6,880 research outputs found

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters

    Get PDF
    A new method of designing linear-phase FIR filters is proposed by minimizing a quadratic measure of the error in the passband and stopband. The method is based on the computation of an eigenvector of an appropriate real, symmetric, and positive-definite matrix. The proposed design procedure is general enough to incorporate both time- and frequency-domain constraints. For example, Nyquist filters can be easily designed using this approach. The design time for the new method is comparable to that of Remez exchange techniques. The passband and stopband errors in the frequency domain can be made equiripple by an iterative process, which involves feeding back the approximation error at each iteration. Several numerical design examples and comparisons to existing methods are presented, which demonstrate the usefulness of the present approach

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Programmable rate modem utilizing digital signal processing techniques

    Get PDF
    The engineering development study to follow was written to address the need for a Programmable Rate Digital Satellite Modem capable of supporting both burst and continuous transmission modes with either binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulation. The preferred implementation technique is an all digital one which utilizes as much digital signal processing (DSP) as possible. Here design tradeoffs in each portion of the modulator and demodulator subsystem are outlined, and viable circuit approaches which are easily repeatable, have low implementation losses and have low production costs are identified. The research involved for this study was divided into nine technical papers, each addressing a significant region of concern in a variable rate modem design. Trivial portions and basic support logic designs surrounding the nine major modem blocks were omitted. In brief, the nine topic areas were: (1) Transmit Data Filtering; (2) Transmit Clock Generation; (3) Carrier Synthesizer; (4) Receive AGC; (5) Receive Data Filtering; (6) RF Oscillator Phase Noise; (7) Receive Carrier Selectivity; (8) Carrier Recovery; and (9) Timing Recovery

    Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Get PDF
    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values

    Noise Weighting in the Design of {\Delta}{\Sigma} Modulators (with a Psychoacoustic Coder as an Example)

    Full text link
    A design flow for {\Delta}{\Sigma} modulators is illustrated, allowing quantization noise to be shaped according to an arbitrary weighting profile. Being based on FIR NTFs, possibly with high order, the flow is best suited for digital architectures. The work builds on a recent proposal where the modulator is matched to the reconstruction filter, showing that this type of optimization can benefit a wide range of applications where noise (including in-band noise) is known to have a different impact at different frequencies. The design of a multiband modulator, a modulator avoiding DC noise, and an audio modulator capable of distributing quantization artifacts according to a psychoacoustic model are discussed as examples. A software toolbox is provided as a general design aid and to replicate the proposed results.Comment: 5 pages, 18 figures, journal. Code accompanying the paper is available at http://pydsm.googlecode.co
    corecore