18,208 research outputs found

    Modelling fire occurrence at regional scale. Does vegetation phenology matter?

    Get PDF
    Through its influence on biomass production, climate controls fuel availability affecting at the same time fuel moisture and flammability, which are the main determinants for fire ignition and propagation. Knowing the role of fuel phenology on fire ignition patterns is hence a key issue for fire prevention, detection, and development of mitigation strategies. The objective of this study is to quantify, at coarse scale, the role of the vegetation seasonal dynamics on fire ignition patterns of the National Park of Cilento, Vallo di Diano and Alburni (southern Italy) during 2000-2013. We applied a habitat suitability model to compare the multitemporal NDVI profiles at the locations of fire occurrence (the used habitat) with the NDVI profiles of the entire study area (the available habitat). Results demonstrated that, from May to October, wildfires occur preferentially at sites where the remotely-sensed NDVI observations have on average lower values than the available habitat. On the other hand, in the period November-April, wildfires tend to occur at sites where the corresponding NDVI observations have higher values than the available habitat. From a practical viewpoint, the proposed method can be implemented using many different ecogeographical variables simultaneously, thus integrating remotely sensed imagery with socioeconomic data, land cover, physiography or any landscape features that are thought to influence fire occurrence in the study area

    Detection of fast radio transients with multiple stations: a case study using the Very Long Baseline Array

    Full text link
    Recent investigations reveal an important new class of transient radio phenomena that occur on sub-millisecond timescales. Often transient surveys' data volumes are too large to archive exhaustively. Instead, an on-line automatic system must excise impulsive interference and detect candidate events in real-time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array (VLBA). We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.Comment: 12 pages, 14 figures. Accepted for Ap

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Exploration of Parameter Spaces in a Virtual Observatory

    Get PDF
    Like every other field of intellectual endeavor, astronomy is being revolutionised by the advances in information technology. There is an ongoing exponential growth in the volume, quality, and complexity of astronomical data sets, mainly through large digital sky surveys and archives. The Virtual Observatory (VO) concept represents a scientific and technological framework needed to cope with this data flood. Systematic exploration of the observable parameter spaces, covered by large digital sky surveys spanning a range of wavelengths, will be one of the primary modes of research with a VO. This is where the truly new discoveries will be made, and new insights be gained about the already known astronomical objects and phenomena. We review some of the methodological challenges posed by the analysis of large and complex data sets expected in the VO-based research. The challenges are driven both by the size and the complexity of the data sets (billions of data vectors in parameter spaces of tens or hundreds of dimensions), by the heterogeneity of the data and measurement errors, including differences in basic survey parameters for the federated data sets (e.g., in the positional accuracy and resolution, wavelength coverage, time baseline, etc.), various selection effects, as well as the intrinsic clustering properties (functional form, topology) of the data distributions in the parameter spaces of observed attributes. Answering these challenges will require substantial collaborative efforts and partnerships between astronomers, computer scientists, and statisticians.Comment: Invited review, 10 pages, Latex file with 4 eps figures, style files included. To appear in Proc. SPIE, v. 4477 (2001

    BER of MRC for M-QAM with imperfect channel estimation over correlated Nakagami-m fading

    Get PDF
    In this contribution, we provide an exact BER analysis for M-QAM transmission over arbitrarily correlated Nakagami-m fading channels with maximal-ratio combining (MRC) and imperfect channel estimation at the receiver. Assuming an arbitrary joint fading distribution and a generic pilot-based channel estimation method, we derive an exact BER expression that involves an expectation over (at most) 4 variables, irrespective of the number of receive antennas. The resulting BER expression includes well-known PDFs and the PDF of only the norm of the channel vector. In order to obtain the latter PDF for arbitrarily correlated Nakagami-m fading, several approaches from the literature are discussed. For identically distributed and arbitrarily correlated Nakagami-m channels with integer m, we present several BER performance results, which are obtained from numerical evaluation and confirmed by straightforward computer simulations. The numerical evaluation of the exact BER expression turns out to be much less time-consuming than the computer simulations

    Exploring Habitat Selection by Wildlife with adehabitat

    Get PDF
    Knowledge of the environmental features affecting habitat selection by animals is important for designing wildlife management and conservation policies. The package adehabitat for the R software is designed to provide a computing environment for the analysis and modelling of such relationships. This paper focuses on the preliminary steps of data exploration and analysis, performed prior to a more formal modelling of habitat selection. In this context, I illustrate the use of a factorial analysis, the K-select analysis. This method is a factorial decomposition of marginality, one measure of habitat selection. This method was chosen to present the package because it illustrates clearly many of its features (home range estimation, spatial analyses, graphical possibilities, etc.). I strongly stress the powerful capabilities of factorial methods for data analysis, using as an example the analysis of habitat selection by the wild boar (Sus scrofa L.) in a Mediterranean environment.
    corecore