standard regular-
ized logistic regression (see [16]). The L2 regularized cost
is as usual given by

ψGLM−L2 (w) =
m∑

k=1

log p
(
yk|xuk

,xvk
,w
)
− λ ‖w‖22 ,

where the regularization parameter λ is to be found by
cross-validation. This cost is still continuous and is solved
with a standard Newton method. The L1 regularized cost
is

ψGLM−L1 (w) =
m∑

k=1

log p
(
yk|xuk

,xvk
,w
)
− λ ‖w‖1 .

This discontinuous cost function (in wi = 0) is solved us-
ing the active set method presented in [17]. The L1 regular-
ization effectively results in a sparse model where certain
features are potentially switched off. We will not interpret
this property in detail but simply use the models as a refer-
ence.

3.2 Gaussian Process Framework

The GLM framework represents the simplest - but often
effective - models for many regression and classification
problems. An obvious extension is to treat the problem and
the likelihood in a Bayesian setting which is presented in
this section and further adhere to a non-parametric princi-
ple in which we model the f directly such that the posterior
over f ’s can be written

p (f |Y,X ) = p (Y|f) p(f |X )/p (Y|X ) . (3)

While many relevant priors, p(f |X ), may be applied we
will consider a specific prior, namely a Gaussian Process
(GP) prior. A GP is typically defined as ”a collection of
random variables, any finite number of which have a joint
Gaussian distribution” [18]. By f (x) ∼ GP (0, k(x,x′))
we denote that the function f(x) is modeled by a zero-
mean GP with covariance function k(x,x′). The conse-
quence of this formulation is that the GP can be considered
a distribution over functions, i.e., p (f |X ) = N (0,K),
where [K]i,j = k(xi,xj).

Bayes relation leads directly to the posterior distribution
over f , which is not analytically tractable. Instead, we use
the Laplace Approximation to approximate the posterior



with a multivariate Gaussian distribution 2 . The GP was
first considered with a pairwise, Probit based likelihood
in [20], whereas we consider the logistic likelihood func-
tion.

3.2.1 Predictions

To predict the pairwise choice yt on an unseen comparison
between excerpts r and s, where xr,xs ∈ X , we first con-
sider the predictive distribution of f(xr) and f(xs) which
is given as p (ft|Y,X ) =

∫
p (ft|f) p (f |Y,X ) df , and with

the posterior approximated with the Gaussian from the Laplace
approximation then p (ft|Y,X ) will also be Gaussian given
by N (ft|µ∗,K∗) where µ∗ = kTt K

−1f̂ and K∗ = Kt −
kTt (I + WK)kt, where f̂ and W are obtained from the
Laplace approximation (see [19]) and kt is a matrix with
elements [kt]i,2 = k(xi,xs) and [kt]i,1 = k(xi,xr) with
xi being a training input.

In this paper we are only interested in the binary choice
yt, which is determined by which of f(xr) or f(xs) that
dominates 3 .

3.2.2 Covariance Functions

The zero-mean GP is fully defined by the covariance func-
tion, k(x,x′). In the emotion dataset each input instance
is an excerpt described by the vector x representing the
mean and variance of the audio features. A standard co-
variance function for this type of input is the squared ex-
ponential (SE) covariance function defined as k (x,x′) =

σ2
f exp

(
− 1
σ2
l
‖x− x′‖22

)
, where σf is a variance term and

σl is the length scale, in effect defining the scale of the
correlation in the input space. As a reference we also con-
sider the linear covariance function given as k (x,x′) =(
x′x> + 1

)
/σ2.

3.2.3 Hyper-parameters

An advantage of the Bayesian approach is that the hyper
parameters may be found in a principled way namely by
evidence maximization or maximum likelihood II estima-
tion. The hyper-parameters collected in θ can thus be found
by θ̂ = arg maxθ

∫
p (Y|f) p(f |θ)df .

There is therefore in principle no need to use cross-vali-
dation to find the parameters. As with the posterior over f ,
the evidence also requires an approximation and we reuse
the Laplace approximation to obtain the hyper-parameter
estimate. We furthermore allow for a regularizing prior
on the hyper-parameters which is similar in spirit to the
regularized Expectation Maximization (EM) algorithm.

3.3 Alternative Models

The two modeling frameworks considered above are not
the only options for modeling the pairwise relations. An
obvious intermediate model is the GLM put in a Bayesian
setting with (hierarchical) (sparsity) priors on w which we
consider an intermediate step towards the full non-para-
metric GP model. Also Neural Networks can easily be

2 More details can be found in e.g. [19].
3 With the pairwise GP model the predictive distribution of yt can also

be estimated (see [19]) and used to express the uncertainty in the predic-
tion relevant for e.g. sequential designs, reject regions etc.

adapted to handle the pairwise situation, such as [21]; how-
ever, the GP will again provide a even more flexible and
principled model.

4. EXPERIMENTAL RESULTS

4.1 Learning Curves

We use learning curves to compare the five models de-
scribed in Section 3, namely the Logistic Regression model
and two regularized version using the L1 and L2 norms
and finally the Gaussian Process model using a linear and
a squared exponential kernel. The learning curves are eval-
uated for individual subjects using 10-fold cross valida-
tion (CV) in which a fraction (90%) of the total number
of pairwise comparisons constitutes the complete training
set. Testing all possible combinations of e.g. 17 compar-
isons out of 171 when using 10% of the training set is ex-
hausting. Therefore each point on the learning curve is
an average over 10 randomly chosen equally-sized subsets
from the complete training set, to obtain robust learning
curves. Three different baseline error measures have been
introduced, corresponding to a random choice of either of
the two classes in each fold and two obtained by choos-
ing either class constantly. Thus taking into account that
the data set is not balanced between the two outcomes of
[−1; 1]. In Figure 1 we show the learning curves as an aver-
age across all subjects. Using the entire dataset the models
converge to similar classification errors of 0.14 and 0.15
for valence and arousal, respectively. On the valence di-
mension we see that using a fraction of the training data,
the GP-SE model shows a clear advantage over the other
models at e.g. 30% of the training data, producing a clas-
sification error of 0.21 whereas the GLM models produce
around 0.23 and the GP-Lin at 0.29. The learning curves
for the arousal dimension show a slightly different picture
when comparing the different models. It is clear that us-
ing regularization on the GLM model greatly improves the
classification error when training with up to 30% of the
training data by as much as 0.10. The two GP models per-
form similar up to the 30% point on the learning curve but
converges at a lower classification error than that of the
GP-SE. Since all models converge to a similar classifica-
tion errorrate we want to test whether they are the same
on a classification level. We use the McNemar’s paired
test [22] with the Null hypothesis that two models are the
same, if p < 0.05 then the models can be rejected as equal
on a 5% significance level. We test the GP-SE against the
other four models pooling data across repetitions and folds
for each point on the learning curve. For the valence data
the GP-SE model is different in all points on the learn-
ing curve besides when using the entire trainingset for the
GLM, GLM-L1 and GP-Lin model. For arousal data the
GP-Lin model and the GP-SE cannot be rejected as be-
ing different when training on 2% and 5% of the training
data and for the GLM model trained on 90% of the training
data.
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Figure 1. Classification error learning curves as an average across all subjects for 10-fold CV on comparisons comparing
five models. A Gaussian Process model using a linear kernel (GP -Lin) and a squared exponential kernel GP -SE, logistic
regression model (GLM ) and two regularized versions using the L1 (GLM -L1) and L2-norms (GLM -L2). Three different
baseline error measures have been introduced, corresponding to a random choice of either of the two classes in each fold
denoted Basernd and two obtained by choosing either class constantly denoted Base1 and Base−1. The circles below the
figure show the McNemar’s paired test with the Null hypothesis that two models are the same, if p < 0.05 then the models
can be rejected as equal on a 5% significance level. The test is performed between the GP -SE model and the GLM ,
GLM -L2, GLM -L1 and GP -Lin. Non-filled circles indicate p < 0.05, and filled cirlces indicate p > 0.05.

4.2 AV Space

The learning curves show the performance of the models
when predicting unseen comparisons. However, it may be
difficult to interpret in terms of the typical AV space as one
know from direct scaling experiments. To address this we
show that both the GLM and the GP models can provide an
internal, but unit free representation of the AV scores using
the latent regression function f(xt) in the case of the GP
model, and by f(xt) = xtw

> for the GLM models.
We first consider a model using all comparisons from all

participants, thus obtaining a global mean model illustrated
in Figure 2 with squares. In order to evaluate the variation
across subjects, we train individual models on all compar-
isons from a given participant. The deviation from the
global mean model is now calculated per comparison by
comparing the latent difference in the global mean model
with the latent difference in the individual model. The sub-
jects deviation for a single excerpt is now evaluated as the
average over all changes in latent differences for the 19
possible comparisons in which the excerpt is present. Fi-
nally, we take the variation across subjects and visualize it
in Figure 2 as dashed and solid lines around each excerpt
indicating the 50% and the 5% percentiles, respectively.

While the GLM and GP-SE models may seem quite dif-
ferent at first sight, we should focus on the relative location
of the excerpts and not the absolute location in the unit
free space. Comparing the relative placement of the ex-
cerpts (the center points) we see that the models are quite
similar, also indicated by the averaged learning curves. In
both models the relatively small variation over the subjects
suggest that there despite minor subjective differences is a

general consensus about the overall location of the given
excerpts and the models have actually learned a meaning-
ful representation.

4.3 Ranking Analysis

The learning curves only show the predictive classifica-
tion power and does not give a clear picture as to the re-
sulting ranking of the excerpts in the AV space. Two or
more models can have the exact same classification error,
but result in very different ranking of excerpts in the AV
space. To quantify this difference in the ranking in the AV
space we use Kendall’s τ rank correlation coefficient. It is
a measure of correlation between rankings and is defined
as τ = (Ns−Nd)/Nt, whereNs is the number of correctly
ranked pairs, Nd is the number of incorrectly ranked pairs
and Nt is the total number of pairs. When two rankings
are exactly the same the Kendall’s τ results τ = 1, if the
order of items are exactly opposite then τ = −1 and when
τ = 0 they are completely different. In Figure 3 we notice
that the linear models produce very similar rankings when
trained on 1% with a Kendall’s τ above 0.95. Between
the GLM and the regularized models the Kendall’s τ de-
creases to 0.7 at 10% of training data and increasing to 0.9
when using 50% for valence data. The largest difference in
ranking lies between the GP models and both the regular-
ized and unregularized GLM models for both valence and
arousal. Using 10% of training data the comparison be-
tween the ranking of the GP-SE and GLM models produce
a Kendall’s τ rank correlation of 0.47 ending at 0.9 when
using the entire training set for valence. Both the GLM and
GLM-L2 when compared with the GP-SE lie below 0.9 us-
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Figure 2. Predictions using the latent regression function for the Gaussian Process model and model parameters for the
logistic regression model. The squares indicate the latent regression function values from a global mean model which is
trained using all comparisons from all participants. The dashed and solid lines around each excerpt indicates the 50%
and the 5% percentiles for the deviation from the global mean model calculated per comparison by comparing the latent
difference in the global mean model with the latent difference in the individual model. The subjects deviation for a single
excerpt is evaluated as the average over all changes in latent differences for the 19 possible comparisons.

ing the entire training set for arousal. It is noteworthy that
between the 5% and 30% points on the learning curve, is
where all models produce the most different rankings and
as more comparisons are used they converge to similar but
not same rankings.

We have established that there is a difference in ranking
of excerpts on the dimensions of valence and arousal given
which models is chosen. As was shown in Figure 2 there is
also a large difference in ranking across subjects, alterna-
tively these individual differences can be quantified using
the rank correlation. Using the GP-SE model trained on all
the dataset, the Kendall’s τ is computed between the pre-
dicted rankings between all subjects, which are shown in
Figure 4. The ranking along the valence dimension shows
a grouping of subjects where subject eight and three have
the lowest Kendall’s τ in average compared to all other
subjects. This suggests a fundamentally different subject
dependent understanding of the expressed emotion in mu-
sic. Subject eight seem especially to disagree with subjects
three, five, six and seven given the predicted latent regres-
sion function values. On the valence dimension subject six
is very much in disagreement with other subjects, whereas
subject four is in high agreement with most subjects.

4.4 Discussion

Five different regression models were introduced to model
the expressed emotions in music directly by pairwise com-
parisons, as previously shown in [13] the results clearly
show this is possible. Common for all models is the con-
vergence to similar classification errors, indicating that given

this limited dataset, that the underlying problem is linear
and thus does not benefit from the flexibility of the non-
linear GP-SE model, when using all available comparisons.
But having all possible unique comparisons is an unlikely
scenario when constructing larger datasets. This is the
strength of the GP-SE model using only a fraction of train-
ing data for valence it is evident that it is improving predic-
tive performance of around 0.08 comparing to a linear GP
model using 30% of the training data. Which shows that it
is not necessary to let participants evaluate all comparisons
when quantifying the expressed emotion in music. For
arousal data the GLM model benefits greatly with regular-
ization when training with up to 40% percent of the train-
ing data with as much as 0.10 classification error. Whereas
for valence all GLM models produce very similar results.

In previous work the predictions from the latent regres-
sion function was shown as a mean across subjects, here
we emphasize the differences between subjects with the
predictions by the model. Both the GLM and GP-SE model
can produce results which show the relative position of ex-
cerpts in the AV space, and between models produce vi-
sually similar results. These differences are quantified be-
tween the ranking of the different models using Kendall’s
rank correlation coefficient emphasizing the fact that not
only is there a difference in ranking amongst participants
but also between models. This links the difference between
models producing a given classification error and the re-
sulting ranking produced by the model. Even though two
models produce the same classification error they can end
up with a different ranking of excerpts in the AV space.

Identifying differences between participants and their in-
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Figure 3. Comparison of the ranking of the internal regression function predictions for different models using Kendall’s
τ rank correlation coefficient. Curves are an average of the Kendall’s τ computed for each individual subjects predicted
ranking across folds and repetitions.

ternal ranking of excerpts in the AV space can become a
challenge when using a pairwise experimental paradigm to
quantify the expressed emotion in music. We remedy this
by using Kendall’s τ computed between all users rankings
provided by the GP-SE model. The results show that there
is a great difference between users individual ranking pro-
ducing a difference in Kendall’s τ of as much as 0.55 for
arousal and 0.35 for valence. Given the fact that the pre-
dictions by the models are so different for each subject this
stresses the importance to distinguish between subjects.
Currently we investigate individual user models which are
linked/coordinated in a hierarchical Bayesian modeling frame-
work in order both to obtain individual models and the pos-
sibility to learn from a limited set of pairwise data. In par-
ticular we see these models as a required tool in the exam-
ination of the difference between direct scaling methods
and the pairwise paradigm presented in the current work.
Future models will furthermore provide a principled ap-
proach for combining pairwise and direct scaling obser-
vations, thus allowing for optimal learning and absolute
grounding.

5. CONCLUSION

In this paper we outlined a paradigm for obtaining robust
evaluation of expressed emotion in music based on a two
alternative forced choice approach. We examined five dif-
ferent regression models for modeling these observations
all based on the logistic likelihood function extended to
pairwise observations. The models ranged from a rela-
tively simple GLM model and two regularized GLMs us-
ing the L1 and L2 norms to non-parametric Bayesian mod-
els, yet the predictive performance showed that all pro-
posed models produce similar classification errors based
on the entire training set. The true strength of the non-
parametric Bayesian model comes into play when using
a fraction of the dataset leaving good opportunities in con-
structing larger datasets where subjects do not need to eval-

uate all possible unique comparisons. It is left for future
work to further analyze the detailed difference between the
models. Furthermore we illustrated a significant difference
between models and subjects in both AV space and quanti-
fied it using Kendall’s τ with the conclusion that it is criti-
cal to model subjects individually.
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Abstract. We introduce a two-alternative forced-choice experimental
paradigm to quantify expressed emotions in music using the two well-
known arousal and valence (AV) dimensions. In order to produce AV
scores from the pairwise comparisons and to visualize the locations of
excerpts in the AV space, we introduce a flexible Gaussian process (GP)
framework which learns from the pairwise comparisons directly. A novel
dataset is used to evaluate the proposed framework and learning curves
show that the proposed framework needs relative few comparisons in
order to achieve satisfactory performance. This is further supported by
visualizing the learned locations of excerpts in the AV space. Finally,
by examining the predictive performance of the user-specific models we
show the importance of modeling subjects individually due to significant
subjective differences.

Keywords: expressed emotion, pairwise comparison, Gaussian process

1 Introduction

In recent years Music Emotion Recognition has gathered increasing attention
within the Music Information Retrieval (MIR) community and is motivated by
the possibility to recommend music that expresses a certain mood or emotion.

The design approach to automatically predict the expressed emotion in mu-
sic has been to describe music by structural information such as audio features
and/or lyrical features. Different models of emotion, e.g., categorical [1] or di-
mensional [2], have been chosen and depending on these, various approaches
have been taken to gather emotional ground truth data [3]. When using dimen-
sional models such as the well established arousal and valence (AV) model [2]
the majority of approaches has been to use different variations of self-report
direct scaling listening experiments [4].

? This work was supported in part by the IST Programme of the European Commu-
nity, under the PASCAL2 Network of Excellence, IST-2007-216886, and in part by
the Danish Council for Strategic Research of the Danish Agency for Science Tech-
nology and Innovation under the CoSound project, case number 11-115328. This
publication only reflects the authors’ views.
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Direct-scaling methods are fast ways of obtaining a large amount of data.
However, the inherent subjective nature of both induced and expressed emotion,
often makes anchors difficult to define and the use of them inappropriate due
to risks of unexpected communication biases. These biases occur because users
become uncertain about the meaning of scales, anchors or labels [5]. On the
other hand, lack of anchors and reference points makes direct-scaling experiments
susceptible to drift and inconsistent ratings. These effects are almost impossible
to get rid of, but are rarely modeled directly. Instead, the issue is typically
addressed through outlier removal or simply by averaging across users [6], thus
neglecting individual user interpretation and user behavior in the assessment of
expressed emotion in music.

Pairwise experiments eliminates the need for an absolute reference anchor,
due to the embedded relative nature of pairwise comparisons which persists the
relation to previous comparisons. However, pairwise experiments scale badly
with the number of musical excerpts which they accommodate in [7] by a tour-
nament based approach that limits the number of comparisons and transforms
the pairwise judgments into possible rankings. Subsequently, they use the trans-
formed rankings to model emotions.

In this paper, we present a novel dataset obtained by conducting a controlled
pairwise experiment measuring expressed emotion in music on the dimensions of
valence and arousal. In contrast to previous work, we learn from pairwise com-
parisons, directly, in a principled probabilistic manner using a flexible Gaussian
process model which implies a latent but interpretable valence and arousal func-
tion. Using this latent function we visualize excerpts in a 2D valance and arousal
space which is directly available from the principled modeling framework. Fur-
thermore the framework accounts for inconsistent pairwise judgments by partic-
ipants and their individual differences when quantifying the expressed emotion
in music. We show that the framework needs relatively few comparisons in or-
der to predict comparisons satisfactory, which is shown using computed learning
curves. The learning curves show the misclassification error as a function of the
number of (randomly chosen) pairwise comparisons.

2 Experiment

A listening experiment was conducted to obtain pairwise comparisons of ex-
pressed emotion in music using a two-alternative forced-choice paradigm. 20
different 15 second excerpts were chosen from the USPOP20021 dataset. The
20 excerpts were chosen such that a linear regression model developed in previ-
ous work [8] maps exactly 5 excerpts into each quadrant of the two dimensional
AV space. A subjective evaluation was performed to verify that the emotional
expression throughout each excerpt was considered constant.

A sound booth provided neutral surroundings for the experiment and the
excerpts were played back using headphones to the 8 participants (2 female,

1 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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6 male). Written and verbal instructions were given prior to each session to
ensure that subjects understood the purpose of the experiment and were famil-
iar with the two emotional dimensions of valence and arousal. Each participant
compared all 190 possible unique combinations. For the arousal dimension, par-
ticipants were asked the question Which sound clip was the most excited, active,
awake?. For the valence dimension the question was Which sound clip was the
most positive, glad, happy?. The two dimensions were evaluated individually in
random order. The details of the experiment are available in [9].

3 Pairwise-Observation based Regression

We aim to construct a model for the dataset given the audio excerpts in the set
X = {xi|i = 1, ..., n} with n = 20 distinct excerpts, each described by an input
vector xi of audio features extracted from the excerpt. For each test subject the
dataset comprises of all m = 190 combinations of pairwise comparisons between
any two distinct excerpts, u and v, where xu ∈ X and xv ∈ X . Formally, we
denote the output set (for each subject) as Y = {(dk;uk, vk)|k = 1, ...,m}, where
dk ∈ {−1, 1} indicates which of the two excerpts that had the highest valence or
arousal. dk = −1 means that the uk’th excerpt is picked over the vk’th and visa
versa when dk = 1.

We model the pairwise choice, dk, between two distinct excerpts, u and v, as
a function of the difference between two functional values, f(xu) and f(xv). The
function f : X → R thereby defines an internal, but latent absolute reference of
either valence or arousal as a function of the excerpt represented by the audio
features.

Given a function, f(·), we can define the likelihood of observing the choice
dk directly as the conditional distribution.

p (dk|fk) = Φ

(
dk
f (xvk)− f (xuk

)√
2

)
, (1)

where Φ(x) is the cumulative Gaussian (with zero mean and unity variance) and

fk = [f (xuk
) , f (xvk)]

>
. This classical choice model can be dated back to Thur-

stone and his fundamental definition of The Law of Comparative Judgment [10].
We consider the likelihood in a Bayesian setting such that

p (f |Y,X ) = p (Y|f) p(f |X )/p (Y|X ) where we assume that the likelihood fac-
torizes, i.e., p (Y|f) =

∏m
k=1 p (dk|fk).

In this work we consider a specific prior, namely a Gaussian Process (GP),
first considered with the pairwise likelihood in [11]. A GP is typically defined as
”a collection of random variables, any finite number of which have a joint Gaus-
sian distribution” [12]. By f (x) ∼ GP (0, k(x,x′)) we denote that the function
f(x) is modeled by a zero-mean GP with covariance function k(x,x′). The fun-
damental consequence of this formulation is that the GP can be considered a
distribution over functions, defined as p (f |X ) = N (0,K) for any finite set of of
function values f = [f(x1), ..., f(xn)]>, where [K]i,j = k(xi,xj).
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Bayes relation leads directly to the posterior distribution over f , which is not
analytical tractable. Instead, we use the Laplace Approximation to approximate
the posterior with a multivariate Gaussian distribution1.

To predict the pairwise choice dt on an unseen comparison between excerpts r
and s, where xr,xs ∈ X , we first consider the predictive distribution of f(xr) and
f(xs). Given the GP, we can write the joint distribution between f ∼ p (f |Y,X )

and the test variables ft = [f (xr) , f (xs)]
T

as
[
f

ft

]
= N

([
0

0

]
,

[
K kt

kT
t Kt

])
, (2)

where kt is a matrix with elements [kt]i,2 = k(xi,xs) and [kt]i,1 = k(xi,xr) with
xi being a training input.

The conditional p (ft|f) is directly available from Eq. (2) as a Gaussian
too. The predictive distribution is given as p (ft|Y,X ) =

∫
p (ft|f) p (f |Y,X ) df ,

and with the posterior approximated with the Gaussian from the Laplace ap-
proximation then p (ft|Y,X ) will also be Gaussian given by N (ft|µ∗,K∗) with
µ∗ = kT

t K
−1f̂ and K∗ = Kt − kT

t (I + WK)kt, where f̂ and W are obtained
from the Laplace approximation (see [13]). In this paper we are only interested
in the binary choice dt, which is determined by which of f(xr) or f(xs) that
dominates2.

The zero-mean GP is fully defined by the covariance function, k(x,x′). In the
emotion dataset each input instance is an excerpt described by the vector x con-
taining the audio features for each time frame which is naturally modeled with
a probability density, p(x). We apply the probability product (PP) kernel [14] in
order to support these types of distributional inputs. The PP kernel is defined
directly as an inner product as k (x,x′) =

∫
[p (x) p (x′)]qdx. We fix q = 1/2,

leading to the Hellinger divergence [14]. In order to model the audio feature
distribution for each excerpt, we resort to a (finite) Gaussian Mixture Model

(GMM). Hence, p(x) is given by p (x) =
∑Nz

z=1 p (z) p (x|z), where p (x|z) =
N (x|µz, σz) is a standard Gaussian distribution. The kernel is expressed in
closed form [14] as k (p (x) , p (x′)) =

∑
z

∑
z′ (p (z) p (z′))qk̃ (p (x|θz) , p (x′|θz′))

where k̃ (p (x|θz) , p (x′|θz′)) is the probability product kernel between two single
components - also available in closed form [14].

4 Modeling Expressed Emotion

In this section we evaluate the ability of the proposed framework to capture
the underlying structure of expressed emotions based on pairwise comparisons,
directly. We apply the GP model using the probability product (PP) kernel de-
scribed in Section 3 with the inputs based on a set of audio features extracted

1 More details can be found in e.g. [13].
2 With the pairwise GP model the predictive distribution of dt can also be computed

analytically (see [13]) and used to express the uncertainty in the prediction relevant
for e.g. sequential designs, reject regions etc.
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(b) Arousal

Fig. 1. Classification error learning curves and Kendall’s τ for 10-fold CV on com-
parisons. Bold lines are mean curves across subjects and dash lines are curves for
individual subjects. Notice, that for the classification error learning curves, the base-
line performance corresponds to an error of 0.5, obtained by simply randomly guessing
the pairwise outcome.

from the 20 excerpts. By investigating various combinations of features we ob-
tained the best performance using two sets of commonly used audio features. The
first set is the Mel-frequency cepstral coefficients (MFCC), which describe the
short-term power spectrum of the signal. Secondly, we included spectral contrast
features and features describing the spectrum of the Hanning windowed audio.
Based on an initial evaluation, we fix the number of components in the GMM
used in the PP Kernel to Nz = 3 components and train the individual GMMs by
a standard EM algorithm with K-means initialization. Alternatively, measures
such as the Bayesian Information Criterion (BIC) could be used to objectively
set the model complexity for each excerpt.

4.1 Results: Learning Curves

Learning curves for the individual subjects are computed using 10-fold cross
validation (CV) in which a fraction (90%) of the total number of pairwise com-
parisons constitutes the complete training set. Each point on the learning curve
is an average over 10 randomly chosen and equally-sized subsets from the com-
plete training set. The Kendall’s τ rank correlation coefficient is computed in
order to relate our results to that of e.g. [7] and other typical ranking based
applications. The Kendall’s τ is a measure of correlation between rankings and
is defined as τ = (Ns − Nd)/Nt where Ns is the number of correctly ranked
pairs, Nd is the number of incorrectly ranked pairs and Nt is the total number
of pairs. The reported Kendall’s τ is in all cases calculated with respect to the
predicted ranks using all the excerpts.

Figure 1 displays the computed learning curves. With the entire training set
included the mean classification errors across subjects for valence and arousal are
0.13 and 0.14, respectively. On average this corresponds to a misclassified com-
parison in every 7.5 and 7’th comparison for valence and arousal, respectively.
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For valence, the mean classification error across users is below 0.2 with 40% of
the training data included, whereas only 30% of the training data is needed to
obtain similar performance for arousal. This indicates that the model for arousal
can be learned slightly faster than valence. Using 30% of the training data the
Kendall’s τ is 0.94 and 0.97, respectively, indicating a good ranking performance
using only a fraction of the training data.

When considering the learning curves for individual users we notice signifi-
cant individual differences between users—especially for arousal. Using the entire
training set in the arousal experiment, the user for which the model performs
best results in an error of 0.08 whereas the worst results in an error of 0.25. In
the valence experiment the best and worst performances result in classification
errors of 0.08 and 0.2, respectively.

4.2 Results: AV space

The learning curves show the pure predictive power of the model on unseen
comparisons, but may be difficult to interpret in terms of the typical AV space.
To address this we show that the latent regression function f(·) provides an
internal but unit free representation of the AV scores. The only step required is
a normalization which ensures that the latent values are comparable across folds
and subjects. In Figure 2 the predicted AV scores are shown when the entire
training set is included and when only 30% is included. The latter corresponds
to 51 comparisons in total or an average of 2.5 comparisons per excerpt. The
results are summarized by averaging across the predicted values for each user.
15 of the 20 excerpts are positioned in the typical high-valence high-arousal and
low-valence low-arousal quadrants, 2 excerpts are clearly in the low-valance high-
arousal quadrant and 3 excerpts are in the high-valance low-arousal quadrant of
the AV space. The minor difference in predictive performance between 30% and
the entire training dataset does not lead to any significant change in AV scores,
which is in line with the reported Kendall’s τ measure.

4.3 Discussion

The results clearly indicate that it is possible to model expressed emotions in
music by directly modeling pairwise comparisons in the proposed Gaussian pro-
cess framework using subject specific models. An interesting point is the large
difference in predictive performance between subjects given the specific mod-
els. These differences can be attributed to the specific model choice (including
kernel) or simply to subject inconsistency in the pairwise decisions. The less im-
pressive predictive performance for certain subjects is presumably a combination
of the two effects, although given the very flexible nature of the Gaussian process
model, we mainly attribute the effect to subjects being inconsistent due to for
example mental drift. Hence, individual user behavior, consistency and discrim-
inative ability are important aspects of modeling expressed emotion in music
and other cognitive experiments, and thus also a critical part when aggregating
subjects in large datasets.
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No. Song name

1 311 - T and p combo
2 A-Ha - Living a boys

adventure
3 Abba - Thats me
4 Acdc - What do you do for

money honey
5 Aaliyah - The one i gave my

heart to
6 Aerosmith - Mother popcorn
7 Alanis Morissette - These r

the thoughts
8 Alice Cooper - Im your gun
9 Alice in Chains - Killer is me
10 Aretha Franklin - A change
11 Moby - Everloving
12 Rammstein - Feuer frei
13 Santana - Maria caracoles
14 Stevie Wonder - Another star
15 Tool - Hooker with a pen..
16 Toto - We made it
17 Tricky - Your name
18 U2 - Babyface
19 Ub40 - Version girl
20 Zz top - Hot blue and

righteous

Fig. 2. AV values computed by averaging the latent function across folds and repeti-
tions and normalizing for each individual model for each participant. Red circles: 30%
of training set is used. Black squares: entire training set is used.

The flexibility and interpolation abilities of Gaussian Processes allow the
number of comparisons to be significantly lower than the otherwise quadratic
scaling of unique comparisons. This aspect and the overall performance should
of course be examined further by considering a large scale dataset and the use
of several model variations. In addition, the learning rates can be improved
by combining the pairwise approach with active learning or sequential design
methods, which in turn select only pairwise comparisons that maximize some
information criterion.

We plan to investigate how to apply multi-task (MT) or transfer learning to
the special case of pairwise comparisons, such that we learn one unifying model
taking subjects differences into account instead of multiple independent subject-
specific models. A very appealing method is to include MT learning in the kernel
of the GP [15], but this might not be directly applicable in the pairwise case.

5 Conclusion

We introduced a two-alternative forced-choice experimental paradigm for quan-
tifying expressed emotions in music in the typical arousal and valance (AV)
dimensions. We proposed a flexible probabilistic Gaussian process framework to
model the latent AV scales directly from the pairwise comparisons. The frame-
work was evaluated on a novel dataset and resulted in promising error rates for
both arousal and valence using as little as 30% of the training set corresponding
to 2.5 comparisons per excerpt. We visualized AV scores in the well-known two
dimensional AV space by exploiting the latent function in the Gaussian process



8 Jens Madsen, Jens Brehm Nielsen, Bjørn Sand Jensen, and Jan Larsen

model, showing the application of the model in a standard scenario. Finally we
especially draw attention to the importance of maintaining individual models
for subjects due to the apparent inconsistency of certain subjects and general
subject differences.
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ABSTRACT

We consider learning and prediction of pairwise comparisons
between instances. The problem is motivated from a per-
ceptual view point, where pairwise comparisons serve as an
effective and extensively used paradigm. A state-of-the-art
method for modeling pairwise data in high dimensional do-
mains is based on a classical pairwise probit likelihood im-
posed with a Gaussian process prior. While extremely flex-
ible, this non-parametric method struggles with an inconve-
nient O

(
n3
)

scaling in terms of the n input instances which
limits the method only to smaller problems. To overcome this,
we derive a specific sparse extension of the classical pairwise
likelihood using the pseudo-input formulation. The behavior
of the proposed extension is demonstrated on a toy example
and on two real-world data sets which outlines the potential
gain and pitfalls of the approach. Finally, we discuss the rela-
tion to other similar approximations that have been applied in
standard Gaussian process regression and classification prob-
lems such as FI(T)C and PI(T)C.

1. INTRODUCTION

The pairwise learning setting has several application areas
such as preference learning and ranking [1], metric learn-
ing [2] and general pairwise comparison paradigms. Pairwise
comparisons are naturally motivated from a perceptual point
of view, where human subjects make a sequence of pairwise
(subjective) preference decisions in relation to sound quality,
music taste, etc. The main advantage is that pairwise rela-
tions are relatively easy for subjects to convey consistently
since subjects do not need an internal reference.

The theory underlying pairwise comparisons was first
formulated in a principle manner in [3] stating The Law of
Comparative Judgments building on cognitive and perceptual
ideas. The basic idea is that a choice is determined by the
difference in the response from a latent stochastic process.

This work was supported in part by the IST Programme of the European
Community, under the PASCAL2 Network of Excellence, IST-2007-216886.
This publication only reflects the authors’ views.

The resulting likelihood function in its simplest form—which
is also by far the most common one—was first put into the
flexible framework of Gaussian processes priors in [4].

Gaussian process based models are flexible and thus de-
sirable for pairwise learning, but struggle with an inconve-
nientO

(
n3
)

scaling in terms of the number of input instances
n. This makes their use impractical for large-scale problems.
Several suggestions have been proposed to remedy this issue
for the standard Gaussian process regression case by using a
smaller set of inputs that is either a subset of the original input
set [5, 6] or a completely new set of pseudo inputs [7, 8, 9].
An unifying view of the latter family of models is given in
[10] and extended in [11] leading to the well-known FI(T)C
and PI(T)C approximations for standard regression and clas-
sification models.

In the standard case the explicit formulation of pseudo in-
puts can easily and without further considerations be turned
into a conditional Gaussian process prior with an easy to in-
vert covariance matrix. However, in the pairwise case the
likelihood function depends on two variables. Therefore, we
cannot immediately and without consideration use the stan-
dard approximations in the covariance as done in [12]. In-
stead, our quest to derive a sparse approximation for pairwise
problems starts from the original pseudo-input formulation
presented in [7]. Using this direct approach, our objective is
to extend the pairwise likelihood model to allow for explicit
sparsity in input space achieved by extending the model by a
set of pseudo inputs—or inducing points—of size l� n. Es-
sentially, the pseudo inputs are used to integrate out the two
original variables of the classical pairwise likelihood func-
tion. In effect the Gaussian process prior is now placed over
the function values of the pseudo inputs often resulting in a
considerably lower computational load. Posterior inference
relies on a Laplace approximation and the pseudo inputs can
be found by evidence optimization for example initialized by
k-means.

We give insight and intuition about the behavior and per-
formance of the sparse model compared with the standard
model by considering the Boston housing data set and a wine-
quality data set. Examination of the out-of-sample error rates

978-1-4673-1026-0/12/$31.00 c©2012 IEEE



is the basis for discussing the potential and limitations of the
sparse model.

2. MODEL & EXTENSIONS

In this section we describe the general setup and frame the
pairwise model in a Bayesian non-parametric setting. Each
input instance i is described by a feature vector x ∈ Rd

and X = {xi|i = 1, ..., n}. Next, we consider a data set
Y = {yk;uk, vk|k = 1, ...,m} of pairwise relations y ∈
{−1,+1} between the u’th and the v’th instance of X , hence
xuk

,xvk ∈ X 1 . The two opposite choices picking either the
u’th or the v’th instance are denoted by y = −1 and y = +1,
respectively.

Given two latent function values fk = [f(xuk
), f(xvk)]

>,
the observations are modeled by a pairwise likelihood func-
tion p (yk|fk,θL) with parameter(s) θL. The function f is an
latent function, which in a Thurstonian context [13], models
the mean absolute response from the internal cognitive pro-
cess when the subject is exposed to an input instance. The
function parametrization admits that we directly place a zero-
mean Gaussian process [14] prior on f allowing for a flexible
predictive model for the pairwise responses. Formally, we
write f(xi) ∼ GP (0, kθGP (xi, ·)) , where k(·, ·) denotes a
covariance function, or kernel, with parameter(s) θGP , which
generally speaking restricts the smoothness of the function.
The fundamental consequence of a Gaussian process is that
the joint distribution of a finite set of function values f =
[f(x1), f(x2), f(x3), ..., f(xn)]> has a multivariate Gaus-
sian distribution defined by p (f |X ,θGP) = N (0,KXX ),
where the elements of the covariance matrix are given as
[KXX ]i,j = kθGP (xi,xj). Given a standard Bayesian frame-
work and assuming i.i.d. comparisons we now obtain the
posterior over the function values

p (f |X ,Y,θ) ∝ p (f |X ,θGP)
∏m

k=1
p (yk|fk,θL)

with θ = {θL,θGP}. The main computational issue in the
Gaussian process framework is to calculate/approximate the
posterior posing a O

(
n3
)

scaling challenge due to the inver-
sion of the kernel matrix.

2.1. Standard Pairwise Likelihood Function

The pairwise likelihood function described in a general pair-
wise context by [13] and used with Gaussian processes by e.g.
[4] and [15] is given by

p (yk|fk,θL) = Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
, (1)

where Φ(·) defines a cumulative Gaussian (with zero mean
and unity variance) and θL = {σ}. The use of a Gaussian

1We will without loss of generality assume that the set Y involves all n
inputs instances in X .

process prior in connection with this likelihood function was
first proposed in [4].

2.2. Sparse Pairwise Likelihood Function

To obtain sparsity in input space, we generally follow the
ideas in [7]. Hence, given a set of pseudo inputs X̄, their func-
tional values f̄ must originate from the same Gaussian process
that was used for f . Therefore, we can directly place a Gaus-
sian process prior over f̄ , i.e., p

(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
,

where the matrix KX̄X̄ is the covariance matrix of the l
pseudo inputs collected in the matrix X̄ = [x̄1, ..., x̄l].

The overall idea of the pseudo-input formalism is now to
refine the likelihood function from Eq. (1) such that the real f
values that enter directly in the original, non-sparse likelihood
function (through fk), exist only in the form of predictions
from the pseudo inputs f̄(X̄). Given the listed assumptions,
we formally have that f and f̄ are jointly Gaussian, hence

[
fk

f̄

]
= N

([
0

0

]
,

[
Kxkxk

KX̄xk

>

KX̄xk
KX̄X̄

])
, (2)

where we define the following matrices and vectors

Kxkxk
=

[
k(xuk

,xuk
) k(xuk

,xvk)
k(xvk ,xuk

) k(xvk ,xvk)

]
(3)

KX̄xk
= [kuk

,kvk ] (4)

with [kuk
]i = k(x̄i,xuk

) and [kvk ]i = k(x̄i,xvk). From
Eq. (2) it is trivial to find the conditional distribution of fk
given f̄ , hence the sparse likelihood function can be derived
in terms of f̄ by integrating over fk, thus

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

=

∫
p (yk|fk,θL) p

(
fk |̄f , X̄

)
dfk

=

∫
Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
N (fk|µk,Σk) dfk

= Φ

(
yk
µuk
− µvk

σ∗k

)

where µk = [µuk
, µvk

]>, µuk
= k>uk

K−1
X̄X̄

f̄ , µvk =

k>vkK−1
X̄X̄

f̄ and

Σk =

[
σukuk

σukvk

σvkuk
σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 +σukuk
+σvkvk−σukvk−σvkuk

,
which all together results in the pseudo-input likelihood

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

= Φ (zk) , (5)

with zk = yk
(
kT
uk
− kT

vk

)
K−1

X̄X̄
f̄/σ∗k.



2.3. Inference & Predictions

The likelihood functions described in Section 2.1 and 2.2 lead
to intractable posteriors and call for approximation techniques
or sampling methods. Our goal in this initial study is to ex-
amine the sparse model and its properties—not to provide
the optimal approximation—hence, we only explore infer-
ence based on the Laplace approximation.

2.3.1. Posterior Approximation

Inference using the Laplace approximation has also been
applied in [16] for the standard model. The general solu-
tion to the approximation problem can be found by maxi-
mizing the unnormalized log-posterior ψ

(
f̄ |Y,X , X̄,θ

)
=

log p
(
Y|f̄ ,X , X̄,θ

)
− 1

2 f̄TK−1
X̄X̄

f̄ − 1
2 log |KX̄X̄| − l

2 log 2π

with regards to f̄ . For the maximization we use a damped
Newton method in which the damped step (with adaptive
damping factor λ) can be calculated without inversion of the
Hessian

f̄new =
(
K−1

X̄X̄
+ W − λI

)−1

[
(W − λI) f̄ +∇ log p(Y|f̄ ,X , X̄,θ)

]
. (6)

Using the notation∇∇i,j = ∂2

∂f(xi)∂f(xj) we apply the defini-
tion Wi,j = −∑k∇∇i,j log p(yk|xuk

,xvk , X̄, f̄ ,θ). When
converged, the resulting approximation can be shown to be
p
(
f̄ |Y,X , X̄,θ

)
≈ N

(
f̄ |̂f ,

(
W + K−1

X̄X̄

)−1
)

. The damped
Newton step requires the Jacobian and Hessian of the new
pseudo-input log-likelihood from Eq. (5), which require the
following two derivatives

∂

∂ f̄
p (yk|...) = yk

N (zk)

σ∗kΦ (zk)
K−1

X̄X̄
(kuk

− kvk) (7)

∂2

∂ f̄ f̄>
p (yk|...) = −y2

k

N (zk)

(σ∗k)2Φ (zk)

[
zk +

N (zk)

Φ (zk)

]

·K−1
X̄X̄

(kuk
− kvk) (kuk

− kvk)
>

K−1
X̄X̄

. (8)

2.3.2. Evidence / Hyperparameter Optimization

So far we have simply considered the hyperparameters
θ = {θL,θGP} and pseudo inputs X̄ as fixed parame-
ters, but their values have a crucial influence on the model
performance. Here, we resort to point estimates and find
(possible locally) optimal values by iterating between the
Laplace approximation with fixed hyperparameters, i.e., find-
ing p

(
f̄ |Y,X , X̄,θ

)
, followed by an evidence maximization

step in which (θ, X̄) = arg max(θ,X̄)p
(
Y|θ, X̄

)
. The log-

evidence log p(Y|θ, X̄) has to be approximated in our case,
which in terms of the existing Laplace approximation yields

log p
(
Y|θ, X̄

)
≈ log q

(
Y|X̄,θ

)
= log p(Y|̂f , X̄,X ,θ)

− 1

2
f̂TK−1

X̄X̄
f̂ − 1

2
log |I + KX̄X̄W| . (9)

We further allow for fixed hyperpriors on the individual hy-
perparameters serving as regularization, which results in a
procedure referenced to as MAP-II which provides more
robust estimation. Consequently, the MAP-II is given by
log qMAP-II

(
Y|X̄,θ

)
= log q

(
Y|X̄,θ

)
+ log p

(
θ, X̄|ξ

)
,

where ξ is a set of fixed parameters in the hyperprior.
The optimization requires the derivatives of the evidence

approximation. These turn out to be rather tedious and in-
volved, and we refer to the appendix for details. The pseudo-
input model poses a number of difficulties since X̄ are also to
be considered hyperparameters. Typically, this will—as noted
by [7] and [17]—lead to a large number of local maxima pro-
viding potentially suboptimal solutions. It is not our aim to
resolve nor document this issue, and we will take a prag-
matic view and simply accept evidence optimization methods
as is. Like [17] we recommend starting out with a fixed set
of pseudo inputs initialized by a standard unsupervised clus-
tering, such as k-means with restarts, followed by evidence
optimization.

2.3.3. Predictions

The main task is to infer the latent function values f̄ with the
end objective to make predictions of the observable variable
y for a pair of test inputs xr ∈ Xt and xs ∈ Xt denoted xt =
[xr,xs]

T . We consider the joint distribution between f̄ ∼
p
(
f̄ |Y,θ

)
and the test variables ft = [f (xr) , f (xs)]

T . With
the posterior of f̄ approximated with the Gaussian from the
Laplace approximation, the predictive distribution p (ft|Y,θ)
will also be Gaussian given by N (ft|µ∗,K∗) with µ∗ =
[µ∗r , µ

∗
s]T = ktKX̄X̄

−1f̄ and

K∗ =

[
σ∗rr σ∗rs
σ∗sr σ∗ss

]
= Kt − kT

t (I + WKX̄X̄) kt,

where kt is the kernel between the test points and the
pseudo inputs. With p (ft|Y,θ), the prediction distribu-
tion of the observed variable is given as p (yt|Y,θ) =∫
p (yt|ft,θL) p (ft|Y,θ) dft. The integral can be calculated

in closed form as P (xr � xs|Y,θ) = Φ ((µ∗r − µ∗s) /σ∗)
with (σ∗)2

= 2σ2 + σ∗rr + σ∗ss − σ∗rs − σ∗sr.

3. SIMULATIONS & EXPERIMENTAL RESULTS

In this section we demonstrate the performance of the pseudo-
input method on a toy example and provide predictive perfor-
mance on two real-world data sets: Boston housing and wine
quality. The main objective is not to achieve the overall best
performance, but to compare the standard (GP) and the sparse
(SPGP) formulations.

3.1. Toy Example

To illustrate the basics of the SPGP model, we draw a deter-
ministic function freal (see Fig. 1(a)) from a zero-mean Gaus-
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(c) Boston Housing: d = 10, n = 506, m = 127765
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(d) Wine Quality: d = 11, n = 600, m = 179700

Fig. 1. In general, blue graphs indicate the full model (GP) and red indicate the sparse model (SPGP). In Fig. (a) thick graphs
indicate means and thin graphs indicate one standard deviation. The black graph indicates the real (deterministic) function used
to generate the full pairwise data set between the instances marked with black crosses in the bottom. The two other colors sketch
the predictive distribution of the GP and SPGP models using the (pseudo) inputs at the locations marked with the corresponding
color in the bottom. Fig. (b)-(d) display the performance of the sparse model (SPGP) evaluated on the toy example and on
the two real-world data sets as a function of the number of pseudo inputs for the sparse model (red). The performance of the
standard model is included as a baseline. The solid and dashed red graphs show the average test error rate for the optimized
and non-optimized SPGP model, respectively. The two rows of markers indicate whether the optimized (triangle) and non-
optimized (diamond) SPGP models are significant different from the GP model using the McNemar test. The markers are solid
if the null hypothesis that they are equal can be rejected at the 5% significance level.

sian process with a squared exponential covariance function.
This function is then used to generate a pairwise data set con-
sisting of all possible pairwise comparisons using the func-
tion values at equidistantly distributed locations marked with
black crosses in Fig. 1(a). To model this data, we consider the
two models: The GP model (Sec. 2.1) and the SPGP model
with optimized pseudo inputs (Sec. 2.2). The l = 9 pseudo
inputs are initialized equidistantly in the input interval, the

length scale of the covariance function θGP = {σ`} and the
likelihood parameter θL = {σ} are learned by evidence opti-
mization whereas σf = 1 of the covariance function is fixed.
The results are presented in Fig. 1(a).

We notice that the SPGP model is capable of modeling the
mean and thereby the actual pairwise relationships, whereas
the predictive variance differs significantly from the GP vari-
ance. This is a characteristic and expected artifact also seen



in connection with the pseudo-input models for standard clas-
sification and regression.

3.2. Real World Examples

We compare the performance of the SPGP model to the GP
model on two different real-world data sets.

The first data set is the well-known Boston housing2

where we have constructed a full pairwise version by using
allm = 127765 pairwise combinations of the n = 506 inputs
base on the house price. For each input we use all available
features except RAD, CHAS and NOX, thus d = 10.

The second data set is a subset of the wine quality3 which
is based on user ratings of wines. The subset is based on
n = 600 instances of wines described by d = 11 features.
We construct the set of unique pairwise comparisons from the
ratings resulting in m = 179700 comparisons.

We use a squared exponential covariance function for both
data sets which (based on initial experimentation) is initial-
ized with σf = 1 and σ` = 1. The covariance parameter
σf is fixed, whereas the likelihood parameter initialized as
θL = {σ = 1} and θGP = {σ`} are learned by MAP-II
optimization using a uniform hyperprior and a half-student-
t hyperprior with scale 6 and 4 degrees of freedom, respec-
tively. Pseudo inputs are initialized with k-means (selecting
the solution with minimum total squared distance out of five
random initializations). We compare two SPGP models: one
where the pseudo inputs are kept fixed following the k-means
initialization (this model is identified with the No-Opt tag)
and one where they are further fitted using MAP-II with a
uniform hyperprior. With both data sets we use 20-fold cross
validation on instances, such that a minimum of two instances
are held out for testing and a randomly selected quarter of all
remaining pairwise comparisons between training instances
are used for training. Consequently, predictions are only per-
formed on comparisons between instances that do not appear
in the training data and the setting is thus a true predictive
ranking scenario. In Fig. 1(c)-(d) we report the average error
rate on the test set as a function of the number of pseudo in-
puts for the two SPGP models. The GP model is included as
a baseline.

4. DISCUSSION

In the toy example (Fig. 1(a)) we see that the mean is well
modeled by both the GP model and the SPGP model with
l = 9 pseudo inputs, suggesting that the SPGP model per-
forms nearly as good as the GP model. The main difference
between the two models seems to be the predictive variance
which differs significantly, yet this is an expected property of
the sparse model. A way to improve the estimation of the pre-

2archive.ics.uci.edu/ml/datasets/Housing
3archive.ics.uci.edu/ml/datasets/Wine+Quality

dictive variance is by allowing the input instances and pseudo
inputs to have different length scales [8][17].

Focusing on the predictive mean performance of the opti-
mized SPGP model on the two real-world data sets (Fig. 1(c)-
(d)), we see that a SPGP model with few pseudo inputs (as
low as 1-5) performs only slightly worse than or equal to
the GP model. This indicates that the two real-world prob-
lems do not constitute very complex pairwise problems. The
performance is, however, highly dependent on the optimiza-
tion of the locations of the pseudo inputs, seen since the non-
optimized SPGP model requires more pseudo inputs due to
the fixed locations. This illustrates the importance and power
of the optimization.

By further adding pseudo inputs we can obtain better per-
formance than the GP model. We believe that two effects
come into play. The first effect is that the constraints in-
duced in the SPGP model provide better regularization com-
pared to the full Gaussian process prior meaning that it gen-
eralizes better. The second effect stems from the fact that
the arbitrary placement of the pseudo inputs provides added
flexibility, which effectively renders it more adequate for cap-
turing the important regions of the underlying function when
these locations are optimized appropriately. We speculate that
the observed behavior is a combination of the two effects of
course dependent on the application.

A further aspect to be investigated is the capability of the
SPGP model to capture and approximate higher order mo-
ments of the predictive distribution. In line with previous
work on the topic and with the variances observed in the toy
example, we have observed fluctuating behavior of the pre-
dictive likelihoods as a function of l for the SPGP models in
the two real-world examples. Whether the behavior is due to
the pairwise setting, specific application or a general property
of the pseudo-input formulation is an open question.

In the current sparse formulation the original function
values are dependent in pairs given the exact comparisons,
whereas in FI(T)C all the original function values are inde-
pendent given the pseudo inputs. We plan to investigate if
this difference have any practical importance and to compare
the current approximation to other traditional approaches—in
particular the PI(T)C approximation.

5. CONCLUSION

In this paper we have derived a sparse version of the pairwise
likelihood model using the pseudo-input formulation. We ap-
plied the Laplace approximation for both posterior and evi-
dence approximation. We observe competitive predictive per-
formance with the sparse model using only few pseudo inputs
on a toy example and on two real-world data sets. A notice-
able observation is the fact that we by adding more pseudo
inputs are able to obtain better performance than the full GP
model in the studied applications.
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7. APPENDIX - EVIDENCE DERIVATIVES

The derivatives of Eq. (9) are slightly different compared
to the standard classification case [14, Sec 5.5.1] due to the
pseudo-input model because the covariance parameters enter
into the likelihood, and the fact that the covariance function
also depends on X̄. We outline the derivations by noting that
the Eq. (9) depends both explicitly and implicitly (due to the
solution of f̂ ) on the parameters θ. We do not differentiate be-
tween likelihood and covariance parameters and X̄. Here, we
simply denote a parameter by θj . We can split the derivatives
into an explicit and implicit part

∂ log q (Y|...)
∂θi

=
∂ log q (Y|...)

∂θ

∣∣∣∣
explicit

+
∑

j

∂ log q (Y|...)
∂fj

∂fj

∂θi
.

Referring to the explicit term we obtain the following terms
∂

∂θi
log p

(
Y|f̂ ,θ

)

∂

∂θi
f̂>Kθ

−1
f̂ = −f̂>

(
Kθ
−1 ∂Kθ

∂θi
Kθ
−1
)
f̂

∂

∂θi
log |I + WθKθ | = Tr

[
(I + KθWθ)−1·

(
∂Wθ

∂θi
Kθ + Wθ

∂Kθ

∂θi

)]

Referring to the implicit term we have (without any assump-
tions regarding the type of parameter)

∂ log q
(
Y|X̄,X ,θ

)

∂fj
= −1

2
Tr

[
(I + KθWθ)−1

(
Kθ

∂Wθ

∂fj

)]

∂fj
∂θi

is found by exploiting that f̂ = Kθ∇ log p
(
Y|f̂ ,θ

)
at

the current solution leading to the following result

∂fj

∂θi
= (I + KθWθ)−1

(
∂Kθ

∂θi

) ∂ log p
(
y|f̂ ,θ

)

∂f

+ (I + KθWθ)−1Kθ
∂

∂θi



∂ log p

(
y|f̂ ,θ

)

∂f




We may exploit that the inverse of the common factor
(I + KθWθ) can be computed using the Cholesky decompo-
sition which enters robustly into the individual expressions for
added numerical stability. The expression above is a general
result and valid for both likelihood parameters, covariance
parameters and pseudo inputs. In addition, the derivatives
of the likelihood, Jacobian, Hessian and covariance function
are required. One should be aware that some of the deriva-
tives are zero depending on the actual parameter type (e.g.
∂Kθ/∂θL). The gradients are based on the current Laplace
approximation. Even though we take into account implicit
dependencies, there is in general no guarantee for strictly
monotonic behavior, thus a robust optimization method is re-
quired. In practice we have found the BFGS implementation
in the immoptibox4 robust.

4www2.imm.dtu.dk/%7Ehbn/immoptibox/
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ABSTRACT

A fundamental and general representation of audio and mu-
sic which integrates multi-modal data sources is important for
both application and basic research purposes. In this paper
we address this challenge by proposing a multi-modal ver-
sion of the Latent Dirichlet Allocation model which provides
a joint latent representation. We evaluate this representation
on the Million Song Dataset by integrating three fundamen-
tally different modalities, namely tags, lyrics, and audio fea-
tures. We show how the resulting representation is aligned
with common ’cognitive’ variables such as tags, and provide
some evidence for the common assumption that genres form
an acceptable categorization when evaluating latent represen-
tations of music. We furthermore quantify the model by its
predictive performance in terms of genre and style, providing
benchmark results for the Million Song Dataset.

Index Terms— Audio representation, multi-modal LDA,
Million Song Dataset, genre classification.

1. INTRODUCTION

Music representation and information retrieval are issues of
great theoretical and practical importance. The theoretical
interest relates in part to the close interplay between audio,
human cognition and sociality, leading to heterogenous and
highly multi-modal representations in music. The practical
importance, on the other hand, is evident as current music
business models suffer from the lack of efficient and user
friendly navigation tools. We are interested in representations
that directly support interactivity, thus representations based
on latent variables that are well-aligned with cognitively (se-
mantic) relevant variables [1]. User generated tags can be
seen as such ’cognitive variables’ since they represent deci-
sions that express reflections on music content and context.

This work was supported in part by the Danish Council for Strategic Re-
search of the Danish Agency for Science Technology and Innovation under
the CoSound project, case number 11-115328. Bob L. Sturm, Aalborg Unin-
versity Copenhagen is acknowledged for suggestion of relevant references in
music interpretation.

Clearly, such tags are often extremely heterogenous, high-
dimensional, and idiosyncratic as they may relate to any as-
pect of music use and understanding.

Moving towards broadly applicable and cognitively rele-
vant representations of music data is clearly contingent on the
ability to handle multi-modality. This is reflected in current
music information research that use a large variety of repre-
sentations and models, ranging from support vector machine
(SVM) genre classifiers [2]; custom latent variable models
models for tagging [3]; similarity based methods for recom-
mendation based on Gaussian Mixture models [4]; and latent
variable models for hybrid recommendation [5]. A significant
step in the direction of flexible multi-modal representations
was taken in the work of Law et al. [6] based on the proba-
bilistic framework of Latent Dirichlet Allocation (LDA) topic
modeling. Their topic model representation of tags allows
capturing rich cognitive semantics as users are able to tag
freely without being constrained by a fixed vocabulary. How-
ever, with a strong focus on automatic tagging Law et al. re-
frained from developing a universal representation - symmet-
ric with respect to all modalities. A more symmetric represen-
tation is pursued in recent work by Weston et al. [7]; however,
without a formal statistical framework it offers less flexibility,
e.g., in relation to handling missing features or modalities.
This is often a challenge encountered in real world music ap-
plications.

In this work we pursue a multi-modal view towards a
unifying representation, focusing on latent representations
informed symmetrically by all modalities based on a multi-
modal version of the Latent Dirichlet Allocation model. In
order to quantify the approach, we evaluate the model and
representation in a large-scale setting using the million song
dataset (MSD) [8], and consider a number of models trained
on combinations of the three basic modalities: user tags (top-
down view), lyrics (meta-data view) and content based audio
features (bottom-up view). First, we show that the latent
representation obtained by considering the audio and lyrics
modalities is well aligned—in an unsupervised manner - with
’cognitive’ variables by analyzing the mutual information



between the user generated tags and the representation itself.
Secondly, with knowledge obtained in the first step, we eval-
uate auxiliary predictive tasks to demonstrate the predictive
alignment of the latent representation with well-known hu-
man categories and metadata information. In particular we
consider genre and styles provided by [9], none of which is
used to learn the latent semantics themselves. This leads to
benchmark results on the MSD and provides insight into the
nature of generative genre and style classifiers.

Our work is related to a rich body of studies in music
modeling, and multi-modal integration. In terms of non-
probabilistic approaches this includes the already mentioned
work of Weston et al. [7]. McFee et al. [10] showed how
hypergraphs (see also [11]) can be used to combine multiple
modalities with the possibilities to learn the importance of
each modality for a particular task. Recently McVicar et al.
[12] applied multi-way CCA to analyze emotional aspects of
music based on the MSD.

In the topic modelling domain, Arenas-Garcı́a et al. [13]
proposed multi-modal PLSA as a way to integrate multiple
descriptors of similarity such as genre and low-level audio
features. Yoshii et al. [5, 14] suggested a similar approach for
hybrid music recommendation integrating subject taste and
timbre features. In [15], standard LDA was applied with au-
dio words for the task of obtaining low-dimensional features
(topic distributions) applied in a discriminative SVM classi-
fier. For the particular task of genre classification et al. [16]
applied the pLSA model as a generative genre classifier. Our
work is a generalization and extension of these previous ideas
and contributions based on the multi-modal LDA, multiple
audio features, audio words and a generative classification
view.

2. DATA & REPRESENTATION

The recently published million song dataset (MSD) [8] has
highlighted some of the challenges in modern music informa-
tion retrieval; and made it possible to evaluate top-down and
bottom-up integration of data sources on a large scale. Hence,
we naturally use the MSD and associated data sets to evalu-
ate the merits of our approach. In defining the latent seman-
tic representation, we integrate the following modalities/data
sources.

The tags, or top-down features, are human annotations
from last.fm often conveying information about genre and
year of release. Since users have consciously annotated the
music in an open vocabulary, such tags are considered an ex-
pressed view of the users cognitive representation. The meta-
data level, i.e., the lyrics, is of course nonexistent for for ma-
jority of certain genres, and in other cases simply missing
for individual songs which is not a problem for the proposed
model. The lyrics are represented in a bag-of-words style,
i.e., no information about the order in which the terms occurs
is included. The content based or bottom up features are de-

Fig. 1: Graphical model of the multi-modal LDA model

rived from the audio itself. We rely on the Echonest feature
extraction1 already available in for the MSD, namely timbre,
chroma, loudness, and tempo. These are orginally derived in
event related segments, but we follow previous work [17] by
beat aligning all features obtaining an meaningful alignment
with music related aspects.

In order to allow for practical and efficient indexing and
representation, we abandon the classic representation of using
for example a Gaussian mixture model for representing each
song in its respective feature space. Instead we turn to the so-
called audio word approach (see e.g. [18, 19, 3, 17]) where
each song is represented by a vector of counts of (finite) num-
ber of audio words (feature vector). We obtain these audio
words by running a randomly initiated K-means algorithm on
a 5% random subset of the MSD for timbre, chroma, loudness
and tempo with 1024, 1024, 32, and 32 clusters, respectively.
All beat segments in a all songs are then quantized into these
audio words and the resulting counts, representing the four
different audio features, are concatenated to yield the audio
modality.

3. MULTI-MODAL MODEL

In order to model the heterogeneous modalities outline above,
we turn to the framework of topic modeling. We propose to
use a multi-modal modification of the standard LDA to repre-
sent the latent representation in a symmetric way relevant to
many music applications. The multi-modal LDA, mmLDA,
[20] is a straight forward extension of standard LDA topic
model [21], as shown in Fig. 1. The model and notation is
easily understood by the way it generates a new song by the
different modalities, thus the following generative process de-
fines the model:

• For each topic z ∈ [1;T ] in each modality m ∈ [1;M ]

Draw φ
(m)
z ∼ Dirichlet(β(m)).

This is the parameters of the zth topic’s distribution over vo-
cabulary [1;V (m)] of modality m.

• For each song s ∈ [1;S]

– Draw θs ∼ Dirichlet(α).
This is the parameters of the sth song’s distribution
over topics [1;T ].

– For each modality m ∈ [1;M ]

∗ For each word w ∈ [1;Nsm]

· Draw a specific topic z(m) ∼ Categorical(θs)

1http://the.echonest.com
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Fig. 2: Normalized average mutual information (avgNMI) be-
tween the latent representation defined by audio and lyrics for
T = 128 topics and the 200 top-ranked tags. avgNMI is com-
puted on the test set in each fold. The popularity of each tag
is indicated in parenthesis.

· Draw a word w(m) ∼ Categorical(φ(m)

z(m))

A main characteristic of mmLDA is the common topic
proportions for allM modalities in each song, s, and separate
word-topic distributions p(w(m)|z) for each modality, where
z denotes a particular topic. Thus, each modality has its own
definition of what a topic is in terms of its own vocabulary.

Model inference is performed using a collapsed Gibbs
sampler [22] similar to the standard LDA. The Gibbs sam-
pler is run for a limited number of complete sweeps through
the training songs, and the model state with the highest model
evidence within the last 50 iterations is regarded as the MAP
estimate. From this MAP sample, point estimates of the topic-
song distribution, p̂(z|s), and the modality, m, specific word-
topic distribution, p̂(w(m)|z), can be computed based on the
expectations of the corresponding Dirichlet distributions.

Evaluation of model performance on a unknown test song,
s∗, is performed using the procedure of fold-in [23, 24] by
computing the point estimate of the topic distribution, p̂(z|s∗)
for the new song, by keeping the all the word-topic counts
fixed during a number of new Gibbs sweeps. Testing on a
modality, not included in the training phase, requires a point
estimate of the word-topic distribution, p(w(m∗)|z), of the
held out modality, m∗, of the training data. This is obtained
by fixing the song-topic counts while updating the word-topic
counts for that specific modality. This is similar to the fold-in
procedure used for test songs.

4. EXPERIMENTAL RESULTS & DISCUSSION

4.1. Alignment

The first aim is to evaluate the latent representation’s align-
ment with a human ’cognitive’ variable, which we previously
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Fig. 3: Classification accuracy for T ∈ {32, 128, 512}. Dark
blue: Combined model; Light Blue: Tags; Green: Lyrics;
Orange: Audio; Red: Audio+Lyrics.

argued could be the open vocabulary tags. We do this by in-
cluding only the lower level modalities of audio and lyrics
when estimating the model. Then the normalized mutual in-
formation between a single tag and the latent representations,
i.e., the topics, is calculated for all the tags.

Thus for a single tag, wi
(tag) we can compute the mutual

information between the tag and the topic distribution for a
specific song, s as:

MI
(
wi

(tag), z|s
)

= (1)

KL
(
p̂
(
wi

(tag), z|s
)
||p̂
(
wi

(tag)|s
)
p̂ (z|s)

)
,

where KL(·) denotes the Kullback-Leibler divergence. We
normalize the MI to be in [0; 1], i.e,

NMI
(
wi

(tag), z|s
)

= 2
MI
(
wi

(tag), z|s
)

H
(
wi

(tag)|s
)

+H (z|s) ,

where H(·) denotes the entropy. Finally, we compute the
average over all songs to arrive at the final measure of
alignment for a specific tag, given by avgNMI(wi

(tag)) =
1
S

∑
s NMI

(
wi

(tag), z|s
)
.

Fig. 2 shows a sorted list of tags, where tags with high
alignment with the latent representation have higher average
NMI (avgNMI). It is notable that the combination of the au-
dio and lyrics modality, in defining the latent representation,
seems to align well with genre-like and style-like tags. On the
contrary, emotional and period tags are relatively less aligned
with the representation. Also note that the alignment is not
simply a matter of the tag being the most popular as can
be seen from Fig. 2. Less popular tags are ranked higher
by avgNMI than very popular tags, suggesting that some are
more specialized in terms of the latent representation than
others.

The result gives merit to the idea of using genre and styles
as proxy for evaluating latent representation in comparison
with other open vocabulary tags, since we - from lower level
features, such as audio features and lyrics - can find latent
representations which align well with high-level, ’cognitive’
aspects in an unsupervised way. This is in line with many
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Fig. 4: Dark blue: Combined model, Light Blue: Tags, Green: Lyrics, Orange: Audio, Red: Audio+Lyrics, genre, T = 128.
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Fig. 5: Confusion matrices for genre and 128 topics. The color level indicates the classification accuracy.

studies in music informatics on western music (see e.g. [25,
26, 27]) which indicate coherence between genre and tag cat-
egories and cognitive understanding of music structure. In
summary, the ranking of tag alignment using our modeling
approach on the MSD provides some evidence in favor of
such coherence.

4.2. Prediction

Given the evidence presented for genre and style being the
relatively most appropriate human categories, our second aim
is to evaluate the predictive performance of the multi-modal
model for genre and style, and we turn to the recently pub-
lished extension of the MSD [9] for reference test/train splits
and genre and style labels. In particular, we use the balanced
splits defined in [9].

For the genre case, this results in 2000 labeled examples
per genre and 15 genres, thus resulting in 30, 000 songs. We
estimate the predictive genre performance by 10-fold cross-
validation. Fig. 4 shows the per-label classification accuracy
(perfect classification equals 1). The total genre classification
performance is illustrated in Fig. 3a. The corresponding re-
sult for style classification, based on a total of 50, 000 labeled
examples, is shown in Fig. 3b. Both results are generated us-
ing T = 128 topics, 2000 Gibbs sweeps and predicting using
the MAP estimate from the Gibbs sampler.

We first note that the combination of all modalities per-
forms the best and significantly better than random as seen
from Fig. 3, which is encouraging, and support the multi-
modal approach. It is furthermore noted that the tag modality
is able to perform very well. This indicates that despite the
possibly noisy user expressed view, the model is able to find
structure in line with the taxonomy defined in the reference
labels of [9]. More interesting is perhaps the audio and lyric

modalities and the combination of the two. This shows that
lyrics performs the worst for genre, possibly due to the miss-
ing data in some tracks, while the combination is significantly
better. For style there is no significant difference between au-
dio and lyrics.

Looking at the genre specific performance in Fig. 4 we
find a significant difference between the modalities. It ap-
pears that the importance of the modalities is partly in line
with the fundamentally different characteristics of each spe-
cific genre. For example ’latin’ is driven by very characteris-
tic lyrics. Further insight can be obtained by considering the
confusion matrices which show some systematic pattern of er-
ror in the individual modalities, whereas the combined model
shows a distinct diagonal structure, highlighting the benefits
of multi-modal integration.

5. CONCLUSION

In this paper, we proposed the multi-way LDA as a flexible
model for analyzing and modeling multi-modal and hetero-
geneous music data in a large scale setting. Based on the
analysis of tags and latent representation, we provided evi-
dence for the common assumption that genre may be an ac-
ceptable proxy for cognitive categorization of (western) mu-
sic. Finally, we demonstrated and analyzed the predictive per-
formance of the generative model providing benchmark result
for the Million Song Dataset, and a genre dependent perfor-
mance was observed. In our current research, we are looking
at purely supervised topic models trained for, e.g. genre pre-
diction. In order to address truly multi-modal and multi-task
scenarios such as [7], we are currently pursuing an extended
probabilistic framework that include correlated topic models
[28], multi-task models [29], and non-parametric priors [30].



6. REFERENCES

[1] L.K. Hansen, P. Ahrendt, and J. Larsen, “Towards cognitive
component analysis,” in AKRR05-International and Interdis-
ciplinary Conference on Adaptive Knowledge Representation
and Reasoning, 2005.

[2] C. Xu, N.C. Maddage, and X. Shao, “Musical genre classi-
fication using support vector machines,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp.
429–432, 2003.

[3] M. Hoffman, D. Blei, and P. Cook, “Easy as CBA: A simple
probabilistic model for tagging music,” Proc. of ISMIR, pp.
369–374, 2009.

[4] F. Pachet and J.J. Aucouturier, “Improving timbre similarity:
How high is the sky?,” Journal of negative results in speech
and audio, pp. 1–13, 2004.

[5] Y. Kazuyoshi, M. Goto, K. Komatani, R. Ogata, and H.G.
Okuno, “Hybrid collaborative and content-based music rec-
ommendation using probabilistic model with latent user pref-
erences,” in Proceedings of the 7th International Conference
on Music Information Retrieval (ISMIR, 2006, pp. 296–301.

[6] E. Law, B. Settles, and T. Mitchell, “Learning to tag from
open vocabulary labels,” Machine Learning and Knowledge
Discovery in Databases, pp. 211–226, 2010.

[7] J. Weston, S. Bengio, and P. Hamel, “Multi-Tasking with Joint
Semantic Spaces for Large- Scale Music Annotation and Re-
trieval Multi-Tasking with Joint Semantic Spaces for Large-
Scale Music Annotation and Retrieval,” Journal of New Music
Research, , no. November 2012, pp. 37–41, 2011.

[8] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere,
“The million song dataset,” in Proceedings of the 12th Inter-
national Conference on Music Information Retrieval (ISMIR
2011), 2011.

[9] A. Schindler, R. Mayer, and A. Rauber, “Facilitating com-
prehensive benchmarking experiments on the million song
dataset,” in 13th International Conference on Music Informa-
tion Retrieval (ISMIR 2012). 2012.

[10] B. McFee and G. R. G. Lanckriet, “Hypergraph models of
playlist dialects,” in Proceedings of the 13th International
Society for Music Information Retrieval Conference, Fabien
Gouyon, Perfecto Herrera, Luis Gustavo Martins, and Meinard
Müller, Eds. 2012, pp. 343–348, FEUP Edições.

[11] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He,
“Music Recommendation by Unified Hypergraph: Combining
Social Media Information and Music Content,” pp. 391–400,
2010.

[12] M. Mcvicar and T. de Bie, “CCA and a Multi-way Exten-
sion for Investigating Common Components between Audio ,
Lyrics and Tags .,” in CMMR, 2012, number June, pp. 19–22.

[13] J. Arenas-Garcı́a, A. Meng, K.B. Petersen, T. Lehn-Schiøler,
L.K. Hansen, and J. Larsen, Unveiling Music Structure Via
PLSA Similarity Fusion, pp. 419–424, IEEE, 2007.

[14] K. Yoshii and M. Goto, “Continuous pLSI and smoothing tech-
niques for hybrid music recommendation,” International Soci-
ety for Music Information Retrieval Conference, pp. 339–344,
2009.

[15] S. K., S. Narayanan, and S. Sundaram, “Acoustic topic model
for audio information retrieval,” pp. 2–5, 2009.

[16] Zhi Zeng, Shuwu Zhang, Heping Li, W. Liang, and Haibo
Zheng, “A novel approach to musical genre classification using
probabilistic latent semantic analysis model,” in IEEE Inter-
national Conference on Multimedia and Expo (ICME), 2009,

2009, pp. 486–489.
[17] T. Bertin-Mahieux, “Clustering beat-chroma patterns in a large

music database,” in International Society for Music Informa-
tion Retrieval Conference, 2010.

[18] Y. Cho and L.K. Saul, “Learning dictionaries of stable autore-
gressive models for audio scene analysis,” Proceedings of the
26th Annual International Conference on Machine Learning -
ICML ’09, pp. 1–8, 2009.

[19] K. Seyerlehner, G. Widmer, and P. Knees, “Frame level audio
similarity-a codebook approach,” Conference on Digital Audio
Effects, pp. 1–8, 2008.

[20] D.M. Blei and M.I. Jordan, “Modeling annotated data,” Pro-
ceedings of the 26th annual international ACM SIGIR confer-
ence on Research and development in informaion retrieval, pp.
127–134, 2003.

[21] D. M. Blei, A. Ng, and M. Jordan, “Latent Dirichlet alloca-
tion,” The Journal of Machine Learning Research, vol. 3, pp.
993–1022, 2003.

[22] T.L. Griffiths and M. Steyvers, “Finding scientific topics.,”
Proceedings of the National Academy of Sciences of the United
States of America, pp. 5228–35, Apr. 2004.

[23] H.M. Wallach, I. Murray, Ruslan Salakhutdinov, and
D. Mimno, “Evaluation methods for topic models,” Proceed-
ings of the 26th Annual International Conference on Machine
Learning - ICML ’09, , no. d, pp. 1–8, 2009.

[24] T. Hofmann, “Probabilistic latent semantic analysis,” Proc. of
Uncertainty in Artificial Intelligence, UAI, p. 21, 1999.

[25] J.H. Lee and J..S Downie, “Survey of music information needs,
uses, and seeking behaviours: Preliminary findings,” in Proc.
of ISMIR, 2004, pp. 441–446.

[26] J. Frow, Genre, Routledge, New York, NY, USA, 2005.
[27] E. Law, “Human computation for music classification,” in Mu-

sic Data Mining, T. Li, M. Ogihara, and G. Tzanetakis, Eds.,
pp. 281–301. CRC Press, 2011.

[28] S. Virtanen, Y. Jia, A. Klami, and T. Darrell, “Factorized Multi-
Modal Topic Model,” auai.org, 2010.

[29] A. Faisal, J. Gillberg, J. Peltonen, G. Leen, and S. Kaski,
“Sparse Nonparametric Topic Model for Transfer Learning,”
dice.ucl.ac.be.

[30] Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei, “Hierarchi-
cal dirichlet processes,” Journal of the American Statistical
Association, vol. 101, 2004.



156



Appendix I

Personalized Audio System -
a Bayesian Approach

Jens Brehm Nielsen, Bjørn Sand Jensen, Toke Jansen Hansen and Jan Larsen,
Personalized Audio System - a Bayesian Approach, 135th AES Convention,
2013.

Note: Only a pre-print of the published paper is included, the published version
can be found via the publisher, http://www.aes.org/e-lib/browse.cfm?elib=17048.



158 Appendix I



Personalized Audio Systems
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Abstract

Modern audio systems are typically equipped with several user-adjustable
parameters unfamiliar to most users listening to the system. To obtain
the best possible setting, the user is forced into multi-parameter optimiza-
tion with respect to the users’s own objective and preference. To address
this, the present paper presents a general inter-active framework for per-
sonalization of such audio systems. The framework builds on Bayesian
Gaussian process regression in which a model of the users’s objective func-
tion is updated sequentially. The parameter setting to be evaluated in a
given trial is selected by model-based sequential experimental design. A
Gaussian process model is proposed which incorporates correlation among
particular parameters providing better modeling capabilities compared to
a standard model. A five-band equalizer is considered for demonstra-
tion purposes, in which the parameters are optimized using the proposed
framework. Twelve test subjects obtain a personalized setting with the
framework, and these settings are significantly preferred to those obtained
with random experimentation.

1 Introduction

The ever increasing number of features and processing possibilities in many
modern multimedia systems, such as personal computers, mobile phones, hear-
ing aids and home entertainment systems, has made it possible for users to
customize these systems significantly. A downside in this trend is the large
number of user-adjustable parameters which makes it a daunting and complex
task to actually adjust/optimize the systems optimally. This is because users
have to navigate in a high-dimensional parameter space, which makes it ex-
tremely difficult for users to find even a local optimum. For audio systems, the
optimization is further complicated by perceptual and cognitive aspects of the
human auditory and cognitive system, which result in a significant spread in

1
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Figure 1: A conceptual overview of the interactive system. At step (1) we draw
a new EQ from the current estimate of the user’s objective function. Next, at
step (2) this particular EQ is associated with a ball, in this case number eight, in
the visualized user interface. Finally, after the user has rated the new EQ, the
objective function is updated to reflect current positions of all previous balls,
this update occurs at step (3). We emphasize that the user at any time may
select between previously sampled EQ by clicking the balls, making the current
song play through the newly selected EQ.

users’s opinions concerning the adjustment of a particular system. It is there-
fore of great interest to find and evaluate fast and flexible tools for robustly
optimizing user-adjustable parameters, with the aim to rapidly obtain a truly
personalized audio system setting.

Prime examples of complex audio systems are hearing aids, where hundreds
of parameters make up a unique and personal experience. It is therefore nat-
ural that this field has considered ways to learn an optimal setting based on
preference (Kuk et. al. [8] and Baskent et. al. [1]), although these are currently
based on non-probabilistic methods. Recently—and the closest related to our
approach—Birlutiu et. al. [4, 3] have proposed two probabilistic approaches
driven mainly by a multi-task formulation utilizing the information transfer
among users, to learn a complete preference model accounting for all preference
relations. For the purpose of optimizing parameters, it is not efficient to learn
a complete model over a high-dimensional parameter space, because the model
is only required to be accurate around possible optimal parameters.

In audio reproduction systems—like home entertainment and professional
mixing equipment—preference learning approaches are relatively unknown, de-
spite the clear evidence that personalization may be beneficial in for example
equalization (Paterson [11] and Zhang et. al. [18]). Existing approaches such as
Reed [13], Pardo et. al. [10], and Sabin et. al. [14], are based on non-probabilistic
approaches, thus neglecting the highly stochastic nature of perceptual responses.

2



In this work we focus on audio reproduction systems and the outlined task
of optimizing multiple parameters in such systems for an individual user listen-
ing to the output of the system. For this purpose, we propose and consider a
combination of robust Bayesian modeling, an engaging user interface for user
feedback and global optimization techniques (active learning) in an interactive
loop visualized in Fig. 1. The loop constitutes a general framework where the
inherent uncertainty in user feedback is addressed from a Bayesian viewpoint
in which the belief in the user’s (unknown) objective function is modeled with
(warped) Gaussian process (GP) regression [15]. The framework uses an intu-
itive and simple graphical user interface for obtaining user ratings, which allows
the user to listen to previously rated settings thus serving as anchors/references
for future ratings. In contrast to standard practice, we do however not only al-
low the user to listen to previous settings, but we also allow the user to change
all the ratings of previous settings, if for some reason a new setting would change
e.g. the span of the scale. This is possible, since we are constantly updating our
regression model to reflect the belief about the user’s objective function given
the ratings obtained so far. Finally, we propose to use a sequential optimiza-
tion technique to rapidly find a (possibly local) optimum of the user’s objective
function. The sequential design takes advantage of the Bayesian formulation
by including the belief about the user’s objective function. This significantly
reduces the required number of settings that the user should rate in order to
find an optimum.

We furthermore consider the fact that certain parameters may be correlated
with respect to the user’s objective. An example could be the compression
ratio, the attack time and the release time in a compressor. To exploit such
correlation and obtain better modeling capabilities, we suggest a specific model
which assumes correlation between specific input parameters.

To demonstrate the potential of the framework for personal audio system
optimization, we use a five-band constant-Q equalizer (EQ) as the running ex-
ample, because the parameters (gains) in an EQ is something that we (as profes-
sionals) more or less all can relate to. We are aware that any audio-engineering
professional will probably be able to quickly tune the five parameters of the EQ
to his own objective. However, this is actually not a very typical scenario. Typ-
ically, users of home entertainment systems are untrained, and thus, have very
little intuition about the parameters that they have the opportunity to tune
and close to no intuition at all about the interplay between parameters. Hence
with for instance five parameters controlling a virtual surround sound system
with virtual base enhancement, most users would seek an optimal setting using
trial and error (random experimentation). This is the premises in which the EQ
example should be considered and the EQ is just convenient for demonstration
purposes.

Through model comparison, we first show that the model with assumed cor-
relation between input parameters improves the modeling capabilities compared
to a traditional GP model without assumed correlation. The analysis is per-
formed on real-world data, where 21 test subjects have rated different randomly
chosen settings of the EQ. Even for this EQ with relative few bands—which is

3



thus perceptually well separated—we would expect the gains in adjacent bands
to be somewhat correlated with regards to the user’s objective. Secondly, we
evaluate the usefulness of the entire framework in a real-world experiment where
personalization of the EQ have been conducted for twelve test subjects. As the
EQ has over fifty-nine thousands unique settings, the hypothesis is that the
preferred setting will be hard to find (for the typically untrained user) with-
out an efficient sequential design approach and correspondingly good modeling
capabilities. The results from the real-world listening experiments focusing on
the statistical difference between random experimentation and sequential exper-
imental design, show a clear advantage of the sequential design approach.

Our contribution is thus three fold: First in Sec. 2, we propose a general
personalization framework with an intuitive user interface (Sec. 2.3), a princi-
pled modeling approach using warped Gaussian processes extended to expect
correlation between adjacent input parameters (Sec. 2.1) and a sequential design
approach (Sec. 2.2). Secondly in Sec. 3.2, we show that the GP model extension
provides better modeling capabilities for our specific purpose. Thirdly, we eval-
uate the entire framework by a listening experiment in a real-world interactive
scenario and outline the results in Sec. 3.3. A discussion is provided in Sec. 4
and the paper is concluded in Sec. 5.

2 Personalization Framework

The proposed personalization framework uses an interactive loop to discover the
user’s preferred setting of a particular audio system, where we as an example
use the EQ. The interactive loop is visualized in Fig. 1. The loop can conceptu-
ally be divided into three parts: a preference modeling part, a sequential design
part and an interface part. The preference modeling part presents how a user’s
objective function over EQ settings is learned based on user ratings. The se-
quential design part covers how to choose new EQ settings to be rated based on
what the model currently predicts. Finally, the interface part covers the design
of the graphical user interface, such that it is both intuitive and easy to use for
the users. The three parts are described in the following three sections.

2.1 Preference Modeling

We represent each system setting as a d = 5 dimensional vector of parameters,
x = [x1, ..., xd]

>. Next, we assumed that the user’s objective is an unobserved
real-valued stochastic function (or process), such that each unique setting xi has
a corresponding real-valued function value, f(xi), expressing the user’s prefer-
ence for the particular setting. This function is to be learned—and subsequently
maximized—trough a number of experiments where we observe the user’s ex-
pressed preference by a rating on a bounded scale, y ∈ ]0; 1[, where 0 is Bad and
1 is Good (see interface (2) on Fig. 1). At some point the user has evaluated n
such distinct system settings xi ∈ X collected in X = {xi|i = 1, ..., n}, with a
related set of n responses denoted Y = {yi|i = 1, ..., n}.
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We model the function mapping from settings, xi, to ratings, yi, by a so-
called warped Gaussian process [15]. A standard Gaussian process (GP) is a
stochastic process defined as a collection of random variables, any finite subset
of which must have a joint Gaussian distribution [12]. In effect, the GP is
placed as a prior over any finite set of functional values f = [f1, f2, ..., fn]>,
where fi = f(xi), resulting in a finite multivariate Gaussian distribution over
the set as f |X ∼ N (0,KXX), where each element of the covariance matrix KXX

is given by a covariance function k(·, ·) such that [KXX]i,j = k(xi,xj). The GP
prior can be used in non-parametric Bayesian regression frameworks where the
likelihood function can be parameterized by a smooth and continuous function
f(·).

However, our regression setup is special due to the bounded nature of the rat-
ings. We therefore use a warped Gaussian process in which the original ratings in
Y are transformed into a form where the data is modeled by a traditional Gaus-
sian noise model [12, Chapter 2]. Several warping functions would apply, but
a natural choice is the inverse cumulative Gaussian (probit) Φ−1(·)—with zero
mean and unity variance—such that observations are warped as zi = Φ−1(yi).

The final model is defined by,

σs|θs ∼ U(0,∞)

σ`|θ` ∼ U(0,∞)

σ|θ` ∼ U(0,∞)

fi|σs, σ` ∼ GP
(
m (xi) , k (xi, ·)σs,σ`

)

zi|fi ∼ N (fi, σ) (1)

zi = Φ−1 (yi) , (2)

where σ` is the length scale of the covariance function, σs is the standard de-
viation of the latent function, and σ is the noise standard deviation (in latent
space). U(a, b) denotes a uniform hyper prior on the open interval from a to
b, i.e. an improper and non-informative prior. Alternatively, so-called weakly-
informative hyper priors would apply—especially over the length scale σ`—
such as the half-student-t hyper prior [5, 16], which could be applied to provide
a more robust inference and prediction scheme avoiding the GP model to fit
hyperplanes with only few observations. We note that the observation noise, σ,
can be included in the covariance function.

Given this model, the main question remains regarding the covariance (or
kernel) function, which effectively defines the smoothness of the function. We
consider two covariance functions based on the general form of the squared
exponential kernel [12]

k (xi,xj)

= σs exp

(
− 1

σ`
(xi − xj)

>
Λ−1 (xi − xj)

)
.

(3)
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In the first case, Λ is the identity matrix leading to the well-known (isotropic)

squared exponential covariance function kiso (xi,xj) = σs exp
(
− 1
σ`
‖xi − xj‖2

)
.

In the second case, Λ is a general positive semi-definite matrix defining a cor-
relation between parameters (input space) as explicit prior information. Here
will denote this variant as the Mahalanobis covariance function1, kmah (xi,xj)
and set

Λmah =




1 0.5 0.2 0 0
0.5 1 0.5 0.2 0
0.2 0.5 1 0.5 0.2
0 0.2 0.5 1 0.5
0 0 0.2 0.5 1



. (4)

The effect of the two options on the EQ example will be evaluated with reference
to the standard case as iso and the Mahalanobis case as mah.

We turn to a standard GP inference scheme [12] in which the covariance and
likelihood parameters, σs, σ`, σ, are approximated by point estimates by maxi-
mizing the marginal likelihood (or evidence) using a BFGS method and where
the posterior p(f |Y,X) is analytical tractable [15]. For the BFGS methods, the
parameters are always initialized as σs = 1, σ` = 1, σ = 1. The predictive mean
and (co)variance of the latent function, E(f∗) and V(f∗), are given in standard
form [12] as

E {f∗} = K>XX∗
[
KXX + σ2

i I
]−1

Φ−1 (Y) (5)

V {f∗} = KX∗X∗ −K>XX∗
[
KXX + σ2

i I
]−1

KXX∗ (6)

where KAB is the kernel matrix containing either evaluations between training
inputs, A = B = X, test inputs, A = B = X∗, or between training and test
inputs, A = X,B = X∗.

The predictive distribution and in particular the predictive uncertainty is a
clear advantage of the probabilistic GP framework, since the predictive mean
and predictive (co)variance can be used to determine the information gain in
including a new candidate point into the model as considered in the next section.

2.2 Sequential Experimental Design

Classical experimental designs such as Latin Squares or random experimentation
[9] become increasingly infeasible in high dimensions. As an alternative, we
propose to use sequential design approaches which, by greedy selection of the
most informative next sample, potentially achieve much faster convergence than
fixed designs [7].

The main purpose is to define a selection criterion which finds the optimal
of the (unknown) objective function. The applied criterion is a slightly modified

1Sometimes also referred to as a anisotropic (squared exponential) covariance functions
[12].
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version of the so-called Expected Improvement (EI) [7], a known criterion in the
design of computer experiment (DACE) community. The expected improvement
is for each candidate point, xj , defined as,

EI(xj) = σEI · N
(
µEI
σEI

)
+ µEI · Φ

(
µEI
σEI

)
, (7)

where N (·) is the standard Normal distribution and Φ(·) is the standard cu-
mulative Gaussian as before. Given the predictive distribution the EI is given
by,

µEI = µj − µmax

σ2
EI = σ2

j + σ2
max − 2σj,max

where µj and σj is the predictive mean and variance of the test point and µmax

and σmax is the predictive mean and variance of the current maximum of the
objective function (using the predictive mean as the predictor), i.e., the current
best setting, all of which originate from Eq. 5-6. The covariance between the
two function values, σj,max, requires correlated predictions which we refrain
from due to computation burden, thus σj,max = 0,∀xj . Hence, the selection of
a new point to evaluate is given by

xnew = arg max
xj

EI (xj)

which is then included in the current set of training points and evaluated by the
user through the user interface. We refer to this as the active configuration,
where the very first setting for the user to evaluate is chosen randomly. A
random configuration rnd is included in which samples are selected randomly
to provide a baseline method.

The interactive framework leaves four strategies to be investigated experi-
mentally: rnd-iso, rnd-mah, active-iso and active-mah.

2.3 Interface

When applying absolute ratings, it is important to define anchor and/or ref-
erence points [2]. This allows users to compare stimuli with a fixed reference,
such that each rating is calibrated both with respect to previous ratings, but
also with respect to yet unobserved stimuli, which might redefine the end points
of the rating scale. To address these two issues a graphical user interface sim-
ilar to [10] is designed. Users can listen to previous settings (references) and
are allowed to change previous ratings based on the new one. Obviously, this
means that ratings are neither directly comparable across users nor between
iterations. However, it is not of particular interest to use ratings across users to
formulate one single optimal setting, but instead we are interested in personal-
ized settings—one for each user.
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3 Experiment

To evaluate the different model configurations and experimental designs in a
real-world scenario, an experiment was conducted, in which the five gains of the
EQ are to be optimized by the four different versions of the proposed framework.
The procedure and results are described in the following section.

3.1 Procedure

The experiment consisted of three parts: (1), (2) and (3) as visualized in Fig. 2.
During part (1), the subjects rate ten randomly chosen balls to learn how to
use the interface and to get an impression of the stimuli (EQ processed music).
Part (2) consisted of three sessions for which the order of sessions was balanced
across test subjects. In each of the three sessions a particular model (iso or mah)
and sequential design (rnd or active) are used to find a personalized setting of
the EQ for the test subject. Finally in part (3), the preferred settings, found
by each of the four combinations of models and sequential designs after 10, 15,
20, 25 and 30 presented settings, are determined by which model predicted the
setting that is rated highest (in the tournament - see Fig. 2). Each tournament
(as defined in Fig. 2) was repeated twice resulting in ten tournaments for which
the sequence was randomized.

The sound was played back to the test subjects through Sennheiser HD650
headphones and a FirestoneAudio FUBAR DACIII headphone amplifier at con-
stant level. The output level was furthermore loudness normalized to the same
level using a A-weighting filter, with the purpose to make the rating process
easier for the test subjects, such that the test subject primarily focus on the
tonal qualities—not the loudness. An interval of 31.9 seconds in the beginning
of the track ”Sleeping with the Light on” by Teitur was used as the music piece.

Figure 2: Visualization of the experiment with its 3 sessions: (1) Training, (2)
Sessions and (3) Tournament.
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Figure 3: Predictive log-likelihood ratio (Bayes factor) over all leave-one-out
cross-validation splits for all twenty-one test subjects. The p0-value gives the
probability of the null-hypothesis that the median is equal to zero (the to mod-
els are equally well) with the alternative hypothesis that the median is larger
than zero (the Mahalanobis model is better than the isotropic) using an non-
parametric sign test.

3.2 Model Analysis

The interactive loop outlined in Sec. 2 has two critical blocks which influence the
convergence of the optimization procedure: 1) the GP-model predictions of the
subject’s objective function at all inputs given only the rated inputs, and 2) the
sequential design approach. In this section we only seek to determine which GP
model that best suits our purpose without the influence of the sequential design
approach. We do this by evaluating the two GP models—iso and mah—in
terms of their predictive performance on random data sets for 21 test subjects.
In machine learning and statistics, cross-validation is typically used to get an
unbiased measure of the predictive performance. Since the random data sets for
each test subject contain only 30 ratings, we use leave-one-out cross validation
(LOO-CV) [12] to get an effectively unbiased measure of the true predictive
performance.

Performance is typically defined as an error measure through a cost func-
tion, such as the sum-of-squared error function. However, such error functions
only include the absolute deterministic errors made by the model on noisy data
without additionally considering if the model actually fits the noise correctly.
For the sequential design approach to work efficiently, the model should both fit
the data and account for the noise in the data as well as possible. To capture
this in the performance measure, typically, the predictive likelihood p(y∗|D,M)
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of the unseen data points y∗ given the model M and the observed data D is
used.

A proper Bayesian and statistical way of comparing two models [17, 6] is
to compare the (predictive) likelihood ratio p(y∗|D,Mmah)/p(y∗|D,Miso) be-
tween the two different models—mah and iso. This is also referred to as the
Bayes factor [6]. A (log) Bayes factor larger than zero favors the model denoted
in the nominator, whereas a (log) Bayes factor less than zero favors the model
in the denominator.

For each of the 21 random data sets—one for each test subject— LOO-CV is
used and the (log) Bayes factor is calculated for each LOO-CV split. This gives
a total of 21×30 Bayes factor estimates shown in a histogram in Fig. 3. We see
that on average, the mah model performs the best probabilistic predictions of
test subjects’s individual ratings and thus appears to be the most suitable model
due to the assumed correlation between adjacent parameters. A non-parametric
sign test shows that this is significant (sample size of 630).

3.3 Sequential Design Analysis

The results are summarized in Fig. 4(a). The illustrated p0-values gives the
significance level for which the null-hypothesis, that the total number of active
wins is equal to the total number of random wins at each tournament point
(#examples), can be accepted.

Averaged across test subjects and repetitions, the sequential design is signifi-
cantly better than random design after any given number of examples, as shown
by the p0–values. This is without distinguishing between the two applied covari-
ance functions. It demonstrates the potential of the Bayesian model and active
learning methods in audio applications. It is furthermore noted that a standard
fixed design will approximate the random configuration in this high-dimensional
space.

The second aspect is if the more informative Mahalanobis (mah) prior results
in a more accurate model with only a few ratings available. This is generally
not the case, although the specific Mahalanobis model possesses better gen-
eralization capabilities compared to the isotropic model as shown in Sec. 3.2.

4 Discussion and Future Work

The results presented in this paper has focused first on verifying that the pro-
posed Mahanolobis model is suitable in this context, and secondly, demonstrat-
ing that the sequential design approach actually performs as expected (and bet-
ter than random). There are however many possibilities for further evaluation
and development.

In regards to the specific prior, we believe despite the lack of evidence in
the present paper, that the Mahalanobis covariance function will be found suit-
able in several audio applications—including the EQ example used here. We
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Figure 4: (a): The percentage of times the predicted preferred setting by each
of the four models wins over the other models across test subjects at each of
the five tournament points. The p0-values is for accepting the null-hypothesis
that the two active sequential design approaches is equal to the two random
approaches using a binomial test. (b): Actual ratings of different EQ settings
from the three Sessions for test subject 2. The EQ curves are the imposed gain
and the color and thickness of the EQ curves both indicate the rating, where
think/dark black is a good ratings (y → 1) and thin/light gray is a bad ratings
(y → 0).

speculate that at least two additions would improve the performance of the
Mahalanobis model in the suggested framework. Firstly, the modeling capa-
bilities could be improved by a parametrization of the correlation structure in
the Mahalanobis kernel by a small set of parameters, which could then be in-
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ferred from data. The latter is easily accomplished in the GP framework by
evidence maximization. Secondly, the sequential design criterion (Sec. 2.2) does
not in its current form fully exploit the correlation between predictive function
values for different settings. To include this correlation the covariance matrix
between all unique settings must be calculated. Calculating these is currently
computational infeasible. To overcome this and exploit the modeled correlation
in the sequential design criterion, a greedy-gradient approach is currently being
developed and tested with regards to find a (possible local) optimum of the
(correlated) EI.

The Gaussian process modeling approach will in general benefit from the
addition of weakly informative hyper-priors over especially the length scale pa-
rameter, σ`. This will result in a more robust inference scheme in which unreal-
istic hyper-plane predictions of the user’s objective function would be avoided,
thus aiding the sequential design. This is currently being introduced into the
modeling framework.

The current evaluation is based on an absolute paradigm with adjustable
anchors in terms of previous ratings. For the user, it can however be quite de-
manding to keep track of all ratings, when there are several items (balls) present,
which leads to inconsistent ratings. The GP based personalization framework
is easily extendable with other paradigms such as pairwise comparisons or more
general ranking based approaches. It is speculated that a more robust paradigm
(with respect to user feedback) may further aid the optimization process.

Finally, it is the ambition to evaluate the proposed framework on a larger
population, which could be accomplished by embedding the current personal-
ization framework in a web application allowing evaluation on a larger scale.

5 Conclusion

We have proposed a framework for obtaining personalized systems—in partic-
ular audio systems—which utilizes a Bayesian probabilistic modeling approach
in combination with sequential experimental design. This improves the high-
dimensional preference optimization procedure in comparison to random (equiv-
alent to manual) experimentation. The solutions found by the sequential ap-
proach is significantly preferred by the test subjects over the solutions found
by random experimentation. The results do not support any advantage of us-
ing the more informative Gaussian process prior with the Mahalanobis kernel
compared to the less informative Gaussian process prior with the isotropic ker-
nel. Supported by the demonstrated modeling capabilities of the Mahalanobis
kernel, it is nevertheless believed that future additions to the framework would
be able to exploit these possibilities and hence improve the performance of the
framework.
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ABSTRACT

We extend the Gaussian process (GP) framework for bounded
regression by introducing two bounded likelihood functions
that model the noise on the dependent variable explicitly.
This is fundamentally different from the implicit noise as-
sumption in the previously suggested warped GP framework.
We approximate the intractable posterior distributions by
the Laplace approximation and expectation propagation and
show the properties of the models on an artificial example.
We finally consider two real-world data sets originating from
perceptual rating experiments which indicate a significant
gain obtained with the proposed explicit noise-model exten-
sion.

1. INTRODUCTION

Regression is typically defined as learning a mapping from a
possible multi-dimensional input to an effectively unbounded
one-dimensional observational space, i.e., the space of the de-
pendent variable. However, in many regression problems the
observational space is clearly bounded. Examples of such
problems include prediction of betting odds, data compres-
sion ratios and ratings from perceptual experiments. When
the observational space is bounded, modeling the observa-
tions with a distribution having infinite support such as the
Gaussian distribution, is clearly incorrect from a probabilistic
point of view. In this work we will extend the GP framework
to allow for principle modeling of such observations.

Gaussian processes (GPs) are currently considered a state-
of-the-art Bayesian regression method due to its flexible and
non-parametric nature. However, bounded regression with
GPs has only indirectly been addressed by mapping or warp-
ing the bounded observations onto a latent unbounded space
in which the observational noise can be assumed to be Gaus-
sian [1]. Hereby, the observational model is only modeled im-
plicitly through the warping function. In contrast, we consider

This work was supported in part by the Danish Council for Strategic
Research of the Danish Agency for Science Technology and Innovation under
the CoSound project, case number 11-115328.

observational models or likelihood functions that make as-
sumptions about the noise directly in the observational space,
and thus, model the observational noise explicitly.

Possibly, the simplest way to derive a bounded likelihood
function is to use a truncated distribution. A natural choice
is to use the truncated version of the Gaussian distribution
considered in this work. Alternatively, a bounded likelihood
function could be derived from a distribution that only has
finite support. Of this type, we will consider the beta distri-
bution and derive a bounded likelihood function based on a
re-parameterization. For both models we perform inference
and predictions based on the Laplace approximation and ex-
pectation propagation (EP).

Employing a toy example, we compare the predictive
distributions of warped GPs with regression based on the
bounded likelihood functions mentioned above. We show
that, as expected, the model with the correct noise assumption
provides the best expected predictive negative log likelihood
(or, alternatively, generalization error). Two examples are
used to justify the models in real-world regression scenarios
and they show that the two likelihood models provide better
model fits compared to the warped GP.

2. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is a stochastic process defined as
a collection of random variables, any finite subset of which
must have a joint Gaussian distribution. In effect, we may
place the GP as a prior over any finite set of functional val-
ues f = [f1, f2, ..., fn]>, where fi = f(xi), resulting in
a finite multivariate (zero-mean) Gaussian distribution over
the set as p(f |X ,θc) = N (f |0,K), where each element of
the covariance matrix [K]i,j = k(xi,xj)θc

is given by a
covariance function k(·, ·)θc

with parameters θc, and where
X = {xi|i = 1, ..., n} denotes the set of inputs. The GP is
effectively used as a prior over functions in non-parametric
Bayesian regression frameworks where either the outputs or
a likelihood can be parameterized by a smooth and contin-
uous function f(·). In the simplest case the set of observa-
tions, Y = {yi|i = 1, ..., n}, consists of the functional val-
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ues themselves with added i.i.d Gaussian noise with variance
σ2
n. Hereby, the likelihood function is a standard Gaussian

likelihood function parameterized by f(·) defining the mean.
Hence, p(yi|fi,θL) = N (yi|fi, σ2).

Bayes formula gives us—regardless of the likelihood
function—the posterior distribution,

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θc)

p(Y|X ,θ)
,

where it is typically assumed that the likelihood factorizes
over instances such that p(Y|f ,θL) =

∏n
i=1 p(yi|fi,θL).

The denominator, p(Y|X ,θ), is called the marginal like-
lihood or evidence given as p(Y|X ,θ) =

∫
p(Y|f ,θL)

p(f |X ,θc)df . In empirical Bayesian methods the evidence is
used to learn point estimates of both likelihood function and
prior parameters θ = {θc,θL}.

Provided that the likelihood is Gaussian, both the poste-
rior and predictive distribution will be Gaussian (processes)
available in closed form [2, Chapter 2]. However, not all real-
world problems actually justify the observations to be Gaus-
sian distributed. As mentioned, we consider bounded obser-
vations, meaning that they in contrast to Gaussian distributed
observations do not have infinite support.

3. BOUNDED LIKELIHOOD FUNCTIONS

We consider a set Y = {yi|i = 1, ..., n} of bounded re-
sponses yi ∈ ]a, b[ to an input xi. In the following we will
present three different observational models for this type of
response. The first is the warped GP [1], where the likeli-
hood describes warped observations rather than the bounded
responses directly. Following this, we propose two differ-
ent likelihood functions that directly model the bounded re-
sponses in a principle probabilistic fashion by assuming par-
ticular distributions of the observations defining the noise in
the original bounded domain.

3.1. Warping

Snelson et. al [1] learn a warping, that transforms the original
data Y into a form where the data is modeled by a traditional
GP with a Gaussian noise model. Here, we will not consider
how to learn the correct warping, but instead use a fixed warp-
ing that transforms the bounded responses yi into unbounded
versions zi. Several warping functions would apply, but to
allow for direct comparison of all the models we use the in-
verse cumulative Gaussian (probit) Φ−1(·)—with zero mean
and unity variance—such that zi = Φ−1(yi). The resulting
model will be referred to as GP-WA.

3.2. Truncated Distributions

The simplest route to a bounded likelihood function is to use
distributions with infinite support and truncate them to the

Fig. 1. Illustration of the proposed TG likelihood function
with p(yi|fi) shown as a gray-scale level. Left: ν = 3, Mid-
dle: ν = 10 and Right: ν = 30.

bounded domain. There are a number of relevant distributions
including the truncated student-t and of course the truncated
Gaussian (TG) distribution, see e.g. [3]. As a representative
for this type of bounding approach, we consider the TG and
define the corresponding likelihood function as

LTG ≡ p (yi|fi,θL)

=
νN (ν (yi −M (fi)))

Φ (ν (b−M (fi)))− Φ (ν (a−M (fi)))
, (1)

where the distribution is parameterized by the mode M(fi)
and the domain limits a and b which we assume to be 0 and
1, respectably1. The mean of the TG distribution is given by

µ (fi) = M (fi)

+
1

ν

N (ν (a−M (fi)))−N (ν (b−M (fi)))

Φ (ν (b−M (fi)))− Φ (ν (a−M (fi)))
. (2)

Eq. 2 in effect leaves two parametrization options in the
sense that we may select the non-parametric function, f(·),
to parameterize either the mode or the mean function. Both
options are valid from a modeling perspective, but the easiest
parametrization is by far the mode, M(fi). For prediction
speed it may be beneficial to indirectly parameterize the
mean, but then the (unique) solution to the mode given the
mean must be found numerically or approximately. The nu-
merical approach will severely limit the effectiveness of the
posterior approximation and in this work we will therefore
focus on the mode parametrization for the TG. Thus, the
likelihood function in Eq. 1 is parameterized by the mode as
follows M(fi) = Φ(fi) and the resulting model depicted in
Fig. 1 will be referred to as GP-TG

3.3. Beta

A distribution that imposes bounded responses in a com-
pletely natural manner is the beta distribution which has
also been applied in standard parametric settings [4, 5]. The
beta distribution is therefore an obvious distribution for the
bounded observations and we select a parametrization which

1We note that the truncated student-t has the same form as the TG and can
easily be realized using the methods and implementations presented in this
work.



Fig. 2. Illustration of the proposed beta likelihood function
with p(yi|fi) shown as a gray-scale level. Left: ν = 3, Mid-
dle: ν = 10 and Right: ν = 30.

expresses the shape parameters, α, β, of the beta distribution,
Beta(α, β), in terms of the mean µ such that

α = νµ, β = ν (1− µ) .

We then parameterize the mean µ of the beta distribution by
the cumulative Gaussian, such that µ(fi) = Φ(fi). The re-
parameterized beta likelihood depicted in Fig. 2 is thereby
given by

LBE ≡ p(yi|fi,θL) = Beta(yi|νΦ(fi), ν (1− Φ(fi))),

and will be referred to as the GP-BE model. Note, that the ν
parameter is an (inverse) dispersion parameter.

4. APPROXIMATE INFERENCE AND PREDICTION

For the GP-WA model the likelihood is effectively Gaussian,
hence, inference is analytical tractable [1]. However, nei-
ther the GP-TG model nor the GP-BE model have analyti-
cal tractable posterior distributions. Instead, we must resort
to approximations. We consider two different approximate
inference schemes—the Laplace approximation and expecta-
tion propagation (EP). Both methods approximate the poste-
rior distribution p(f |Y,X ,θ) with a single Gaussian q(f). In
the following we briefly give an overview of the two approxi-
mate inference schemes in relations to the bounded likelihood
functions. For more details on the approximation schemes see
for instance [2].

4.1. Laplace Approximation

Possibly, the simplest inference method is the Laplace ap-
proximation in which a multivariate Gaussian distribution is
used to approximate the posterior, such that p(f |X ,Y, θ) ≈
q(f) = N (f |f̂ ,A−1), where f̂ is the mode of the posterior
and A is the Hessian of the negative log posterior at the
mode. The mode is found as f̂ = arg maxf p (f |Y,X ,θ) =
arg maxf p (Y|f ,θL) p (f ,X ,θc). The general solution to
the problem can be found by considering the un-normalized
log posterior and the resulting cost function which is to be

maximized, is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f

− 1

2
log |K| − N

2
log 2π,

where Ki,j = k(xi,xj)θc
. The maximization can be solved

with a standard Newton-step algorithm given by

f̂new =
(
K−1 + W

)−1 ·
[
Wf̂ +∇ log p(Y|f ,X ,θL)

]
,

where the Hessian W = −∇∇f log p(Y|f) is diagonal
with elements defined by the second derivative of the log-
likelihood function [W]i,i = −∂2 log p(yi|fi)

∂f2
i

. When con-
verged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |f̂ ,Σ

)
,

where Σ =
(
W + K−1

)−1
.

Approximating the posterior of f by the Laplace approxima-
tion requires the first two derivatives of the log likelihood. For
the TG we will report the general derivatives applicable for
any truncated likelihood function based on symmetric densi-
ties for which the truncated density can be written as the TG,
i.e. in the form

p (yi|fi) =
r (g (yi|fi))

s (g (b|fi))− s (g (a|fi))
, (3)

where we for the TG model defines g (c|fi) = ν (c−M (fi)).
The resulting derivatives for the TG likelihood requires the
following partial derivatives

∂r (·)
∂fi

= ν2g (yi)N (g (yi))N (fi) ,

∂2r(·)
∂2fi

= ν2N (g (yi))N (fi)

[−νN (fi) + g (yi) (νg (yi)N (fi)− fi)] ,
∂s (·)
∂fi

= −νN (g (b))N (fi) and

∂2s(·)
∂2fi

= −νN (g (b))N (fi) [νg (b)N (fi)− fi] ,

which enter into the derivatives of Eq. 3. The two required
partial derivatives for the beta distribution are given by

∂ log Beta(yi|·)
∂fi

= ν · N (fi)

· [log(yi)− log(1− yi)− ψ(α) + ψ(β)] and

∂2 log Beta(yi|·)
∂f2i

=

− ν2 · N (fi) ·
[
N (fi) ·

(
ψ(1)(α) + ψ(1)(β)

)

+
fi
ν
· (log(yi)− log(1− yi)− ψ(α) + ψ(β))

]
,



where ψ(·) and ψ(1)(·) are the digamma function of zero’th
and first order, respectively.

4.2. Expectation Propagation

EP also approximates the posterior distribution with a single
multivariate Gaussian distribution q(f) = N (f |µ,Σ) by fac-
torizing the likelihood by nGaussian factors ti(fi|Z̃i, µ̃i, Σ̃i) =
Z̃iN (fi|µ̃i, Σ̃i), where i = 1, ..., n. The EP approximation
to the full posterior is thus given by

p(f |Y,X ,θ) ≈ q(f) = N (f |µ,Σ)

= p(f ,X )N (f |µ̃, Σ̃)
n∏

i=1

Z̃i,

where the means µ̃i and variances Σ̃i have been collected into
the vector µ̃ and diagonal matrix Σ̃, respectively. The mean
and covariance of the approximation are given by

µ = ΣΣ̃
−1

µ̃, Σ =
(
K−1 + Σ̃

−1)−1
.

EP updates each factor ti in turn by first removing the fac-
tor to yield what is called the cavity distribution q−i(fi) =
N (fi|µ−i,Σ−i), where µ−i = Σ−i([Σ]−1i,i µi − Σ̃−1i µ̃i) and
Σ−i = ([Σ]−1i,i − Σ̃−1i )−1. Secondly, the factor ti is updated
by projecting the cavity distribution multiplied with the true
likelihood term onto a univariate Gaussian. The projection is
effectively done by solving the following three integrals

Zi =

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi, (4)

dZi

dµ−i
=

d

dµ−i

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi

=

∫
p(yi|fi)

d

dµ−i
{N (fi|µ−i,Σ−i)} dfi, (5)

d2Zi

dµ2
−i

=
d2

dµ2
−i

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi

=

∫
p(yi|fi)

d2

dµ2
−i
{N (fi|µ−i,Σ−i)} dfi. (6)

Neither the beta likelihood nor the TG likelihood yield an-
alytical tractable solutions for these three integrals, but the
one-dimensional integrals can be solved numerically for the
EP inference.

4.3. Predictive Distributions

Naturally, we want to predict future values of both the latent
functional value f∗ and data label y∗. For all models the pos-
terior distribution over f is effectively Gaussian2. Hence, the

2For the warped GP the posterior is exactly Gaussian, whereas we for the
two other models have approximated—either by Laplace or EP—the poste-
rior with a Gaussian.

predictive distribution p(f∗|Y,X ,x∗) = N (f∗|µ∗, σ2
∗) of la-

tent functional values is Gaussian and is derived just as in the
standard cases in a straight forward manner (see e.g. [2, Chap-
ter 2-3]).

The predictive distribution of future targets p(y∗|Y,X ,x∗)
involves computing the integral

p(y∗|Y,X ,x∗) =

∫
p(y∗|f∗)N (f∗|µ∗, σ2

∗)df
∗.

For the GP-WA, the predictive distribution has a closed-form
solution [1]

pGP-WA(y∗|Y,X ,x∗) =
N (Φ−1(y∗)|µ∗, σ2

∗)
Φ(Φ−1(y∗))

.

In case of the GP-BE and GP-TG the predictive distribution
is not given in closed form. Instead, the integral must be
computed using numerical methods. Predictions of the mean,
E(y) ∈ ] 0; 1 [ , are in the bounded case given by

Ep(y∗|·){y∗} =

∫ 1

0

y∗p(y∗|Y,X ,x∗)dy∗ (7)

=

∫
N (f∗|µ∗, σ2

∗)
∫ 1

0

y∗p(y∗|f∗)dy∗df∗

=

∫
N (f∗|µ∗, σ2

∗)Ep(y∗|f∗){y∗}df∗. (8)

Given the cumulative Gaussian warping, Eq. 7 can be solved
analytically for the GP-WA model. In Eq. 8 the mean of the
likelihood occurs, which in the beta case is parameterized by a
cumulative Gaussian and given the specific choice of warping
this results in a closed form solution expressed by3

EGP-WA{y∗} = EGP-BE{y∗} = Φ

(
µ∗√

1 + (σ∗)2

)
.

In case of the GP-TG model, Eq. 7 has no analytical form
and must be solved by one-dimensional numerical approxi-
mation.

5. SIMULATION EXAMPLE

In order to illustrate the difference between the warped and
bounded likelihood approaches we consider an artificial ex-
ample with added noise. It is generated by drawing a one-
dimensional function from a zero-mean Gaussian process
with a squared exponential (SE) kernel with length scale,
σl = 1, and noise variance σf = exp(1). Three different
types of noise are then added: The first type (WA) is i.i.d
Gaussian noise added directly on f and transformed through
Φ(·) which corresponds to the noise assumption in the warped

3Keep in mind that although there is an equal sign between the predictive
mean of the cumulative-warped and the beta model, the means will in general
be different due to difference in the latent predictive distributions of the GP.



Squared Exponential (σ2
f = 2, ` = 1)

WA TG BE
GP-WA -129.8 (6.4) -82.0 (7.3) -165.3 (31.1)
GP-TG -91.0 (19.6) -96.8 (4.5) -81.8 (14.5)
GP-BE -119.8 (7.7) -91.2 (6.3) -195.2 (24.6)

Periodic (σ2
f = 3, ` = 0.8, λ = 5)

WA TG BE
GP-WA -93.2 (6.9) -80.6 (11.0) -70.8 (10.4)
GP-TG -76.2 (10.3) -91.6 (9.4) -66.0 (12.9)
GP-BE -88.5 (3.8) -84.5 (7.8) -99.8 (15.5)

Table 1. Expected predictive negative log likelihood (and
standard deviation) for each of the three models (GP-WP, GP-
TG, GP-BE)) evaluated on a specific function with additive
noise from ten random realizations of the noise for each cor-
responding noise types: WA, BE and TG. The noise free func-
tion is drawn from a GP prior with the indicated covariance
functions and parameter values (defined in [6])

GP. In the second case (TG), f is transformed through Φ(·)
before adding noise based on the mode-parameterized TG
distribution, thus corresponding to the noise assumption of
the TG likelihood. In the third case (BE), we add noise based
on the mean-parameterized beta distribution.

In order to visualize the special nature of bounded re-
sponses and the difference between the models, we have il-
lustrated the WA noise case in Fig. 3, where all three bounded
models are evaluated. Both the Laplace approximation and
EP have been used for inference for the beta and TG model.
The hyper-parameters are in all cases optimized using evi-
dence maximization. The main difference of the three models
occurs at the domain boundaries, where the GP-WA model
concentrates the entire mass almost at the boundary. The pre-
dictive distribution of the GP-TG model generally has a simi-
lar shape over the entire domain with its mean always spaced
significantly far from the boundary, whereas the GP-BE can
also have its mean very close to the boundary as for the GP-
WA model, but still retain mass away from the boundary. No
significant differences between the two inference schemes are
evident. Since the EP scheme requires numerical solutions to
the integrals in Eq. 4-6, the Laplace approximation will be
used in the reminder of this article.

We evaluate the ability of the models to model different
noise distributions by comparing the predictive log likelihood
for the previously mentioned dataset based on the Laplace ap-
proximation. A second example is added in which the func-
tion is drawn from a GP with a periodic covariance function.
The predictive log likelihood for both examples is reported in
Tab. 5 and is the average over ten realizations of the noise. As
expected, we see that the model corresponding to the added
noise type always results in the lowest negative likelihood,
indicating a better model fit.
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Fig. 3. Predictive distributions for the three models: GP-WA,
GP-TG and GP-BE. For GP-TG and GP-BE both Laplace and
EP inference are shown, where training data: +, test exam-
ples: ·, predictive mean: − and 68% and 95% percentiles:
· · · . Also, contours of the predictive distribution are shown
in gray, where the intensity reflects probability mass concen-
tration.

6. PERCEPTUAL AUDIO EVALUATIONS

In order to demonstrate the difference between the three con-
sidered models in a real-world scenario, we have tested the
three models on two datasets consisting of subjective ratings
performed while listening to audio through a hearing aid (HA)
compressor with different settings.

The first dataset [7], HA-I, contains six compression ra-
tio settings (including one without compression) and three
release-time settings. This results in sixteen non-trivial com-
binations of the settings with xs ∈ R2, that are rated three
times by each of the seven test subjects, u, while listening to
a speech signal. The dataset also contains an complete six
point audiogram on both left and right ear, xu ∈ R2×6, of
the hearing impaired test subjects. The audio signal result-
ing from each compressor setting is represented by standard
audio features, namely thirty Mel frequency cepstral co-
efficients, xa ∈ R30. Thus, for one setting, s, each test
subject, u, rated the audio signal, a. This results in a col-
lection of inputs for this specific rating which we collect in
x = {xu,xa,xs}. We use the multi-task kernel formula-
tion [8] and define the covariance function as k (xi,xj) =
kuSE-ARD

(
xu
i ,x

u
j

) (
kaSE

(
xa
i ,x

a
j

)
+ ksSE

(
xs
i ,x

s
j

))
where all

covariance functions are squared exponential (SE), the first
one with automatic relevance determination (SE-ARD).

The second dataset [9], HA-II, contains three input set-
tings related to the compression ratio, attack time and release
time of a HA dynamic range compressor, thus xs ∈ R3. Four



GP-WA GP-TG GP-BE

HA-I
-log p(y∗) -66.1 -96.1 -101.2

MSE 0.013 0.001 0.010

HA-II
-log p(y∗) -7.7 -9.3 -14.1

MSE 0.031 0.030 0.035

Table 2. HA-I Mean square error (MSE) and expected pre-
dictive negative log likelihood over 10 random sets. We find
a significant difference in log likelihood at the 5% level be-
tween GP-TG and the two other models but not between GP-
TG and GP-BE. For MSE the only significant difference is be-
tween GP-TG and GP-BE. HA-II Mean square error (MSE)
and negative log likelihood over 10 folds. Considering the
negative log likelihood only the GP-BE is significantly better
than the GP-WA in a paired t-test. There is no significant dif-
ference between GP-TG and the other models. The GP-BE is
significantly different in terms of MSE than the two others.

subjects have rated 50 combinations of inputs in relation to
general preference while listening to a speech-in-background-
noise signal. The dataset does not contain any data describing
the subjects, hence we use only a single squared exponential
covariance function.

We initialize the hyper-parameters in the (common) co-
variance function to the same value for all models, but ini-
tialize the likelihood noise parameter with multiple values in
a grid pattern after which all the hyper-parameters are opti-
mized using evidence maximization. We then report the per-
formance of the model which yields the largest evidence after
maximization. For the purpose of comparing the three mod-
els, we will simply consider the Laplace approximation and
a retest scenario in which we train on a random repetition
and test on another repetition for each setting. We repeat this
three times and evaluate the resulting predictive likelihood
and mean square error (MSE). The results are listed in Tab. 6.
We note from the negative predictive log likelihood that the
beta distribution provides a better fit to the noise compared to
the other two models given the two real-world datasets pre-
sented here.

7. DISCUSSION AND CONCLUSION

In the present work, we outlined two bounded likelihood
functions for bounded Gaussian process regression which in
contrast to previous work make explicit assumptions about
the noise in the bounded observation space. In the two con-
sidered examples we found the beta model to be better than
the two other models in terms of the predictive log likelihood.
These results together with the artificial examples support
the application of all three models in the non-parametric
Gaussian process framework. However, the optimal model
obviously depends on the actual noise distribution in a given
application. We therefore foresee addition and inclusion of

other noise models based on other distribution with finite
support.

Implementations of the various likelihoods are avail-
able [10] for use in the gpml toolbox [6] and can easily be
extended to support more advanced link functions [11], which
will make the models (both the bounded and the warped) even
more flexible. In particular, we suggest to use a mixture of
cumulative Gaussian link functions which do not complicate
predictions significantly. Furthermore, we suggest to evaluate
the performance of the deterministic approximations by the
use of MCMC-sampling methods.

In conclusion, we have extended the Gaussian process
framework to include bounded likelihood functions allowing
for explicit specification of the likelihood model in applica-
tions where bounded observations are present and support an
explicit noise model.
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