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Abstract

Knowledge of the environmental features affecting habitat selection by animals is im-
portant for designing wildlife management and conservation policies. The package ade-
habitat for the R software is designed to provide a computing environment for the analysis
and modelling of such relationships. This paper focuses on the preliminary steps of data
exploration and analysis, performed prior to a more formal modelling of habitat selec-
tion. In this context, I illustrate the use of a factorial analysis, the K-select analysis.
This method is a factorial decomposition of marginality, one measure of habitat selection.
This method was chosen to present the package because it illustrates clearly many of its
features (home range estimation, spatial analyses, graphical possibilities, etc.). I strongly
stress the powerful capabilities of factorial methods for data analysis, using as an exam-
ple the analysis of habitat selection by the wild boar (Sus scrofa L.) in a Mediterranean
environment.

Keywords: data analysis, ecology, exploration, habitat selection, K-select analysis, radio-
tracking, R.

1. Introduction

Habitat selection by wildlife is an important aspect of ecology. Studies of habitat selection
provide information on environmental characteristics needed by animals, essential knowledge
for the development of wildlife management and conservation policies. The habitat of an
organism is often described by only one categorical variable (e.g., vegetation type), and the
study of habitat selection by a species often consists of the identification of the preferred or
avoided habitat types (e.g., Neu et al. 1974). This is mainly carried out by comparing the
availability of each habitat type (e.g., measured by its percent cover in the study area) to the
use of that habitat type by the species (e.g., measured by the density of animals).
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Habitat is defined as the “conditions and resources present in an area that produce occupancy
(including survival and reproduction) by an organism” (Hall et al. 1997). In essence, habitat
is a multivariate concept. Many authors have stressed the need to take this into account
in habitat selection studies (e.g., Morrison et al. 1992). Fortunately, the recent increase in
availability of Geographic Information Systems (GIS) has facilitated the studies of several
environmental variables at a time (e.g., elevation, slope, etc.), in habitat selection.

At the same time, many statistical methods have been developed to model habitat selection.
For example, the resource selection functions (Manly et al. 2002), model the probability that
an organism will use a resource unit (e.g., a pixel of a raster map) as a combination of the
environmental variables measured on it. These methods are widely used, as they rely on the
generalized linear model, which is available in most standard statistical packages.

Most of these modelling methods suppose that “the modeler knows the limiting factors that
influence the distribution and abundance of the study organism”(Boyce and McDonald 1999),
an important issue in most studies. Thus, according to Guisan and Zimmermann (2000), “One
of the most difficult tasks is to decide which explanatory variables, or combination of vari-
ables, should enter the model”. Actually, several authors defend the idea that the modelling
step should be preceded by an exploration step (hindcasting, see Morrison et al. 1992; Calenge
et al. 2005). It is necessary to first explore the data using statistical methods suitable for
this kind of exploration (e.g., factorial analyses), in a flexible computing environment. The
package adehabitat for the R software (R Development Core Team 2007) is intended for the
exploration and modelling of the interactions between vegetal or animal species and their
environment (Calenge 2006).

As previously noted, the study of habitat selection by an organism is generally carried out
by comparing its habitat use to habitat availability. Thomas and Taylor (1990) have dis-
tinguished three kinds of designs, according to the levels at which use and availability are
measured. With designs of type I, the individual animals are not identified (e.g., a census of
the population results in a point pattern, where each point corresponds to an individual), and
both use and availability are measured at the scale of the population. Designs of type II rely
on identified individuals (e.g., using radio-tracking) and the use is measured for each one, but
availability is still measured at the scale of the population (e.g., a study of the distribution
of animals’ home ranges [use] on a study area [availability]). Finally, designs of type III also
rely on identified individual animals, but both use and availability are measured at the scale
of the individual (e.g., a study of the selection of the feeding sites [use] by the animals inside
their home range [availability]).

Here, I illustrate one particular aspect of habitat selection exploration, using the K-select
analysis (Calenge et al. 2005). This factorial analysis allows the exploration of habitat selec-
tion in studies using designs of type III (e.g., selection of the feeding sites by the individual
animals within their home range). I chose to focus on designs of type III in this paper, be-
cause: (i) radio-tracking is used in most habitat selection studies (Schooley 1994), and (ii)
once the analysis of type III designs is understood, it is straightforward to generalize it to
type II designs (e.g., see Calenge et al. 2005). Furthermore, I chose to focus on K-select
analysis, as the factorial analyses are not commonly used in habitat selection studies, despite
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their undeniable qualities. The package adehabitat provides a suitable environment for this
kind of analysis. However, it is important at this point to note that many other methods are
available in adehabitat for both modelling and exploration of habitat selection, and for all
kinds of study designs (these are described in section 3). In this paper, I first describe the
principle of K-select analysis. I then describe the contents of the package adehabitat, as well
as the “philosophy” underlying the package. Finally I give an example of use of the K-select
analysis on data collected on the wild boar in a Mediterranean environment.

2. The K-select analysis

The K-select analysis takes place in the framework of the duality diagram (Escoufier 1987).
This family of methods groups all analyses that can be considered to be extensions of princi-
pal component analysis (PCA). The duality diagram is characterized by a triplet of matrices
(Dray and Dufour 2007, same volume): (1) a table to be analyzed, (2) a diagonal matrix of
weights for the columns of this table, and (3) a diagonal matrix of weights for its rows. Each
column of the table defines a dimension in a multidimensional space, and the rows of the
table define a cloud of points in this space. The methods belonging to the framework of the
duality diagram identify a restricted set of axes in this multidimensional space, so that a given
statistic - the inertia - is maximized on the first axes of the analysis. This is done thanks
to a non-centered PCA of the table, weighted by rows and by columns by the two weight
matrices. Actually, the PCA of the table assigns scores to its rows and its columns, so that
the weighted sum of squares of the row scores, which is termed“inertia” is maximized, and the
successive axes returned by the analysis are two-by-two orthogonal (uncorrelated). Then, a
graphical exploration of the row and column scores allow the user to draw conclusions about
the biological system under study. The table to be analyzed and the weight matrices vary
with the method used, which in turn changes the biological meaning of the inertia (Greenacre
1984; Doledec et al. 2000). Common methods, such as discriminant analysis, canonical cor-
respondence analysis, or correspondence analysis, belong to this family.

The K-select analysis belongs to the duality diagram. It has been fully described by Calenge
et al. (2005), so here I give only a short description. Suppose that the study area is described
by a set of p raster maps of environmental variables, each covering the same area and with
the same resolution. K animals are monitored using radio-tracking devices, and a home range
can be computed for each one. For a given animal k, the home-range contour delimits an area
with nk available pixels.

First, consider the case of only one animal k. Let the table Xk (nk × p) contain the values
of the p environmental variables in each one of the nk pixels of its home range. Each column
of Xk defines a dimension of a multidimensional space, the ecological space. Each row of
this table corresponds to an “available point” in this space. We consider that each column of
the matrix Xk is centered: in other words, we transform the table Xk so that the origin of
the ecological space (a p-vector of zeros) corresponds to the centroid of the cloud of available
points.
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Moreover, let uk be a nk-vector containing the utilization weights of the pixels by the animal
k. They may be, for example, the proportions of animals’ relocations in the nk pixels of its
home range. Note that the utilization weights should sum to one (i.e., u>k 1nk

= 1, where 1nk

is the nk-vector of 1s, and u>k is the transpose of uk). The subset of available points in ecolog-
ical space for which the utilization weights is greater than zero defines the set of “used points”.

Now consider the vector mk = X>
k uk. It contains the coordinates of the centroid of the cloud

of used points in ecological space. However, since the table Xk has been centered, the origin
of this space is the centroid of the cloud of available points. Therefore, the vector mk connects
the centroid of the cloud of available points (origin of the space) to the centroid of the cloud
of used points. It is called the marginality vector, and its squared length m>

k mk corresponds
to one measure of habitat selection, marginality. The larger the marginality, the greater the
differences between average use and average availability, and the stronger the habitat selection.

Now, consider the case of K animals. Habitat availability is defined by the pixels included
within the home range contours, and thus differs among animals. These availabilities are
described by the “global” matrix X•:

X• =


X•

1

X•
2

...
X•

K


where the (nk × p) matrix X•

k gives the value of the environmental variables in each pixel
of the home range of the animal k. An important point is that all the columns of X• are
centered and have unit variance. Thus, the origin of the space defined by the columns of any
matrix X•

k is the centroid of the cloud of points defined by the rows of X• (i.e., the centroid
of the clouds of points available to the animals, when all animals are pooled).

For each animal k, one extracts the corresponding table X•
k, and center its columns to obtain

the table Xk described above. Now, the origin of the space defined by the columns of Xk is
the centroid of the cloud of points only available to the animal k. As this recentering is done
for all animals, it is equivalent to a “shift” of the clouds of available points in the ecological
space, so that the marginality vectors all have a common origin (see Calenge et al. 2005, and
especially their fig. 1).

The marginality vectors mk are then computed following the guidelines given above for one
animal. Finally, the (p×K) table M can be computed:

M = (m1|m2|...|mK)

The K-select analysis is the non-centered principal component analysis (PCA) of the triplet
(M, DK , Q). The matrix Q is a diagonal matrix (p× p) containing the weights of the rows
of M (weights of the environmental variables). When all the environmental variables are
numeric, all these weights are equal to 1. If categorical variables are included in the analysis,
the weight matrix Q is adjusted using the procedure described by Hill and Smith (1976, see
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next section). The matrix Dk is a diagonal (K×K) matrix of column weights dk (by default,
dk is proportional to the number of relocations of the animal k). Note that the analysis
is non-centered, which means that the table M is not centered before the PCA, unlike in
classical PCA. This non-centering ensures that the origin of the ecological space corresponds
to the centroids of available points of all animals on the factorial axes. The non-centered PCA
therefore returns the directions in ecological space where the centroids of the used points are,
on average, the furthest from the centroids of available points (i.e., the directions where the
marginality vectors are, on average, the largest). This PCA consists of the computation of
the eigenstructure of the matrix V:

V = M>QMDK

The eigenvalues λi of V measure the amount of marginality explained by the corresponding
eigenvectors. The K-select analysis therefore maximizes the marginality explained by the first
principal axes. The results of this non-centered PCA can be interpreted in the same way as
a classical PCA. Scores can be defined for both the rows (environmental variables) and the
columns (animals) of M. Indeed, let the K-vector fi be the ith eigenvector of V. This vector
contains the scores of the animals on the ith principal axis of the analysis. The scores of the
environmental variables on the ith principal component are stored in the vector gi = M>Qf i.

Note that the marginality vectors have been recentered so that they all have a common
origin. It is possible to compute the coordinates of the original (i.e., not recentered) vectors
of marginality on the axes of the analysis. First, one projects the rows of the table X• on the
axes of the analysis:

li =
1√
λi

X•Qgi

The vector li contains the scores of the rows of X• on the axes of the ith axis of the analysis.
From this calculation, it is possible to derive the (nk × r) table Lk containing the scores of
the nk pixels available to the animal k on the first r axes of the analysis (with r chosen so
that most of the marginality is explained by the retained axes). Then, for each animal k, one
computes the vector ak, containing the coordinates of the centroid of the cloud of available
points on the first r axes of the analysis:

ak = L>k 1nk

Finally, for each animal k, one computes the vector sk, containing the coordinates of the
centroid of the cloud of used points:

sk = L>k uk

These two centroids can be plotted on a factorial map, and the non-centered marginality
vector connects the two centroids (see example).

After choosing the number of axes to keep, some schools of thought recommend the use
of a second rotation of the factorial axes in this reduced subspace, to find another set of
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axes for which the meaning is clearer. For example, the varimax method rotates the chosen
factorial axes to find new axes with the largest variance of the variables scores (Jollife 2004).
The resulting axes are no longer those on which the marginality is maximized (though the
subspace in which this rotation is performed is still the one in which the marginality is at
its maximum), but they are more easily interpreted. Many choices are possible for this
second rotation (See Jollife 2004), which leaves some arbitrariness or subjectivity in the
interpretation of the results. Nevertheless, if the user wants to use such methods, many
functions, such as varimax and promax, are available in the R environment.

3. The package adehabitat

As noted previously, adehabitat provides a framework for the exploration and modelling of
habitat selection using the three types of study designs. Because the philosophy of adehabi-
tat is mainly centered on data exploration, it strongly relies on the package ade4 (Dray and
Dufour 2007, same volume). This package contains numerous functions to perform factorial
analyses (Escoufier 1987). Actually, adehabitat is organized around four poles: (i) the man-
agement of raster maps, (ii) home range estimation, (iii) the analysis of animals’ movements,
and (iv) the analysis of habitat selection / ecological niche.

First, adehabitat can be used to import and export raster maps from/to Geographic Informa-
tion Systems (e.g., see the function import.asc). It provides basic spatial operations, such as
the computation of buffers around points or lines (see the function buffer), the identification
of the value of environmental variables at given spatial locations (join.asc), the numbering
of points in each pixel of a map (count.points), etc. These functions allow the user to
manage information about the environment of the studied species.

Moreover, adehabitat contains many functions that facilitate the analysis of radio-tracking
data. Many methods are available for home range estimation, including the Minimum convex
polygon (Mohr 1947, function mcp), the kernel estimator (Worton 1995, function kernelUD),
the cluster home range (Kenward et al. 2001, function clusthr) or the nearest neighbour
convex hull (Getz and Wilmers 2004, function NNCH). The home range provides a static point
of view on the use of space by animals. A more dynamic analysis is possible with adehabitat,
as several functions allow the analysis of animals movements (see the help page of as.ltraj
and Calenge et al. in prep.). All these functions only consider the movements of the animals,
without any reference to environment factors.

Finally, several functions provide statistical methods for analysis of habitat selection by
wildlife. Many of them are factor analyses of the niche or of habitat selection, but other meth-
ods are also available. For studies of design type I, they include the selection ratios (Manly
et al. 2002, function wi), the ecological niche factor analysis (Hirzel et al. 2002, function
enfa), the Mahalanobis distances (Clark et al. 1993, function mahasuhab) and their factorial
partitioning (Calenge et al. 2004, function madifa), or the algorithm DOMAIN (Carpenter
et al. 1993, function domain). Other common methods, such as resource selection functions
(Manly et al. 2002) can also be used by combining the functions of adehabitat with the rest of
the R environment. For design type II and III studies, the package includes functions imple-
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menting the compositional analysis (Aebischer and Robertson 1992, function compana), the
eigenanalysis of selection ratios (Calenge and Dufour 2006, function eisera) or the K-select
analysis (Calenge et al. 2005, function kselect).

I now describe more specifically the functions and object classes available to perform a K-
select analysis. The K-select analysis implies several spatial operations. One must estimate
the home range of animals, count the number of relocations in each pixel of a raster map, and
identify the pixels of the map inside the home-range limits. As noted previously, adehabitat
deals mostly with raster maps (i.e., maps where the spatial information is coded by a matrix
of pixels). A raster map is stored as a matrix of class “asc”, in which each cell corresponds
to one pixel of the map. The most common way to create a raster is to import an Arcview
ASCII raster file with the function import.asc. This file format can be generated by most
Geographic Information Systems (Arcview, GRASS, Landserf, etc.).

As the K-select analysis is a multivariate analysis, one has to deal with a list of several maps
of the same study area, all with the same resolution. It is convenient to convert this list of
maps into a multi-layered map of class “kasc”. A map of class “kasc” is a data frame giving
the values of the environmental variables (columns) in each pixel of the map (rows). It can
be created with the function as.kasc, which takes as its argument a list of named objects of
class “asc”.

The aim of the analysis is to identify the variables affecting site selection by animals within
their home range. Therefore, one must first estimate the home-range contour. As noted
above, many home range estimation methods are available in adehabitat. Alternatively, one
can also define the area available to the animals thanks to a buffer around the relocations,
using the function buffer.ani.

The identification of pixels located inside the home range contours depends on the method
chosen for home-range estimation. Here, we estimate the minimum convex polygon with the
function mcp. This function returns a data.frame of class “area”, with three columns. The
first column contains the ID of the animal, and the second and the third columns contain
the coordinates of the vertices of the home range. These home ranges should be rasterized
using the function hr.rast. The result of this function is again an object of class “kasc”,
with the same number of pixels (rows) as the map of the study area, and with one column
per animal. Each pixel of a given map takes a value of 1 if the pixel is inside the home range
or NA (missing value) if it is not.

The last component needed by the K-select analysis is the multi-layer map of class“kasc”con-
taining the number of relocations in each pixel of the map (rows) for each animal (columns).
This map can be computed using the function count.points.id.

Three main objects result from the above operations: (i) a multi-layer map of the environ-
mental variables in the study area, (ii) a multi-layer map of the home ranges of the animals,
and (iii) a multi-layer map of the number of relocations in each pixel of the study area. These
three maps are then combined into a list of class sahrlocs, using the function as.sahrlocs.
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Several graphical methods are available in adehabitat to explore habitat selection with this
class of objects. Among other things, objects of this class can be used to derive the argu-
ments of the function kselect, using the function sahrlocs2kselect. This function returns
a list with three components. The component named tab is a data frame containing the
table X•

u. It is similar to the table X• described in the previous section, except that the
columns of this table are neither centered nor scaled to unit variance. The component named
weight is the vector containing the concatenated vectors of utilization weights (i.e., the vector
(u1

>,u>2 , ...,u>K)>). The component named factor contains a factor which can be used to
split the previous components into K matrices X•

uk and K vectors uk, respectively.

At this point, note that the table X•
u needs to be transformed into the table X• described

in the previous section (i.e., with each column centered and having a unit variance). This is
achieved thanks to a PCA of the component tab of the list returned by sahrlocs2kselect.
This PCA is performed using the function dudi.pca of the package ade4 (dudi stands for
“duality diagram”). The object returned by this function is a list of class dudi containing,
among other things, the centered table needed for the K-select analysis. The component tab
of the resulting object of class dudi is the matrix X• described in the previous section.

Note that the preliminary use of a simple factorial analysis to suitably transform the table is
standard practice in the packages ade4 and adehabitat (e.g., see the functions enfa, madifa,
discrimin or niche). Although this factorial analysis, in itself, is not necessarily of interest,
this is an easy way to transform the table and to define suitable weights for its rows and
columns.

Although we will mainly focus on numeric environmental variables (e.g., elevation), it is im-
portant to note that categorical variables (e.g., vegetation type) may also be included in the
analysis, using the procedure described by Hill and Smith (1976). The categories are coded
by a set of dummy variables (zero indicating the absence of a category, and one, its presence)
prior to the analysis. For a given categorical variable, the weights of the dummy variables
coding for the categories (in the matrix Q) are computed so that the more frequent categories
have more weight, and so that the sum of the weights of the dummy variables is equal to one.
All the variables of the analysis therefore have the same weight, whether numeric or categor-
ical. Thus, if the table to be analyzed included categorical variables, the use of dudi.pca
prior to the use of kselect should be replaced by dudi.mix, to compute suitable weights for
the levels of the categorical variables.

Finally, the function kselect can be applied, taking as arguments the results of the functions
dudi.pca and sahrlocs2kselect. The results of the analyses can be explored using the
graphical functions plot.kselect and kplot.kselect.

4. Example

Here, we use the dataset puech of the package adehabitat. This dataset is a subset of the
data on wild boar collected at Puechabon (South of France) by D. Maillard during his Ph.D
(Maillard 1996). More information can be obtained on the help page of this dataset, by typing
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?puech.

In this section, I describe the steps to perform a K-select analysis of these data. First, we
load the package adehabitat and the dataset:

R> library("adehabitat")

R> data("puech")

R> names(puech)

[1] "relocations" "maps"

This data set is a list with two components. The component named relocations is a data
frame containing the relocations of the diurnal resting sites of six wild boars, with 30 reloca-
tions per animal:

R> locs <- puech$relocations

R> head(locs, 3)

name x y
1 Brock 698811 3160911
2 Brock 699809 3161496
3 Brock 699474 3161193

R> table(locs[, 1])

Brock Chou Jean Kinou Schnock Suzanne
30 30 30 30 30 30

The component named map is a list with 9 named elements: each element is a map of class
“asc” (Figure 1). Because all the maps cover the same area with the same resolution, they
can be combined into a multi-layer map of class “kasc”.

R> kasc <- as.kasc(puech$maps)

The maps can be displayed by typing (Figure 1):

R> image(kasc)

These maps can also be explored interactively using explore.kasc. Note that it is possible
to convert this object into a data frame with the function kasc2df, and thatfactorial anal-
yses can be used to explore this data frame (e.g., PCA with the function dudi.pca from ade4).

We then estimate the home range of the animals with the minimum convex polygon. The
function mcp takes as an argument a data frame with two columns containing the coordinates
of the relocations, and a vector containing the animals IDs for each one:
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Figure 1: The raster maps of the study area at Puéchabon, South of France. The studied
variables are (left to right, top to bottom) elevation, tree cover, shrub cover, distance to
recreational trails, distance to crops, distance to water points, grass cover, slope and sunshine.
The function image.kasc used to draw this map gives a general view of the spatial distribution
of the variables in the study area. If the user requires the precise values of the variables, then
the functions explore.kasc or plot.asc may be used.

R> pc <- mcp(locs[, 2:3], locs[, 1], percent = 100)

The parameter percent is equal to 100 minus the percentage of relocations excluded from
the computation. The closest relocations to the centroid of the distribution of relocations are
kept to compute the limits of the home ranges. These polygons can be plotted on the map of
the area using the functions image.asc and plot.area (Figure 2):

R> par(mar = c(0, 0, 0, 0))

R> image(puech$maps$elevation, axes = FALSE)

R> plot(pc, add = TRUE, lwd = 3, colpol = "grey")

The function par allows for control of the margin size. The argument axes of the function
image is set to FALSE so that no axes are displayed on the graph. The argument add of the
function plot is used to add the polygons to the previous plot. The argument lwd controls
the line width and the argument colpol controls the color of the polygons.

We then rasterize these home ranges, using the function hr.rast. This function takes as an
argument the object of class “area” returned by mcp, as well as a raster map:

R> pcr <- hr.rast(pc, kasc)
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Figure 2: Home ranges of the wild boars monitored using radio-tracking at Puéchabon, dis-
played on an elevation map.

Again, note that the result can be displayed using image.kasc. We then count the number
of relocations in each pixel of the map kasc. The function count.points.id takes as an
argument a data frame with two columns giving the coordinates of the relocations, a vector
indicating the animals ID, and a raster map:

R> cp <- count.points.id(locs[, 2:3], locs[, 1], kasc)

Then, the three objects cp, pcr and kasc can be combined into an object of class sahrlocs.

R> sahr <- as.sahrlocs(cp, pcr, kasc)

The functions plot.sahrlocs and image.sahrlocs provide additional methods to explore
these data. We derive the data structure needed for the K-select analysis:

R> jj <- sahrlocs2kselect(sahr)

R> names(jj)

[1] "tab" "factor" "weight"

I described the components of this list in the previous section. We then perform the prelimi-
nary PCA of the component tab of the object jj.

R> prico <- dudi.pca(jj$tab, scannf = FALSE)
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The argument scannf, when set to TRUE, allows the user to interactively select the number of
principal components to keep in the PCA (we do not need it here, as this PCA is performed
only to transform the table). Finally, we perform the K-select analysis:

R> ks <- kselect(prico, jj$factor, jj$weight, scannf = FALSE)

R> ks

Duality diagramm
class: kselect dudi
$call: kselect(dudi = prico, factor = jj$factor, weight = jj$weight,

scannf = FALSE)

$nf: 2 axis-components saved
$rank: 6
eigen values: 1.797 0.4353 0.1379 0.05759 0.02727 ...
vector length mode content

1 $cw 6 numeric column weights
2 $lw 9 numeric row weights
3 $eig 6 numeric eigen values
4 $initfac 1200 numeric initial factor
5 $initwei 1200 numeric row weights of inittab

data.frame nrow ncol content
1 $tab 9 6 modified array
2 $li 9 2 row coordinates
3 $l1 9 2 row normed scores
4 $co 6 2 column coordinates
5 $c1 6 2 column normed scores
6 $initab 1200 9 initial table centered per animal
7 $as 2 2 axis upon kselect axis
8 $ls 1200 2 rows of initab upon kselect axis
9 $mus 6 2 mean use on kselect axis
10 $mav 6 2 mean available on kselect axis

The function plot.kselect displays a summary of the results (see the help page of the
function, Figure 3):

R> plot(ks)

Note that the function kplot.kselect can also be used to draw more complete factorial maps
of the ecological space.

The eigenvalues of this analysis indicate that two axes are sufficient to explain most of the
marginality of the data set, though the first one is much larger than the second. Actually,
the first axis opposes the areas close to the gorges of the Hérault river on the positive side
(low elevation, high slope, low sunshine, far from crops and trails and close to the water),
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Figure 3: Results of the K-select analysis carried out on the radio-tracking data collected on
the wild boars of Puéchabon (South of france). The graphs are (top to bottom, left to right):
(i) the correlations between the axes of the K-select analysis and the first two axes of the
PCA of the table X•, (ii) the scores of the environmental variables on the axes of the K-select
analysis, (iii) the eigenvalues of the analysis, (iv) the uncentered vectors of marginality (the
origin of the arrow indicates the centroid of the cloud of available points and its end indicates
the centroid of the cloud of used points), (iv) scores of the available resource units on the
axes of the analysis and (v) scores of the recentered marginality vectors on the first axes of
the analysis.

to the plateau of Puéchabon on the negative side (opposite characteristics). The second axis
opposes the areas with a dense shrub cover on the positive side to the areas with a low cover
on the negative side.

The uncentered marginality vectors (main graph on Figure 3) reveal that the animals mostly
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select the gorges of the Hérault river, but that great variation occurs among animals. Indeed,
when the gorges are available in the home ranges of the animals (i.e., when the basis of the
marginality vector is close to the positive side of the first axis), they are strongly selected (the
marginality vectors point to the positive side). When the gorges are not available (animals
“Chou” and “Jean”), the animals rather select a dense shrub cover (the marginality vectors
point at the positive side of the second axis). These results therefore indicate a functional
response of the wild boar (i.e., a habitat selection changing according to habitat availability).
As indicated by the results of the K-select analysis, this functional response occurs on two
habitat variables: the gradient gorges-plateau (first axis of the K-select analysis) and the
shrub cover (second axis of the analysis).

Based on these results, we may draw a graph that shows this functional response more clearly.
We focus on the two variables on which this response occurs: the gorges-plateau gradient and
the shrub cover. First, we define two habitat types: the gorges and the plateau. The gorges
are defined as the areas with an elevation lower than 200 metres and the plateau corresponds
to the areas with an elevation above 200 metres:

R> hab <- jj$tab$elevation < 200

Note that the crops found in the southern portion of the study area, and for which the eleva-
tion is lower than 200 metres, are not located in the gorges (Figure 1). However, these crops
are not included in the home range of the monitored animals (Figure 3). Therefore, from the
point of view of the animals, all the habitat types located at an elevation below 200 metres
are part of the gorges, so that the above definition of the gorges is still correct.

Then, we compute the available proportion of gorges in the home range of each animal:

R> pa <- table(jj$factor, hab)[, 2]/table(jj$factor)

R> class(pa) <- NULL

R> pa

Brock Chou Jean Kinou Schnock Suzanne
0.78947 0.00000 0.01190 0.13154 0.70000 0.36515

Similarly, we compute the proportion of relocations in the gorges:

R> sp1 <- split(hab, jj$factor)

R> sp2 <- split(jj$weight, jj$factor)

R> pu <- unlist(lapply(1:length(sp1), function(x) sum(sp2[[x]] *

+ sp1[[x]])/sum(sp2[[x]])))

R> pu

[1] 1.0000 0.0000 0.0400 0.7308 1.0000 0.8462

We also compute the average shrub cover used by the animals:
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Figure 4: Functional response of the wild boar: proportion of relocations in the gorges of the
Hérault river and the shrubs, as a function of the proportion of the home range covered by
the gorges, for all animals.

R> sp3 <- split(jj$tab$shrub, jj$factor)

R> pushrub <- unlist(lapply(1:length(sp3), function(x) sum(sp2[[x]] *

+ sp3[[x]])/sum(sp2[[x]])))

R> pushrub

[1] 0.2609 0.9231 0.8800 0.5769 0.1000 0.5000

And finally, we can compute the relationship between the proportion of resting sites in both
the gorges and the shrubs, and the proportion of the home-range covered by the gorges
(Figure 4):

R> plot(pa, pu, xlab = "Proportion of gorges within the home range",

+ ylab = "Proportion of resting sites", pch = 16)

R> lines(pa[order(pa)], pu[order(pa)])

R> points(pa[order(pa)], pushrub[order(pa)])

R> lines(pa[order(pa)], pushrub[order(pa)], lty = 2)

R> legend(0.42, 0.8, legend = c("In shrubs", "In gorges"), pch = c(1,

+ 16), lty = c(2, 1))

A “constant” habitat selection would have resulted in linear relationships between use and
availability (Mysterud and Ims 1998). Instead, these relationships are curved, indicating a
functional response (i.e., a selection depending on habitat availability). This illustrates the
power of factorial analyses, as such responses are very difficult to identify in ecology (Mysterud
and Ims 1998). Although we only have six animals, the results are strikingly clear.
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5. Discussion

I illustrate the use of the package adehabitat in habitat selection studies, and more specifi-
cally, the K-select analysis within the framework of data exploration. An important aspect
of this example is that of this method implies several preliminary steps (home range estima-
tion, relocation numbering, creation of an object of class “sahrlocs”, etc.). All of these steps
could have been combined into a single function, to facilitate the application of the analysis.
However, this would have been contrary to the philosophy of adehabitat (and more generally
to the philosophy of R). At each step of the process, a new class of objects is created, which
corresponds to a new view of the problem. The home-range estimation gives information
about the space used by the animal, the object of class sahrlocs can be used for graphical
exploration, etc. I mentioned some of these related aspects, and I encourage the reader to
test the possibilities of the package.

The data exploration allows the user to build a conceptual model of the system under study.
Then, RSF or similar methods can be used for a more formal modelling. The package
adehabitat provides a suitable environment for this kind of analysis, as it contains a large
number of functions that perform the spatial operations needed by this methodology (spatial
joining, buffering, etc.). Thus, in the example presented above, a possible additional step
would have been to model the probability of selection of a pixel by a wild boar according to
two variables, one indicating the proximity of the gorges and one measuring the density of
the shrub cover. I did not present this aspect, as this is beyond the scope of this paper.

Note that the map storage is quite memory expensive in adehabitat. Most R packages dealing
with maps have this problem, although the package sp allows for more efficient storage for
certain maps. Note that some functions in adehabitat provide an interface between the spatial
classes of sp and those of adehabitat (see the help page of the function spixdf2kasc).

Despite this minor drawback, adehabitat has been used successfully in several fields of ecol-
ogy, including population ecology (e.g., Calenge et al. 2005) or biogeography (e.g., Spichiger
et al. 2004). In landscape ecology, the package lsmetrics, which relies strongly on adehabitat,
has been developed to provide landscape connectivity indices (Ribeiro et al. 2007). adehabitat
is still actively being developed, and new tools are regularly added, based either on contri-
butions of users (e.g., NNCH or enfa) or on users suggestions (e.g., kernelbb). In addition, a
tutorial explaining the spatial classes and basic spatial functions is available in the package.
At the time of writing, the package contains more than 170 functions dedicated to the analysis
and modelling of relationships between one or several organisms and their environment, with
a special focus on factorial analyses.
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