6,405 research outputs found

    Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes.

    Get PDF
    With defined culture protocol, human embryonic stem cells (hESCs) are able to generate cardiomyocytes in vitro, therefore providing a great model for human heart development, and holding great potential for cardiac disease therapies. In this study, we successfully generated a highly pure population of human cardiomyocytes (hCMs) (>95% cTnT(+)) from hESC line, which enabled us to identify and characterize an hCM-specific signature, at both the gene expression and DNA methylation levels. Gene functional association network and gene-disease network analyses of these hCM-enriched genes provide new insights into the mechanisms of hCM transcriptional regulation, and stand as an informative and rich resource for investigating cardiac gene functions and disease mechanisms. Moreover, we show that cardiac-structural genes and cardiac-transcription factors have distinct epigenetic mechanisms to regulate their gene expression, providing a better understanding of how the epigenetic machinery coordinates to regulate gene expression in different cell types

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    Genealogy Reconstruction: Methods and applications in cancer and wild populations

    Get PDF
    Genealogy reconstruction is widely used in biology when relationships among entities are studied. Phylogenies, or evolutionary trees, show the differences between species. They are of profound importance because they help to obtain better understandings of evolutionary processes. Pedigrees, or family trees, on the other hand visualize the relatedness between individuals in a population. The reconstruction of pedigrees and the inference of parentage in general is now a cornerstone in molecular ecology. Applications include the direct infer- ence of gene flow, estimation of the effective population size and parameters describing the population’s mating behaviour such as rates of inbreeding. In the first part of this thesis, we construct genealogies of various types of cancer. Histopatho- logical classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date, there is no objective systematic method to categorize tumor subtypes by maturation. We introduce a novel algorithm to rank tumor subtypes according to the dis- similarity of their gene expression from that of stem cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with expression data of leukemia and liposarcoma subtypes and then apply it to a broader group of sarcomas and of breast cancer subtypes. This ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based tool to analyze the differentiation status of human tumors. In contrast to asexually reproducing cancer cell populations, pedigrees of sexually reproduc- ing populations cannot be represented by phylogenetic trees. Pedigrees are directed acyclic graphs (DAGs) and therefore resemble more phylogenetic networks where reticulate events are indicated by vertices with two incoming arcs. We present a software package for pedigree reconstruction in natural populations using co-dominant genomic markers such as microsatel- lites and single nucleotide polymorphism (SNPs) in the second part of the thesis. If available, the algorithm makes use of prior information such as known relationships (sub-pedigrees) or the age and sex of individuals. Statistical confidence is estimated by Markov chain Monte Carlo (MCMC) sampling. The accuracy of the algorithm is demonstrated for simulated data as well as an empirical data set with known pedigree. The parentage inference is robust even in the presence of genotyping errors. We further demonstrate the accuracy of the algorithm on simulated clonal populations. We show that the joint estimation of parameters of inter- est such as the rate of self-fertilization or clonality is possible with high accuracy even with marker panels of moderate power. Classical methods can only assign a very limited number of statistically significant parentages in this case and would therefore fail. The method is implemented in a fast and easy to use open source software that scales to large datasets with many thousand individuals.:Abstract v Acknowledgments vii 1 Introduction 1 2 Cancer Phylogenies 7 2.1 Introduction..................................... 7 2.2 Background..................................... 9 2.2.1 PhylogeneticTrees............................. 9 2.2.2 Microarrays................................. 10 2.3 Methods....................................... 11 2.3.1 Datasetcompilation ............................ 11 2.3.2 Statistical Methods and Analysis..................... 13 2.3.3 Comparison of our methodology to other methods . . . . . . . . . . . 15 2.4 Results........................................ 16 2.4.1 Phylogenetic tree reconstruction method. . . . . . . . . . . . . . . . . 16 2.4.2 Comparison of tree reconstruction methods to other algorithms . . . . 28 2.4.3 Systematic analysis of methods and parameters . . . . . . . . . . . . . 30 2.5 Discussion...................................... 32 3 Wild Pedigrees 35 3.1 Introduction..................................... 35 3.2 The molecular ecologist’s tools of the trade ................... 36 3.2.1 3.2.2 3.2.3 3.2.1 Sibship inference and parental reconstruction . . . . . . . . . . . . . . 37 3.2.2 Parentage and paternity inference .................... 39 3.2.3 Multigenerational pedigree reconstruction . . . . . . . . . . . . . . . . 40 3.3 Background..................................... 40 3.3.1 Pedigrees .................................. 40 3.3.2 Genotypes.................................. 41 3.3.3 Mendelian segregation probability .................... 41 3.3.4 LOD Scores................................. 43 3.3.5 Genotyping Errors ............................. 43 3.3.6 IBD coefficients............................... 45 3.3.7 Bayesian MCMC.............................. 46 3.4 Methods....................................... 47 3.4.1 Likelihood Model.............................. 47 3.4.2 Efficient Likelihood Calculation...................... 49 3.4.3 Maximum Likelihood Pedigree ...................... 51 3.4.4 Full siblings................................. 52 3.4.5 Algorithm.................................. 53 3.4.6 Missing Values ............................... 56 3.4.7 Allelefrequencies.............................. 58 3.4.8 Rates of Self-fertilization.......................... 60 3.4.9 Rates of Clonality ............................. 60 3.5 Results........................................ 61 3.5.1 Real Microsatellite Data.......................... 61 3.5.2 Simulated Human Population....................... 62 3.5.3 SimulatedClonalPlantPopulation.................... 64 3.6 Discussion...................................... 71 4 Conclusions 77 A FRANz 79 A.1 Availability ..................................... 79 A.2 Input files...................................... 79 A.2.1 Maininputfile ............................... 79 A.2.2 Knownrelationships ............................ 80 A.2.3 Allele frequencies.............................. 81 A.2.4 Sampling locations............................. 82 A.3 Output files..................................... 83 A.4 Web 2.0 Interface.................................. 86 List of Figures 87 List of Tables 88 List Abbreviations 90 Bibliography 92 Curriculum Vitae

    A Differentiation-Based Phylogeny of Cancer Subtypes

    Get PDF
    Histopathological classification of human tumors relies in part on the degree of differentiation of the tumor sample. To date, there is no objective systematic method to categorize tumor subtypes by maturation. In this paper, we introduce a novel computational algorithm to rank tumor subtypes according to the dissimilarity of their gene expression from that of stem cells and fully differentiated tissue, and thereby construct a phylogenetic tree of cancer. We validate our methodology with expression data of leukemia, breast cancer and liposarcoma subtypes and then apply it to a broader group of sarcomas. This ranking of tumor subtypes resulting from the application of our methodology allows the identification of genes correlated with differentiation and may help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based tool to analyze the differentiation status of human tumors

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF
    • …
    corecore