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Abstract

Genealogy reconstruction is widely used in biology when relationships among entities are

studied. Phylogenies, or evolutionary trees, show the differences between species. They are

of profound importance because they help to obtain better understandings of evolutionary

processes. Pedigrees, or family trees, on the other hand visualize the relatedness between

individuals in a population. The reconstruction of pedigrees and the inference of parentage

in general is now a cornerstone in molecular ecology. Applications include the direct infer-

ence of gene flow, estimation of the effective population size and parameters describing the

population’s mating behaviour such as rates of inbreeding.

In the first part of this thesis, we construct genealogies of various types of cancer. Histopatho-

logical classification of human tumors relies in part on the degree of differentiation of the tumor

sample. To date, there is no objective systematic method to categorize tumor subtypes by

maturation. We introduce a novel algorithm to rank tumor subtypes according to the dis-

similarity of their gene expression from that of stem cells and fully differentiated tissue, and

thereby construct a phylogenetic tree of cancer. We validate our methodology with expression

data of leukemia and liposarcoma subtypes and then apply it to a broader group of sarcomas

and of breast cancer subtypes. This ranking of tumor subtypes resulting from the application

of our methodology allows the identification of genes correlated with differentiation and may

help to identify novel therapeutic targets. Our algorithm represents the first phylogeny-based

tool to analyze the differentiation status of human tumors.

In contrast to asexually reproducing cancer cell populations, pedigrees of sexually reproduc-

ing populations cannot be represented by phylogenetic trees. Pedigrees are directed acyclic

graphs (DAGs) and therefore resemble more phylogenetic networks where reticulate events

are indicated by vertices with two incoming arcs. We present a software package for pedigree

reconstruction in natural populations using co-dominant genomic markers such as microsatel-

lites and single nucleotide polymorphism (SNPs) in the second part of the thesis. If available,

the algorithm makes use of prior information such as known relationships (sub-pedigrees) or

the age and sex of individuals. Statistical confidence is estimated by Markov chain Monte

v



Carlo (MCMC) sampling. The accuracy of the algorithm is demonstrated for simulated data

as well as an empirical data set with known pedigree. The parentage inference is robust even

in the presence of genotyping errors. We further demonstrate the accuracy of the algorithm

on simulated clonal populations. We show that the joint estimation of parameters of inter-

est such as the rate of self-fertilization or clonality is possible with high accuracy even with

marker panels of moderate power. Classical methods can only assign a very limited number

of statistically significant parentages in this case and would therefore fail. The method is

implemented in a fast and easy to use open source software that scales to large datasets with

many thousand individuals.
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1
Introduction

A pedigree, or family tree, is one of the best known graph structures in biology, even among

non-scientists. Our own pedigree tells us who our ancestors and distant relatives are, or more

generally where we actually come from. As an example, Fig. 1.1 illustrates the pedigree of

the current Royal House of the United Kingdom. Pedigrees are also well-known to the broad

public due to their importance in animal- and plant-breeding. The pedigree of a race horse,

for instance, is always well documented and victorious stallions are put to stud after their

retirement from racing. We say then the ensuing foals have a good pedigree.

For decades and even centuries, the main method for constructing pedigrees was simply

the accumulation of observed parent-offspring and sibling relationships. Modern pedigree

analysis started with the availability of methods that could determine DNA sequences of

single individuals of a population. In the late eighties, the field of forensic was revolutionized

by the discovery of what everybody now knows as DNA fingerprints: short tandem repeats

(STRs). These are very short sequences of DNA (2-6 base pairs) that are repeated many times

in a row within the human genome. The numbers of the repeats vary between individuals in

a population. Since there are many of such STRs at different positions (loci) in the human

genome, the probability that two individuals have the same combination of repeat numbers

over all loci gets extremely small, when sufficiently many loci are considered. In 1997, the

1
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Figure 1.1. A royal pedigree. The official pedigree of the House of Saxe-Coburg and Gotha and the House of Windsor.
Source: http: // www. royal. gov. uk
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FBI introduced the Combined DNA Index System (CODIS), which is a set of 13 loci [Butler

2006]. The Interpol standard STR set is a subset of 7 of these loci [Ruitberg et al. 2001]. Thus

only a tiny fraction of the whole DNA has to be sequenced to identify victims or criminals.

This technique soon showed its usefulness in a very related field: the paternity inference. Here

the STR repeat numbers are determined from the child, the mother and the alleged father.

As a child inherits one chromosome from the mother and one from the father, paternity is

ruled out when the child shows repeat numbers different from the alleged parents. Although

there are no reliable estimates of the number of paternity tests world wide, it is clear that

this is now a billion dollar industry.

With the advances in modern sequencing techniques, the genotyping of individuals became

cheaper and faster. It is now getting feasible to obtain DNA samples of thousands of individ-

uals in a population. This makes pedigree reconstruction methods interesting also for natural

populations. A population’s pedigree bears witness of the mating behaviour of its individuals.

For example, it allows a direct inference of inbreeding or fitness of particular individuals. In

other words, it shows the recent past of a population with the highest possible resolution.

Phylogenies, or evolutionary trees, primarily show differences between species. Charles Dar-

win proved that all species are descendants from a common ancestor and he illustrated the

ancient speciation events with a tree of life. New species can arise when populations get sepa-

rated and then adept to new environments through mutations and selections. Another major

force of diversification, especially in small isolated populations, is random genetic drift, i.e.,

when traits get lost by chance. Thus evolution is an ongoing process and it is rarely possible

to obtain data from individuals of extinct populations or species. Therefore, the common

ancestors, in graph terminology internal nodes, are reconstructed and not directly observed.

Before the advent of DNA sequencing, phylogenies were reconstructed by means of pheno-

typic traits. In molecular phylogenetics, observed differences in DNA sequences of homologous

genes, i.e., genes that are present in all of the species in the phylogeny, are now routinely used

for the tree reconstructions.

Fundamental work in population genetics showed also importance in the field of cancer re-

search. A population is here a group of N cells. Mutations of tumor suppressor genes may

lead to cancer cells with different fitness values compared to the wild type cells. Population

genetic models can help to understand cancer initiation and progression [Iwasa et al. 2005].

We will show in Chapter 2 that phylogenetic methods can help to understand relationships

among cancer subtypes. Specialized cell types such as skin, blood or fat arise from different

progenitor cells, which in turn arise from embryonic stem cells. Hence, as stem cells de-

velop or differentiate to specialized somatic cells, it is possible to construct genealogies of cell

3



1. Introduction

Figure 1.2. The royal pedigree of Fig 1.1 in a graph representation. The vertices represent

the individuals and the arcs the parent-offspring relationships. The direction of the arcs is

from top to bottom.

types. It is now apparent that disruption of normal differentiation is an important compo-

nent of tumorigenesis. Fully differentiated somatic cells arise from stem cells, with changes

in gene expression that can be experimentally determined. If cancers arise as the result of an

abruption of the differentiation process, then poorly differentiated cancers would have a gene

expression more similar to stem cells than to normal differentiated tissue, and well differen-

tiated cancers would have a gene expression more similar to fully differentiated cells than to

stem cells. In other words, tumor cells may leave the development path from stem cell to

normal cell at some point. Genealogies of tumor subtypes thus have the potential to visualize

the branching points from the differentiation course. In many cancers it can be observed that

the earlier a tumor branched off this path, the poorer the prognosis. An important difference

to species phylogenies is that it is possible to obtain data from stem cells being the common

ancestor of all cancer and fully differentiated cells.

Chapter 2 is based on the following publication:

• Riester M.*, Stephan-Otto Attolini C.*, Downey R. J., Singer S. & Michor F. (2010).

A differentiation-based phylogeny of cancer subtypes. PLoS Computational Biology.

6(5): e1000777. *Equal contribution.

Here we construct genealogies of various cancer types by means of microarray data. Mi-

croarrays are a rather inexpensive high-throughput technique for gene expression profiling of

thousands of genes at the same time.

4



In contrast to asexually reproducing cancer cell populations, pedigrees of sexually reproducing

populations cannot be represented by trees as individuals have two parents (see Fig 1.2). In

graph terminology, pedigrees are directed acyclic graphs (DAGs) and therefore resemble more

phylogenetic networks [e.g. Huson and Bryant 2006, Grünewald et al. 2007] where reticulate

events such as hybridization, horizontal gene transfer or recombination might produce hybrid

species. These are represented in a DAG with a node with two parents.

In Chapter 3, we will show how to reconstruct genealogies in natural populations by means of

STR data. In particular, we will present a powerful new program FRANz. Chapter 3 is based

on the following papers:

• Riester, M., Stadler, P. F. & Klemm K. (2008). FRANz: Fast reconstruction of wild

pedigrees. Lecture Notes in Informatics P-136, 168 (Proceedings of the German

Conference on Bioinformatics).

• Riester, M., Stadler, P. F. & Klemm K. (2009). FRANz: Reconstruction of wild multi-

generation pedigrees. Bioinformatics 25, 2134.

• Riester, M., Stadler, P. F. & Klemm K. (2010). Reconstruction of pedigrees in clonal

plant populations. Theoretical Population Biology. In press.
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2
Cancer Phylogenies

2.1 Introduction

Cancer research has traditionally focused on the identification of oncogenes and tumor sup-

pressor genes, but in the last decades it has become increasingly apparent that disruption of

normal differentiation is an important component of tumorigenesis. Lack of cellular matura-

tion is now recognized as a hallmark of human cancers [Hanahan and Weinberg 2000], and the

degree of differentiation of a tumor is important for diagnosis, prognosis, and treatment. In-

vestigations of hematopoietic malignancies, for instance, have benefited considerably from an

understanding of the differentiation hierarchy of hematopoietic cells. The identification of im-

munophenotypic markers and gene expression profiles correlated with maturation has enabled

researchers to map the expansion of malignant cells to particular stages of hematopoietic dif-

ferentiation [Bennett et al. 1976]. Such characterization has proven invaluable for diagnostic

and prognostic purposes, and continues to provide clues for pharmacological interventions.

Furthermore, the extent of differentiation indicated by the histologic subtype of liposarcoma

is the most important determinant of the clinical outcome for this cancer type [Kooby et al.

2004, Singer et al. 2003, Dalal et al. 2006]. Nevertheless, attempts to categorize solid tu-

mors have proven difficult due to an incomplete understanding of differentiation pathways

7



2. Cancer Phylogenies

from stem cells into mesenchymal and epithelial tissues. The classifications undertaken so

far have been based on in vitro measurements of genes expressed during the differentiation

of stem cells into mature tissue; this data was then compared to expression profiles of dif-

ferent tumor subtypes to identify the maturation stages to which these subtypes correspond

[Matushansky et al. 2008]. However, such approaches are not yet widely applicable since the

prospective isolation of tissue-specific stem cells has been possible for only few tissue types,

e.g. hematopoietic, mesenchymal, epithelial, and neural tissues (Minguell et al. [2001] and

references therein). Similarly, in vitro methods of differentiation are available for only a few

histologies [Beqqali et al. 2006]. Furthermore, the necessity of an array of growth factors for

in vitro differentiation raises questions about the similarity of the in vitro model to in vivo

processes. Often only a fraction of cells undergoes differentiation under in vitro conditions,

and currently available methods do not allow isolation of those cells during the differentiation

process from the bulk of unchanged cells.

An objective categorization of cancers according to maturity requires a methodology that

does not depend on expression data obtained from in vitro models of differentiation. In this

chapter, we develop a novel computational algorithm that assigns a degree of dissimilarity

from stem cells to human cancer subtypes. Our methodology utilizes gene expression data

of tumor subtypes to construct a phylogenetic tree based on genes differentially expressed

among the subtypes, as well as gene expression data of stem cells and fully differentiated

cells. The resulting phylogeny provides information about the maturation status of tumor

subtypes and the relationship between them. The results of our algorithm are conceptually

similar to the mapping of cellular expansion occurring during hematopoietic malignancies

to the differentiation hierarchy of hematopoiesis. Our methodology allows classification of

cancer subtypes according to their maturation status, to identify genes whose expression cor-

relates with differentiation, and to discover candidate genes which are promising therapeutic

targets. Our methodology is part of an increasing literature of mathematical and statistical

investigations of cancer [Desper et al. 1999, von Heydebreck et al. 2004, Beerenwinkel et al.

2005, Newton 2002, Merlo et al. 2006, Michor et al. 2004].

This chapter is organized as follows. In Sec. 2.2 we give a short introduction into the phyloge-

netic methods used in this chapter. We further briefly explain microarrays. The methodology

is presented in detail in Sec. 2.3. We then present our results in Sec. 2.4 and discuss them in

Sec. 2.5.

8



2.2. Background

2.2 Background

2.2.1 Phylogenetic Trees

Evolutionary relationships among species are typically visualized by phylogenetic trees. These

are bifurcating trees where the leaves represent the species or taxa and the internal nodes the

inferred common ancestors. Edge lengths can often be interpreted as time estimates.

Several methods for reconstruction of phylogenetic trees exist and can be classified in two

major groups. The first group are the character-based methods which use the source data

such as a multiple sequence alignment (MSA) directly. Maximum Parsimony for instance

finds the tree that can explain the data with the smallest amount of mutations. The second

group are the distance-based methods. In this chapter, we will focus on this group. Here, the

source data is first used to estimate pairwise distances of the taxa. Various methods exist

that try to find the tree that fits these distances best. We will explain the most important

algorithms briefly in Sec. 2.3.2.

Bootstrap in Phylogeny

It is often desired to assess the uncertainty of a phylogenetic tree reconstruction. In Maxi-

mum Parsimony, Maximum Likelihood and distance-based methods, the bootstrap test [Efron

1979] is a widely used technique. This test empirically analyzes the variance of a parameter

estimated out of a sample of size n by using only the n observations. Applied to phylogeny,

the parameter of interest is the tree topology and the n observations are the characters, for

example the columns in the MSA. In this test, it is assumed that the observed characters are

drawn independently from the species’ genomes. The test works by sampling n columns with

replacement. The phylogeny is then reconstructed by means of this bootstrap replicate. This

sampling is repeated m times; we thus have a forest of m trees. The observed branches in this

forest are then counted. For example consider a phylogeny of hominoid primates (Fig. 2.1).

Then one possible branch would be gorilla branching before human and chimpanzee. Some

tree topologies might in contrast indicate that human branched before gorilla and chimpanzee.

The bootstrap value of a branch is the percentage of trees having this particular branch. The

tree that contains all branches with bootstrap values larger than 50% is called the majority-

rule consensus tree. All trees we show in this chapter are rooted majority-rule consensus

trees.

9



2. Cancer Phylogenies

b

b 100

b Orangutan

b 98

b Gorilla

b 90

b Chimpanzee

b Human

b Gibbon

Figure 2.1. Example phylogeny of hominoid primates. A phylogenetic tree visualizing

the evolutionary relationships among human, chimpanzee, gorilla, orangutan and gibbon.

The numbers represent bootstrap values. For example, the boostrap value of the branch

(Chimpanzee, Human)|(Gorilla,Orangutan,Gibbon) is 90 and thus showing that it was

observed in 90% of all topologies generated during the bootstrap test. The root of the tree

was specified by including gibbon as an evolutionary outgroup.

Rooting unrooted trees

Most tree reconstruction methods produce unrooted trees. A common way of rooting a tree

is to include some taxon or taxa as evolutionary outgroup. These are taxa known to have

branched before all other species in the phylogeny. Therefore the root, the common ancestor

of all taxa, is located on the branch separating the outgroup and the species (Fig. 2.1). The

outgroup should be related as closely as possible to the species. For example, gibbon is in

the hominoid primate phylogeny a better outgroup than mouse and rat. If the outgroup is

too distant, then it attaches almost randomly to the unrooted tree [Graham et al. 2002].

2.2.2 Microarrays

In eukaryotes, genes are stretches of DNA on the chromosomes which are located in the

nucleus. Genes are transcribed into single stranded precursor messenger RNA (pre-mRNA).

These pre-mRNAs consist of exons and introns. The latter are removed by a process called

splicing. The ensuing mature mRNAs are then exported into the cytoplasm. Messenger

RNAs transcribed from a protein-coding genes are then translated into polypeptide chains, the

proteins. Small non-coding RNAs (ncRNAs) have shown to be important regulators of gene

expression. Some classes of ncRNA such as siRNAs in prokaryotes can induce degradation of

mRNAs, others, e.g. miRNAs in animals, can inhibit translation.

Microarrays are a rather inexpensive and fast high-throughput method for the measurement

10



2.3. Methods

of gene expression. We will focus here on the Affymetrix GeneChip R© technology. The Human

Genome U133 (HG-U133) GeneChip set consists of two micorarray chips which can measure

the expression of approximately 39.000 genes. One important application in cancer research is

the comparison of gene expression in cancer patients to that in a healthy control group. Sta-

tistical methods such as t-tests and variants of it are then used to find differentially expressed

genes, i.e, genes that show a significantly different expression in cancer patients.

RNA isolated from tissue or cell line are reverse transcribed and labeled with biotin. The

resulting cRNA sample is then put on the array. A GeneChip consists of probes that are

complementary to cRNAs of well-substantiated genes. If some of these cRNAs are present

in the sample, then they will hybridize to the probes. These hybridizations can be measured

due to the biotin labeling. The measured probe intensity values are stored in Affymetrix

CEL files. These files are then normalized together with all other CEL files considered in the

study. This results in an expression matrix where the genes (or so called probe sets in the

case of Affymetrix chips) are represented by the rows and the columns hold the normalized

expression values of all experiments, e.g. of the patients and the control group.

2.3 Methods

Our algorithm uses gene expression data of tumor samples that have been pathologically

classified into subtypes. The expression data is normalized and then analyzed for differentially

expressed genes, i.e. those genes whose expression in samples from one tumor subtype differs

from the expression in samples from at least one other subtype. We use these genes to

compute the distances between all pairs of subtypes; the resulting distance matrix is then

used to construct a phylogenetic tree. This construction is repeated several thousand times

using different subsets of genes (of varying size) to estimate the statistical significance of the

branches of the tree (Fig. 2.2).

2.3.1 Dataset compilation

We use gene expression data of sarcoma samples from [Singer et al. 2007, Barretina et al.

2010]. The gene expression was measured on Affymetrix U133a oligonucleotide arrays. The

classification in [Singer et al. 2007] was performed using unsupervised hierarchical clustering

and an SVM-based supervised classification method. To root the tree, we use expression data

of 17 normal fat samples from the same study as well as expression data of 3 human embryonic

stem cell lines (hESCs) and 3 hESC derived mesenchymal precursor lines, downloaded from

11



2. Cancer Phylogenies

Normalize (Bioconductor, rma)

?

Filter Genes, ANOVA FDR < 0.05 (0.01, ...)

?

Calculate Averaged Expression Matrix

?

Compute Distance Matrix (R)

?

Construct Tree (Phylip)

Bootstrapping
N = 10.000

-

?

Consensus Tree (Phylip, Dendroscope)

Figure 2.2. Schematic outline of the methodology. The flow chart shows the main steps of

the algorithm used to construct a phylogenetic tree of tumor subtypes. First, the data is

normalized using the Bioconductor software. Then ANOVA is used to identify those genes

that are differentially expressed in at least one tumor subtype; we use a False Discovery Rate

(FDR) of less than 0.01. Afterwards, the expression of each differentially expressed gene

is averaged across all samples of each subtype. Those average expression levels are then

used to compute the distance matrix of the subtypes, which is in turn utilized to construct

a phylogenetic tree using the Phylip or FastME software. To determine the consensus tree,

the phylogenetic construction is repeated 10,000 times using different sets of differentially

expressed genes (of varying number). The consensus tree produced with this bootstrapping

approach is visualized with the Dendroscope software.

12



2.3. Methods

the NCBI Gene Expression Omnibus (GEO) [Barrett et al. 2007] accession number GSE7332

[Barberi et al. 2007]. We use gene expression data of AML patient samples available within

GEO (accession numbers GSE1159, GSE9476 [Stirewalt et al. 2008], GSE1729 [Gutiérrez

et al. 2005], and GSE12417 [Metzeler et al. 2008]). The breast cancer dataset is also compiled

from Microarray data published in GEO with dataset numbers GSE7390 [Desmedt et al.

2007], GSE2990 [Sotiriou et al. 2006], GSE3494 [Miller et al. 2005], and GSE9574 [Tripathi

et al. 2008]. A problem of micrarray meta-analyses is that the different dataset sources

may introduce a bias [Marot et al. 2009]. We therefore applied hierachical clustering to the

compiled breast cancer dataset and did not observe a clustering according to the sources.

2.3.2 Statistical Methods and Analysis

Data preprocessing

The CEL files are normalized and summarized with the rma function of Bioconductor 2.2

[Gentleman et al. 2004, Irizarry et al. 2003, Bolstad et al. 2003]. For the phylogenetic tree

construction and mainly as a strategy to remove potential noise from the data, we only

consider genes that show significant differences in their expression profiles when comparing

tumor subtypes. These differentially expressed genes are determined with a one-way analysis

of variance (ANOVA). In addition, our R scripts support as alternative methods for find-

ing differentially expressed genes the Welch approximation (R function oneway.test(...,

var.equal=FALSE)) [Welch 1951] and the Kruskal-Wallis test (kruskal.test()) [Kruskal

and Wallis 1952]. As default cutoff we choose Benjamini-Hochberg corrected p-values [Ben-

jamini and Hochberg 1995] of 0.01. To obtain a differentiation baseline, we include expression

data of normal fully differentiated tissue and, as an outgroup for the phylogenetic tree con-

struction, the expression profile of tissue-specific stem cells. Pairwise distances of the cancer

subtypes and baseline samples are computed with the Pearson Correlation Distance (d = 1−p)

or the Euclidean Distance of the average group intensities.

Phylogenetic tree reconstruction methods

The phylogenetic trees are reconstructed with several distance-based methods. The fitch

program includes the implementations of the Weighted Least Squares (WLS) [Fitch and Mar-

goliash 1967] and Minimum Evolution (ME) [Rzhetsky and Nei 1993] methods, neighbor pro-

vides the Neighbor-Joining (NJ) [Saitou and Nei 1987] and UPGMA algorithms [Unweighted

Pair Group Method with Arithmetic mean, Sokal and Michener 1958]. Both programs are

available in the Phylip package version 3.67 [Felsenstein 1989]. WLS and ME are methods
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designed to find the tree topology that fits the distance matrix best by optimization. The

difference between these two algorithms is the optimization criterion. WLS minimizes the

sum of squares error of the distances in the tree (dT ) compared to the ones in the distance

matrix (δ):

∑

i,j

(δi,j − dT
i,j)

δ2
i,j

The denominator thus weighs the deviations of δ from dT for distantly related species less. As

we often have very distant in vitro outgroups in the data, this is an important reason for us

to choose WLS as the default tree reconstruction method. ME uses the same criterion to fit

branch lengths to a given tree topology as WLS, but returns the topology with the smallest

sum of branch lengths, not the one with the smallest sum of squares error. Another related

method is Balanced Minimum Evolution (BME), implemented in the FastME program [Desper

and Gascuel 2004]. Both WLS and BME have shown good performance on microarray data

[Desper et al. 2004]. FastME is orders of magnitude faster than the Phylip implementation

of WLS and thus suitable for very large datasets. It is further known to be very accurate

compared to other tree reconstruction methods [Desper and Gascuel 2002; 2004, Bordewich

et al. 2009]. NJ is another computationally very efficient distance-based tree reconstruction

method and also popular because of its accuracy [e.g. Kuhner and Felsenstein 1994]. UPGMA

[Sokal and Michener 1958] is a hierarchical clustering algorithm that works in a ‘bottom-up’

way: at the beginning, all elements form individual clusters which are consecutively combined

until all elements are contained in only a single cluster. In each iteration, the pair with the

smallest distance is combined into a higher-level cluster and the distance matrix is updated

by calculating the distances to the newly formed cluster. The strength of the algorithm is

twofold: it is computationally very efficient with both time and space complexity O(n2) and

it does not depend on the a priori selection of the number of clusters, in contrast to the

k-means or SOMs algorithms.

Bootstrapping procedure

To assess the statistical significance of the phylogeny, the reconstruction is repeated 10,000

times with random subsets of the differentially expressed genes. We draw the bootstrap

sample size n from the discrete uniform distribution on the interval [50, N ], where N is the

total number of differentially expressed genes. Then n genes are sampled with replacement

from the set of these N genes. We further bootstrap the tumor samples to incorporate

the uncertainty of tumor classification. Therefore we sample for each tumor subtype ni
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experiments with replacement from the set of the ni experiments of this subtype. Once

a consensus tree is determined, it is rooted and visualized with Dendroscope version 2.2.2

[Huson et al. 2007].

Profile clustering

The phylogenetic tree explicitly specifies the differentiation order in the internal branch nodes.

We then use the order of samples determined by the tree to calculate expression profile

clusters with mfuzz [Futschik and Carlisle 2005], a fuzzy c-means R package commonly used

for clustering profiles of time series. This algorithm is similar to the k-means algorithm and

returns the probabilities that a gene belongs to particular expression profile cluster. As in

the k-means algorithm, the number of expression profile clusters has to be set in advance and

was set to 20 for the clustering of liposarcoma expression profiles in Fig. 2.7.

2.3.3 Comparison of our methodology to other clustering and

dimension-reduction methods

Greedy ordering of subtypes

We use a näıve greedy algorithm in which subtypes are linearly ordered by their distance

from hESC. The distance calculation and the bootstrapping are equivalent to the ones used

by the phylogenetic tree reconstruction. Bootstrap values can be interpreted exactly as in

the phylogenetic trees.

Self-Organizing Maps (SOMs)

SOMs [Kohonen 1990] are a type of unsupervised clustering algorithms that map high-

dimensional data into a 2-dimensional grid – typically hexagonal or rectangular. The number

of nodes in the grid must be set in advance, similarly to the k-means algorithm where the

number of clusters is a predefined variable. The algorithm results in a two-dimensional map

where similar data points tend to cluster together. SOMs are commonly applied to microarray

data to cluster both genes [Tamayo et al. 1999] and tumors [Golub et al. 1999]. We calculate

SOMs with the original implementation in the SOM PAK version 3.1 [Kohonen et al. 1996] with

the averaged group intensities of all differentially expressed genes (ANOVA FDR 0.01). We

set the topology to hexagonal and choose the ‘bubble’ neighboring kernel.
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Minimum Spanning Trees (MSTs)

MSTs are a well-established concept in graph theory. A spanning tree of a connected weighted

graph G is an acyclic connected subgraph of G with the same set of vertices as G. A distance

matrix can now be interpreted as a complete graph in which the edge weights correspond to

the distances. The MST is the spanning tree that connects all vertices of G with the smallest

sum of edge weights. MSTs have been shown to be useful for clustering and classification

of microarray data [Xu et al. 2002]. For the MST calculation we use the spantree function

of R, which is an implementation of Prim’s algorithm [Prim 1957]. We apply this function

to the Pearson distance matrix calculated again with all differentially expressed genes. A

major disadvantage of this method is the lack of an established algorithm to find consensus

MSTs for the resulting trees after bootstrapping, in contrast to phylogenetic trees where the

availability of a wide range of methods and implementations makes it easy to summarize

bootstrap results (e.g. [Margush and Mcmorris 1981, Holland et al. 2004]). Furthermore,

there are no ancestral states (inner nodes) in an MST, as opposed to phylogenetic trees where

subtypes are leaves in the tree and other nodes are created as ancestral states.

2.4 Results

2.4.1 Phylogenetic tree reconstruction method

We perform a systematic analysis of several methods and parameters used in our algorithm

(see Methods for details). We find that combining ANOVA and Benjamini-Hochberg with

a p-value of 0.01 gives good and robust results, while the Weighted Least Squares (WLS)

tree reconstruction method works best when combined with the Pearson correlation matrix.

Other combinations of methods give similar results and therefore should be tested in order

to have an accurate understanding of a given dataset.

The phylogenetic tree resulting from this analysis contains information about the relation

among subtypes as well as between subtypes and the root of the tree. The branching points

represent the ‘common ancestors’ of the subtypes that are situated at the leaves of those

branches. If the tree is rooted with expression data of a primitive cell type such as embryonic

or tissue-specific stem cells, then the subtypes that are located more closely to the root

correspond to types that are more similar to stem cells while the subtypes that are located

farthest away from the root represent the most dissimilar types. The order of the branching

points along the differentiation course can be interpreted as the ranking in dissimilarity of each

of the subtypes to stem cells. The differences between stem cells and tumor subtypes are in
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part caused by different differentiation status and in part by the abnormal cancer phenotype.

In some situations, the order of the subtypes dictated by the tree is not unique, resulting from

a non-fully balanced tree. For instance, more than one subtype can be mapped to exactly

the same point in the ordering according to dissimilarity from stem cells. Furthermore, the

two subtypes farthest away from the root share the same common ancestor and therefore

cannot be distinguished in their level of dissimilarity. To resolve this conflict, expression

data of a fully differentiated cell type can be included, which unambiguously defines the

last branching point in the ranking. We validate our methodology with three datasets:

(i) a dataset containing gene expression data of acute myeloid leukemia (AML) samples

which are categorized according to the French-American-British (FAB) classification into

classes that mirror maturation status [Bennett et al. 1976]; (ii) a dataset containing gene

expression of breast cancer samples classified according to estrogen receptor status and Elston

histological grade [Sotiriou et al. 2006, Desmedt et al. 2007, Miller et al. 2005]; and (iii) a

dataset containing gene expression data of liposarcoma subtypes which have been analyzed

for their differentiation status by comparing them to an in vitro differentiation time course

[Matushansky et al. 2008].

Acute myeloid leukemia (AML) is a clonal disease characterized by the accumulation of

myeloid progenitor cells in blood and bone marrow [Tenen 2003]. AML results from changes

in transcription factor regulation that lead to a disruption of normal cellular differentiation.

AML is classified into seven distinct subtypes depending on the morphology and differen-

tiation status of tumor cells: dedifferentiated, myeloblastic, myeloblastic with maturation,

promyelocytic, myelomonocytic, monocytic, and erythroleukemic AML. According to the

FAB classification, these subtypes are denoted by M0, M1,. . . , and M6, respectively. Since

AML is the result of alterations of the differentiation process, we validate our approach with

a dataset of gene expression of AML patients.

Our leukemia dataset contains gene expression data of 362 AML patients and of 7 patients

with unclassified Myelodysplastic Syndrome (MDS) (see Methods for details of dataset com-

pilation) (Table 2.1). To root the AML tree, we use expression data of human embryonic

stem cells (hESC); additionally, we include expression data of CD34+ hematopoietic cells

from both peripheral blood (CD34 PB) and bone marrow (CD34 BM), human mesenchymal

precursor cells (hESC MPC), as well as fully differentiated mononuclear cells from peripheral

blood (PB) and bone marrow (BM). The surface glycophosphoprotein CD34 is expressed on

undifferentiated hematopoietic stem and progenitor cells [Katz et al. 1985] and is widely used

as a marker for less differentiated hematopoietic cells. We include these two subgroups as a

further test of our methodology since their differentiation status is known. We use ANOVA to

17



2. Cancer Phylogenies

Table 2.1. French-American-British (FAB) classification of acute myeloid leukemia (AML)

subtypes and numbers of samples. The table shows the names of subtypes as classified by

FAB and the numbers of samples included in our study (see Fig. 2.3).

FAB class Name of subtype Number of samples

M0 Dedifferentiated 14

M1 Myeloblastic 78

M2 Myeloblastic with maturation 78

M3 Promyelocytic 29

M4 Myelomonocytic 75

M5 Monocytic 78

M6 Erythroleukemic 10

identify those probe sets that are significantly differentially expressed in at least one subtype

as compared to all other AML subtypes. The analysis identifies 11,105 probe sets that are

differentially expressed among AML subtypes if a false discovery rate (FDR) [Benjamini and

Hochberg 1995] of 0.01 is used. Use of this cutoff would lead us to expect 111 false positives.

If we use the Holm correction method instead [Holm 1979], which controls the family wise

error rate, then the number of differentially expressed probe sets decreases to 4,051 (with

0.01 expected false positives). The inclusion of less significantly differentially expressed genes

is a potential source of noise; however, high cutoffs for significance discard genes that could

be interesting for further analysis. The tradeoff between these two effects must be examined

carefully to choose an appropriate cutoff. We decided to use a standard cutoff FDR of 0.01

because the tree topology remains stable for large gene sets, and also a larger number of

potentially interesting genes are included which can be further filtered with other techniques.

The consensus phylogenetic tree based on this data is shown in Fig. 2.3. The order of the

branching points of the subtypes coincides with the differentiation stages specified by the

FAB classification: dedifferentiated AML (the M0 subtype) is located close to the stem cells

while myelomonocytic (M4) and monocytic (M5) AML are located in the most distant leaves

of the tree. The inner branching of the tree is also in accordance with the differentiation

status suggested by the FAB classification (Table 2.1). The tree topology specifying the

correct order of myeloblastic and promyelocytic maturation (M2 and M3), however, only

has a moderate bootstrap value because the two subtypes are very similar in maturity. The

branch leading to the erythroleukemic subtype (M6) is relatively unstable. This could be

attributed to the small number of samples in this subtype or to a possible misclassification
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Figure 2.3. A phylogeny of acute myeloid leukemia (AML) subtypes. According to the French-

American-British (FAB) classification, AML samples are classified into seven different

types according to their level of differentiation (see Table 1). Expression data from 362

AML patients and 7 Myelodysplastic Syndrome (MDS-AML) patients is used to construct

a phylogeny of these leukemias. We include expression data of human embryonic stem cells

(hESCs), CD34+ cells from bone marrow (CD34 BM) and peripheral blood (CD34 PB),

and mononuclear cells from bone marrow (BM) and peripheral blood (PB). The differen-

tiation pathway from hESCs to mononuclear cells from peripheral blood is represented in

purple, and the common ancestors of subtypes are shown as pink dots. The bootstrap values

of branches are indicated by boxed numbers, representing the percentage of bootstrapping

trees containing this branch. The ranking of AML subtypes identified by the phylogenetic

algorithm corresponds with the differentiation status indicated by the FAB classification.

The M6 subtype, represented by only 10 samples in our dataset, has the least stable branch,

leading to lower bootstrap values for those branches where it can alternatively be located.
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Table 2.2. Breast cancer subgroups and numbers of samples. The table shows the names of

the subgroups contained in the breast cancer dataset and the numbers of cancer samples as

well as healthy tissue samples included in our study (see Fig. 2.4).

Characterization of subgroup Number of samples

Normal breast tissue (NB CA) 14

ER – Grade 3 76

ER – Grade 2 27

ER – Grade 1 3

ER + Grade 3 84

ER + Grade 2 179

ER + Grade 1 114

or erroneous diagnosis. Therefore, the position of this subtype in the tree is less certain than

that of other subtypes; this uncertainty decreases the bootstrap values of the other branches

at which this subtype can be located. All other branches in the tree are very stable under

bootstrapping. Of central importance for the interpretation of the results is how well the tree

captures the observed relationships in the data. A good measure of this fit is the average

percent standard deviation of the distances between subtypes in the data compared to the ones

in the tree. The Least Squares algorithm minimizes this score. For the Pearson correlation

distance, the mean observed average percent deviation is 12.05%, which is a reasonable fit for

this distance measure [Waddell and Kishino 2000]; hence our algorithm produces a phylogeny

which accurately recapitulates the relationships seen in the data.

We also apply our algorithm to a breast cancer dataset in order to study the performance of our

method using cancers with epithelial origin. The samples in our dataset were characterized

by immunochemistry methods according to their estrogen receptor status (ER+ and ER-)

and Elston histologic grade (G1, G2, and G3). We compile a total of 483 unique samples,

among which we find all combinations of ER status and grade (Table 2.2). The raw data was

analyzed as described in the methods section. We root the tree with human mesenchymal

stem cells and also include samples of normal breast [Tripathi et al. 2008]. Results are shown

in Fig. 2.4. We find 17,966 probes differentially expressed between the subgroups when using

ANOVA with Benjamini-Hochberg correction and a cutoff value of 0.01. A negative ER status

has been shown to correlate with poor prognosis [Osborne et al. 1980]. Consistent with this

observation, our algorithm places ER-negative subgroups closer to stem cells, reflecting the

more stem-like properties of these aggressive tumors, while ER+ tumors are placed closer
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Figure 2.4. A phylogeny of breast cancer subgroups. The figure shows the consensus tree of

breast cancer subgroups. We use expression data of 483 breast cancer samples subdivided

as shown in Table 2. The tree is rooted with expression data of human mesenchymal stem

cells (hMSCs). We also include expression data of fully differentiated normal breast tissue.

The differentiation pathway from hESC to fully differentiated breast tissue is indicated in

purple, and the pink dots represent the common ancestors of (sets of) subgroups. The boxed

numbers specify the bootstrap values of branches. The phylogeny ranks the breast cancer

subtypes according to their dissimilarity from stem cells as ER- grade 3, ER- grade 2, ER+

grade 3, followed by ER- grade 1, ER+ grade 2 and ER+ grade 1.
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to the normal breast tissue samples. Tumor grades are ordered similarly, placing tumors of

higher grade closer to stem cells. Most trees reconstructed with the different sets of genes

have the same topology (bootstrap values close to 100%), reflecting a very robust topology.

We conclude that our methodology is also able to accurately rank tumors of epithelial origin

according to maturity.

Next we construct a phylogeny of liposarcoma subtypes. Liposarcoma is the most common

type of soft tissue sarcoma accounting for about 20% of all tissue sarcomas [Mack 1995]. In

2008, 10,390 new cases of sarcoma were reported in the US [American Cancer Society 2008].

Surgery is the standard care for localized tumors but leads to worse prognoses in cases of

locally advanced or disseminated disease [Singer et al. 2007]. Liposarcomas are classified into

three biological types encompassing five subtypes: (i) well-differentiated/dedifferentiated, (ii)

myxoid or round cell, and (iii) pleomorphic liposarcoma, based on morphological features

and cytogenetic aberrations [Sandberg 2004]. Although the subtype is the main determinant

of clinical outcome [Kooby et al. 2004, Singer et al. 2003, Nakayama et al. 2007, Barretina

et al. 2010, Sekiya et al. 2004], liposarcomas of similar morphology can differ in response to

treatment and in prognosis [Singer et al. 2007]. Microscopically well-differentiated liposar-

coma is composed of relatively mature adipocytic proliferation showing significant variation

in cell size and at least focal nuclear atypia. Histologically dedifferentiated liposarcoma is

represented by the transition from well-differentiated liposarcoma to non-lipogenic sarcoma.

Both well-differentiated and dedifferentiated liposarcomas contain characteristic ring or gi-

ant marker chromosomes with 12q14-15 amplification. Myxoid liposarcomas contain uniform

round to oval shaped primitive non-lipogenic mesenchymal cells and a variable number of

small signet-ring lipoblasts in a prominent myxoid stroma. Round cell tumors are character-

ized by solid sheets of primitive round cells with no intervening myxoid stroma. Pleomorphic

liposacoma is a pleomorphic high grade sarcoma containing a variable number of pleomorphic

lipoblasts.

Recently, progress has been made towards a classification of liposarcoma subtypes utilizing

gene expression data. In 2007, a 142-gene predictor was identified which correctly distin-

guishes between liposarcoma subtypes and generates a set of differentiation-related genes

that may contain candidate therapeutic targets [Singer et al. 2007]. In 2008, Matushansky

et al. showed that the main liposarcoma subtypes can be ranked according to their differ-

entiation status by comparing gene expression data of the tumor subtypes with the genes

expressed during normal in vitro adipogenic differentiation [Matushansky et al. 2008]. The

ranking generated by the latter approach is useful for validating our methodology.

Our liposarcoma dataset includes 180 surgical samples that have been pathologically classified
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as 61 dedifferentiated, 52 well differentiated, 26 pleomorphic, 18 round cell, and 23 myxoid

liposarcomas [Singer et al. 2007, Barretina et al. 2010]. Samples that were likely misclassified

were filtered in previous studies, which is a pre-processing step critical for the outcome of

the algorithm. For a FDR of the ANOVA filter of 0.01 after correction with the Benjamini-

Hochberg method, we find 13,429 probe sets that are differentially expressed among the

liposarcoma subtypes. Those sets are then used to construct an unrooted phylogenetic tree.

To root the tree, we use expression data of mesenchymal stem cells [Graham et al. 2002]

and fully differentiated adipocytes. The resulting consensus tree is shown in Fig. 4a. The

tree topology is stable with bootstrap values larger than 85%. Based on the consensus tree,

the subtypes can be ordered by increasing dissimilarity from stem cells as dedifferentiated,

pleomorphic, myxoid/round-cell, and well-differentiated liposarcoma (Fig. 4a). This order

coincides with experimental results based on the gene expression observed during in vitro

differentiation published earlier (Fig. 4b) [Matushansky et al. 2008]. By setting the p-value

threshold of the Holm correction to 0.01, we obtain 7,290 differentially expressed probe sets;

these probe sets generate a tree topology that is identical to the case described above with

bootstrap values larger than 91.5% (data not shown). When rooting with embryonic stem

cells, the branching between embryonic stem cells and the rest of the tree is less stable since

the expression of embryonic stem cells differs considerably from all other samples (data not

shown). To increase the stability of the tree, it is preferable to root with an outgroup that is

relatively closely related to the investigated samples (in this case, mesenchymal stem cells; see

also Sec. 2.4.3) [Graham et al. 2002]. Again we test how well the tree fits the distance matrix

and observe a mean average percent standard deviation of 11.3%, which has been reported

to be a good fit for the Pearson correlation distance [Waddell and Kishino 2000]. Therefore,

our methodology is also able to rank liposarcoma subtypes in the correct order according to

their dissimilarity to stem cells.

Since our methodology correctly ranks leukemia, breast cancer, and liposarcoma samples ac-

cording to their differentiation status, we now investigate a larger number of sarcoma subtypes

to identify their relationship in maturity as well as candidate targets for therapeutic inter-

vention. The sarcoma dataset includes the 180 liposarcomas discussed above as well as 36

myxofibrosarcomas, 5 pleomorphic malignant fibrous histiocytomas (MFH), 7 lipomas, and 23

leiomyosarcomas (Table 2.3). We use expression data of both mesenchymal stem cells and em-

bryonic stem cells to root the tree. The consensus tree is shown in Fig. 2.5. Our methodology

determines that leiomyosarcoma is closest in its differentiation status to stem cells, followed

by MFH and myxofibrosarcoma, and finally the liposarcoma subtypes (ranked as determined

above) and the benign subtype lipoma. The algorithm also clusters the subtypes according

to tissue of origin, predicting that leiomyosarcoma branches before all other subtypes, and
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Figure 2.5. A phylogeny of sarcoma subtypes. The figure shows the consensus tree of sar-

coma subtypes. We use expression data of 251 sarcoma samples classified into the types

shown in Table 2. The tree is rooted with expression data of human embryonic stem cells

(hESCs). We also include expression data of human mesenchymal stem cells (hMSC)

and of fully differentiated normal adipocytes. The differentiation pathway from hESC to

fully differentiated adipocytes is indicated in purple, and the pink dots represent the com-

mon ancestors of (sets of) subtypes. The boxed numbers specify the bootstrap values of

branches. The phylogeny ranks the sarcoma subtypes according to their dissimilarity from

stem cells as leiomyosarcoma, malignant fibrous histiocytoma, myxofibrosarcoma, followed

by the liposarcoma subtypes dedifferentiated liposarcoma, pleomorphic, myxoid/round-cell,

and well-differentiated liposarcoma. Lipoma is identified as the subtype most dissimilar

from stem cells.
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Table 2.3. Sarcoma subtypes. The table shows the number of sarcoma subtypes included in

our study (see Fig. 2.5)

Tissue Name of subtype Number of samples

Fat Dedifferentiated 61

Pleomorphic 26

Round-cell 18

Myxoid 23

Well-differentiated 52

Lipoma 7

Smooth Muscle Leiomyosarcoma 23

Fibrous Tissue MFH 5

Myxofibrosarcoma 36

that MFH and myxofibrosarcoma have a common ancestor; so do all liposarcoma subtypes

and lipoma. Note that although pleomorphic liposarcomas and MFH/myxofibrosarcomas are

very similar subtypes at the level of their genetic copy number aberrations [Barretina et al.

2010], our algorithm places them in different branches of the tree. This effect is a result of

the phenotype-based nature of our method and is in accordance with the different tissues of

origin of these subtypes. The tree has a very stable topology with bootstrap values larger

than 0.90 except for the MFH subtype, which exhibits a lower bootstrap value of 0.60; this

value is likely due to the small number of samples (5) available for this subtype. Note that

with the current dataset, we cannot distinguish between the case in which the subtype located

most closely to stem cells, leiomyosarcoma, is situated on the adipocytic differentiation path

and the case in which leiomyosarcoma is alternatively located on a branch leading to fully

differentiated tissue of another type. To resolve this ambiguity, gene expression data of fully

differentiated tissue of all the types giving rise to sarcomas is needed.

We are interested in identifying genes that are related to adipogenesis, i.e. those genes that

correlate with adipocyte differentiation. To identify such genes, we cluster our list of differen-

tially expressed genes into a chosen number of groups depending on their expression pattern

in sarcoma subtypes. When the subtypes are arranged according to their distance from stem

cells (as indicated by the tree in Fig. 2.6a), the expression of some genes continuously in-

creases from the less differentiated to the more differentiated subtypes, while the expression

of other genes decreases or exhibits more complicated patterns (Fig. 2.7). We hypothesize

that genes whose expression continuously increases or decreases are possibly related to gain
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Figure 2.6. A phylogeny of liposarcoma subtypes. (a) The figure shows the consensus tree of

liposarcoma subtypes. The tree is rooted with expression data of human mesenchymal stem

cells (hMSC), and expression data of normal fat cells is included as well. The differen-

tiation pathway from hMSC to normal fat cells is represented in purple. The pink points

represent common ancestors of (sets of) subtypes. The boxed numbers specify bootstrap val-

ues of branches. The tree indicates that dedifferentiated liposarcoma is most similar to stem

cells, followed by pleomorphic, myxoid, round-cell, and finally well-differentiated liposar-

coma. (b) The figure shows a schematic representation of the correlation of adipogenesis

to liposarcoma differentiation. In Matushansky et al. [2008], human mesenchymal stem

cells were differentiated in vitro to produce fat cells, and gene expression was measured for

five different time points during the differentiation. The expression data of four different

liposarcoma subtypes was then compared to the data obtained from the differentiation time

course. This comparison identified dedifferentiated liposarcoma as the subtype most similar

to stem cells, followed by pleomorphic, myxoid/round-cell, and well-differentiated liposar-

coma. The correspondence between the results of our algorithm applied to gene expression

datasets and these experimentally derived results serves as a validation of our methodology.

Adapted from Matushansky et al. [2008].
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Figure 2.7. Clusters of gene expression profiles. The figure shows four example groups of

differentially expressed genes clustered according to their expression profiles (see Methods

section for details on the clustering algorithm). On the horizontal axis, we show the li-

posarcoma subtypes ordered according to the ranking identified by the phylogenetic approach

(see Fig. 2.6a) and in the vertical axis the corresponding standard normalized average ex-

pression values of the subtypes. We also include human embryonic stem cells (hESCs) and

normal fat cells. The expression of some genes continuously decreases from less differen-

tiated samples (hESC, dedifferentiated liposarcoma, ...) to more differentiated samples (

. . . , well-differentiated liposarcoma, normal fat) (a), while the expression of other genes

increases (b). Other genes are overexpressed in just a single liposarcoma subtype (c) or in

a subset of subtypes (d). Those genes whose expression continuously increases or decreases

are hypothesized to be related to adipogenesis (see Table 2.4).
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of the features of differentiation and loss of stem cell-associated functions, even though this

association with maturation may not be causative. To test this hypothesis, we compare the

genes whose expression increases or decreases along the order of subtypes to previously pub-

lished lists of adipocytic differentiation-specific genes [Matushansky et al. 2008, Sekiya et al.

2004]. In these two studies, mesenchymal stem cells were differentiated in vitro into normal

fat cells, and the expression profiles of cells were measured at multiple time points during the

differentiation process. An investigation of genes whose expression levels changed statistically

significantly along the differentiation time course led to the identification of 67 and 69 genes,

respectively [Matushansky et al. 2008, Sekiya et al. 2004]. These genes are thought to be

related to adipocytic differentiation.

We rank the genes whose expression increases or decreases along the liposarcoma subtypes (see

Fig. 2.7 for example clusters) according to the fold change between their expression in human

mesenchymal stem cell (hMSC) and in normal fat. Among the 11,105 probe sets obtained by

the ANOVA filtering with FDR of 0.01 after Benjamini Hochberg correction, the top 25 genes

in this ranking are listed in Table 4. About 64% of these genes coincide with the published lists

[Matushansky et al. 2008, Sekiya et al. 2004]. These results suggest that our methodology is

able to identify differentiation-related genes from the large number of differentially expressed

genes. Additionally to the previously identified genes, our method identified other genes that

have not been associated with adipocytic differentiation (Table 2.4). For instance, the protein

phosphatase inhibitor 1 (PPP1R1A) is thought to be important in the control of glycogen

metabolism and is primarily expressed in liver cells; the tyrosine kinase NTRK2 is part of

a signaling pathway leading to neuronal differentiation, and the metabolism related enzyme

system ACACB is exclusively expressed in adipocyte tissue.

2.4.2 Comparison of tree reconstruction methods to other algorithms

We compare the results obtained from phylogenetic tree reconstruction algorithms with other

methods of data clustering and organization such as a simple greedy algorithm (in which

subtypes are linearly ordered by their distance from hESC), self-organizing maps (SOMs),

and minimum spanning trees (MSTs) (see the Methods section for details of the algorithms).

When applying the greedy algorithm to our AML dataset, we find similar results to those pro-

duced by the tree reconstruction analysis (Fig. 2.8a). Although the correspondence between

the results of this method and the reconstructed phylogenetic tree is very good, the former

only contain information of a linear organization, as opposed to the richer information that

can be extracted from the tree topology and branch lengths. An example of a self-organizing

map (SOM) algorithm applied to the AML dataset is shown in Fig. 2.8b. Subtypes that are
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Table 2.4. Adipogenesis-related genes. The table shows 25 genes (represented by 28 probe

sets) whose expression continuously increases or decreases from less differentiated to more

differentiated samples as ranked in Fig. 2.7. The genes are ordered according to their fold

change in expression between mesenchymal stem cells and normal fat cells. These genes

are related to adipogenesis. About 64% of those genes have previously been reported in

Matushansky et al. [2008] and Sekiya et al. [2004] (marked with a and b, respectively).

Gene Symbol Gene Name Fold Change

FABP4ab fatty acid binding protein 4, adipocyte 352.1

LPLab lipoprotein lipase 164.3

ADH1Bab alcohol dehydrogenase 1B (class I), beta polypeptide 150.1

HBA/B hemoglobin 147.0

ADIPOQa adiponectin, C1Q and collagen domain containing 137.2

RBP4ab retinol binding protein 4, plasma 104.0

GOS2b G0/G1switch 85.6

FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 78.3

SORBS1a sorbin and SH3 domain containing 1 72.0

PLINab Perilipin 68.1

PRKAR2Ba PRKAR2B a protein kinase, cAMP-dependent, regulatory,

type IIb

53.1

CHRDL1a chordin-like 1 52.0

APODa apolipoprotein D 49.9

PPP1R1A protein phosphatase 1, regulatory (inhibitor) subunit 1A 41.4

GHR growth hormone receptor 41.4

AOC3ab amine oxidase, copper containing 3 (vascular adhesion protein

1)

40.8

CLEC3B C-type lectin domain family 3, member B 38.1

DPTa dermatopontin 37.0

NTRK2 neurotrophic tyrosine kinase, receptor, type 2 36.5

PALMD palmdelphin 34.1

ACACB acetyl-Coenzyme A carboxylase beta 32.2

LEPa leptin 28.8

VWF von Willebrand factor 28.1

TIMP4b TIMP metallopeptidase inhibitor 4 26.7

COL11A1ab collagen, type XI, alpha 1 -11.7
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known to be similar are mapped close together on the grid – e.g. human embryonic stem cells

(hESC), mesenchymal stem cells (MSC), and samples with markers of poor differentiation

(BMCD34 and CD34PB). Unfortunately, the overall organization of a SOM strongly depends

on the shape and size of the grid, making it difficult to interpret the results in a robust and

useful way for our purposes. Finally, we calculate a maximum spanning tree (MST) for the

AML dataset (Fig. 2.8c). This algorithm accurately reproduces the reconstructed tree found

with our original method, with the exception of mesenchymal stem cells being placed at the

edge of the tree (instead of embryonic stem cells).

2.4.3 Systematic analysis of methods and parameters

We compare the different methodologies implemented in our algorithm for each step of the

analysis in order to identify those methods and parameters that perform well in the analysis

of our datasets. We apply our algorithm to all datasets using all combinations of the follow-

ing methods and parameters: for finding differentially expressed genes: ANOVA, Kruskal-

Wallis (KW) and Welch approximation (Welch); two methodologies for p-value correction:

Benjamini-Hochberg (BH) and Holm; two p-value cutoffs: 0.01 and 0.05; five tree reconstruc-

tion and clustering algorithms: Weighted Least Squares (WLS), Minimum Evolution (ME),

Neighbor-Joining (NJ), FastME, and Average Linkage (UPGMA); and two distance measures:

Pearson correlation and Euclidean distance. The topologies found among the different com-

binations of parameters show that WLS, Pearson correlation, and BH with a cutoff value of

0.01 perform accurately in accordance with the AML, breast cancer, and liposarcoma datasets

(data not shown).

Note that two main assumptions of the UPGMA algorithm are not fulfilled by cancer subtype

data, namely: all species originate from a common ancestor and they all have evolved at the

same pace. This issue explains why this method fails to reconstruct the right tree topologies;

for example, in all sarcoma UPGMA topologies, some liposarcoma subtypes branch together

with leiomyosarcoma, which is thought to arise from smooth muscle tissue.

It has been shown in previous studies that, in general, WLS performs better than NJ when

trees have long external or internal branches [e.g. Bruno et al. 2000]. Note also that the use

of Euclidean distance leads to less robust results than the use of Pearson correlation when

trees with long branches are considered. For example, when the Euclidean distance method

is applied to the liposarcoma data, the dedifferentiated and pleomorphic subtypes cluster

together with the well-differentiated subtype and normal fat. The effect of long branches on

the Euclidean distance method becomes even more pronounced when analyzing the sarcoma

data; in this case, the least common topologies are observed only when the Euclidean distance
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Figure 2.8. Alternate distance based methods applied to acute myeloid leukemia (AML) data.

(a) The figure shows the results of a simple algorithm that sorts the AML subtypes by their

distance to hESC. The algorithm uses the same distances as the ones for the phylogenetic

tree shown in Fig. 2.3. (b) Self-Organizing Maps. The AML subtypes are arranged on

a hexagonal grid of 15 x 3 nodes. These nodes are visualized by the small red or white

dots. The colors visualize the difference of neighboring nodes. For example, the light nodes

surrounding M4 and M5 show that these subtypes are similar. MSC and CD34+ peripheral

blood, however, show very different expression patterns despite the fact that they are ordered

close together on the map. (c) Minimum Spanning Tree (MST) calculation of the Pearson

correlation matrix of the AML dataset.
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method is used. If distant subgroups (i.e. hMSC and hMSC MPC) are removed from the

analysis, then most parameter combinations including the Euclidean distance method favor

the correct topology.

We do not observe a significant influence of the choice of the method on the identification

of differentially expressed genes. More important for our data was the choice of the p-value

cutoff. The results of our study suggest that BH with a cutoff of 0.01 is a good compromise,

but we recommend investigating the effects of using different cutoff values.

In general, all tree reconstruction methods are very fast, especially since the number of dif-

ferent tumor subtypes in our analysis is typically limited. So it is possible to test many

parameters in a reasonable time and we recommend doing so.

2.5 Discussion

We have presented a rational methodology to investigate the dissimilarity between cancer

subtypes and stem cells. Our approach uses gene expression data of tumor samples which

have been classified into histological subtypes as well as expression data of an ‘evolutionary

outgroup’ such as embryonic stem cells, tissue-specific stem cells, and/or fully differentiated

normal cells. The data of tumor subtypes is used to identify the genes that are differentially

expressed among the subtypes, and those genes, together with data of the outgroup, allows

construction of a phylogeny of cancers. Our algorithm estimates the statistical significance of

the tree branches by bootstrapping, a repeated tree construction using a varying number of

randomly chosen genes. The distance between the branching points of the tumor subtypes and

the stem cells specifies their dissimilarity, which is caused in part by differences in maturity,

and ranks the subtypes according to increasing differentiation. This ranking is then used to

identify genes whose expression continuously changes depending on the degree of maturation.

Our methodology is validated by being able to correctly reproduce experimental results con-

cerning the relationship in differentiation status of liposarcoma, breast cancer and AML sub-

types [Bennett et al. 1976, Matushansky et al. 2008, Tenen 2003] and concerning genes related

to adipocytic differentiation [Matushansky et al. 2008, Sekiya et al. 2004]. Our method is

useful for identifying genes that are overexpressed in some tumor subtypes (Fig. 2.7c). For

instance, genes whose expression is increased in a particular tumor type but not in normal

tissue-specific stem cells and differentiated cells may represent candidates for targeted therapy,

possibly with lessened side effects. Interestingly, some of the genes found to be differentially

expressed in only one or a few liposarcoma subtypes can be targeted by currently available

drugs. It will be an important next step to test those genes for a causal role in tumorigenesis.
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2.5. Discussion

In recent years, bioinformatic tools have been widely used to analyze the vast amount of data

produced experimentally. In analyses of microarray data, simple algorithms for phylogenetic

tree reconstruction, such as Average linkage (UPGMA) [Sokal and Michener 1958], produce

rooted bifurcating trees and are routinely applied to visualize similarities in gene expression.

The most prominent example for this type of analysis are heatmaps, a graphical representation

of the clustered expression matrix where colors represent the measured gene intensities; a

dendrogram is often added which shows the bifurcating tree best describing the differences

in gene expression [Eisen et al. 1998]. Another important application of such algorithms is

the clustering of tumor samples for improving or discovering subtype classification [e.g. Kapp

et al. 2006]. Other more sophisticated tree reconstruction algorithms are only rarely applied to

expression data [Waddell and Kishino 2000, Desper et al. 2000; 2004, Desper and Gascuel 2004,

Planet et al. 2001, Uddin et al. 2004, Nugoli et al. 2003]. The ‘molecular clock’ assumption

of UPGMA (specifying that changes occur at a constant rate, [Kimura 1968]) renders this

algorithm inappropriate for our investigation. Other algorithms such as Maximum Parsimony,

Neighbor-Joining (NJ) [Saitou and Nei 1987], or Least-Squares [Fitch and Margoliash 1967]

enable us to root the tree and to estimate the differentiation status of tumor subtypes by a

simple comparison of the lengths between the root of the tree and the branching points of

the leaves. We do not use character-based methods such as Maximum Parsimony due to the

necessity of artificially discretizing the continuous values of gene expression intensities.

The estimation of evolutionary distances between tumors from gene expression data is hin-

dered by the fact that small differences in the biology of tumors may cause large differences in

gene expression. Examples of such situations are given by genes which trigger the expression

of cascades of other genes [Planet et al. 2001] and mutational events affecting the expression

of several genes [Park et al. 2009]. Park et al. [2009] proposed the use of correction methods

that estimate mutational distances from the observed expression distances. This approach

represents an interesting new avenue to further explore in future work.

The phylogeny of tumor subtypes identified by our methodology cannot be used to reconstruct

the evolutionary history of a single tumor sample. The fact that dedifferentiated liposarco-

mas, for example, branch earlier than well-differentiated liposarcomas is not to be taken as

evidence that one subtype evolved into the other. Rather, it specifies the dissimilarity of

the bulk of tumor cells between cancer subtypes from stem cells at the time of observation.

Similarly, our methodology cannot be used to identify the cell of origin of a tumor type. Both

the position of a subtype in a differentiation-based phylogeny and the similarity of a subtype

to an in vitro differentiation time course provide information about the bulk of tumor cells

only; to determine whether these cells are produced from tumor stem cells which arose from
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cells of similar, earlier or more complete differentiation stages is outside the scope of this

approach. Furthermore, the ability of a phylogenetic tree to reconstruct evolutionary trajec-

tories when applied to genetic data rests on the assumption that the genetic material records

the evolutionary history of the system. In the case of phenotypic information such as gene

expression data, this assumption does not hold, and hence any information about the origin

of the investigated cancer subtypes cannot be obtained.

The generality of our approach and the extensive availability of high-quality input datasets

(e.g. GEO) makes this methodology a unique tool to investigate differentiation-related genes

and the relationship in maturity of cancer subtypes. The use of data from patient samples

reduces the problems encountered with in vitro studies regarding the reproducibility of the

results in other systems and their significance to in vivo situations.
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3
Wild Pedigrees

3.1 Introduction

Molecular markers such as highly polymorphic short tandem repeats (STRs), e.g. microsatel-

lites [Queller et al. 1993], and more recently also diallelic single nucleotide polymorphisms

(SNPs) [Glaubitz et al. 2003, Anderson and Garza 2006] are now routinely used to genotype

individuals in natural populations. The reconstruction of genealogical relationships among

diploid species by means of molecular markers has been an active field of research for more

than three decades. A well-developed statistical theory of paternity inference has been pub-

lished in series of articles by E.A. Thompson [e.g. Thompson 1976]. The study of parentage

in natural populations was the topic of the pioneering papers by Meagher and Thompson

[1986] and Marshall et al. [1998] and is recently reviewed in Blouin [2003], Jones and Ardren

[2003], Pemberton [2008], Jones et al. [2009]. The pedigree structure of a sample of individuals

is important for a wide range of ecological, evolutionary and forensic studies. Applications

include genealogy reconstruction [e.g. for wine grape cultivars Vouillamoz and Grando 2006],

the estimation of heritabilities in the wild [Thomas and Hill 2000], and victim identification

[Lin et al. 2006].

In order to reconstruct the pedigree of a sample, the parents of each individual in the sample
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need to be determined. If one has a large amount of genomic data, the task of identifying first

degree relationships, i.e., parent-offspring and full-sibling relations, is trivial. Unfortunately,

many datasets in natural populations do not contain enough information to unambiguously

determine the parents. Another problem is that datasets often contain only a subset of a

population. Thus, one or both parents of an observed individual may be missing from the

dataset. Furthermore, many datasets are not free of errors.

Pedigree reconstruction has an especially long history in flowering plant populations, see e.g.

Ellstrand and Marshall [1985] and Meagher and Thompson [1987]. It has been used mainly to

find correlations between phenotypes and reproductive success, or to estimate pollen-mediated

gene flow [Smouse and Meagher 1994, Burczyk et al. 1996, Smouse et al. 1999, Meagher et al.

2003, Wright and Meagher 2004]. To a lesser extent, parentage inference and related methods

are used to estimate recent rates of self-fertilization (selfing) in a population [Ritland and

Jain 1981, David et al. 2007, Wilson and Dawson 2007, Jarne and David 2008].

Pedigree reconstruction in clonal populations has received very little attention so far, although

such an approach holds the promise to allow the direct inference of gene flow from a popula-

tion’s pedigree in particular in long-living clones with limited rate of sexual reproduction. It

is a much harder problem than classical paternity or parentage inference for two main reasons:

First, it is typically difficult to estimate the age of a clonal plant [Ally et al. 2008] so age data

is often not available. Second, while it is normally easy to estimate the number of individuals

(ramets), Nr, in a clonal plant population over the occupied space, it is typically very hard to

estimate the number of different genotypes (genets), Ng. The genotype number, Ng, usually

is a required input parameter in most software for the estimation of the statistical significance

of a parentage. We will later demonstrate that both restrictions can be overcome at least in

principle, however.

In this chapter, we will present a new software package FRANz. We will start with a short

overview of exisiting tools and methods in Sec. 3.2. We then give a short review of the

statistical frameworks typically used in parentage analyses in natural populations in Sec. 3.3.

In Sec. 3.4 we explain our program FRANz in detail and in Sec. 3.5 we will apply our method

to empirical and simulated data.

3.2 The molecular ecologist’s tools of the trade

A molecular ecologist who wants to use parentage analyses has to choose between a vast

amount of published tools. The reason therefore is simply that there are a lot different

sampling schemes, i.e., the fraction of sampled offspring and maternal or paternal genotypes

36



3.2. The molecular ecologist’s tools of the trade

in the population normally differs a lot between studies and tools are often specialized for a

particular sampling scheme. In same cases for example, it is possible to get DNA data from

almost all mating individuals in the population [e.g. Nielsen et al. 2001, Hadfield et al. 2006].

Sometimes mothers are known, for instance in plants when seeds are attached to their mothers.

Or maybe it is known that groups of offspring are half- or full-sibs, for example in amphibian

egg masses. Tools that support these kinds of prior knowledge will infer parentages with

higher accuracy than tools that do not. Unfortunately, many niche tools lack basic features

like a good handling of genotyping errors or mutations. Thus, many ecologists use standard

tools and do not take advantage of their prior knowledge. On the other hand, if some tools

assume a particular prior knowledge, e.g. paternity inference tools which assume knowledge

of the maternal genotypes, then ecologists cannot use these tools in a straightforward way

when this information is not available. Things look especially bleak for researchers who want

to study the mating behaviour of polyploid or haplo-diploid species as almost no established

tool supports non-diploid species.

In this section, we will give a very brief overview of the most important tools. For more

comprehensive reviews, see Jones and Ardren [2003], Jones et al. [2009]. The flow chart in

Fig. 3.1 gives an overview of the supported features of the tools presented in the following.

3.2.1 Sibship inference and parental reconstruction

Most programs support only datasets comprising one or two generations. The approach

to partial pedigree reconstruction in one generation datasets are sibship algorithms. Here,

genotype data is used to infer full-sib and half-sib relationships [Smith et al. 2001, Thomas and

Hill 2002, Wang 2004b, Berger-Wolf et al. 2007]. The most popular tools are COLONY [Wang

2004b] and PEDIGREE [Smith et al. 2001]. Since version 2.0, COLONY can infer parentage jointly

with sibships [Wang and Santure 2009].

The parental reconstruction technique is possible when family sizes are rather large (> 8− 10

offspring), half- or even full-sib groups are known a priori and markers are highly polymorphic.

Then parental genotypes can be reconstructed and thus the mating behaviour of unsampled

individuals inferred. GERUD [Jones 2005] uses an exhaustive algorithm that tests all possible

parental genotypes and guarantees to find the minimum number of parental genotypes to

explain the data. The first version required that the maternal genotype is known, but this

limitation is removed in the current version 2.0. The PARENTAGE [Emery et al. 2001] program

uses a Markov chain Monte Carlo (MCMC, see Sec. 3.3.7) approach to sample parental

genotypes. It might be the program of choice when markers are less informative [Jones

et al. 2009].
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Figure 3.1. A flow chart showing the available tools for various types of sampling schemes. See

Sec. 3.2.1 and 3.2.2 for references and short introductions of the tools. We mainly focused

here on tools that were recomended in a recent review [Jones et al. 2009]. This review

introduces also a magnitude of other niche tools or prototype implementations. Adapted

and extended from Jones et al. [2009].
a only when one sex is monogamous; b calculates full-sib p-values; c can infer parent-offspring and full-sib

relationships and should give in general better results
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3.2.2 Parentage and paternity inference

Most classical parentage or paternity inference tools require age data; the absence of age

data makes an a priori ordering of individuals in generations impossible. Such an ordering

is assumed by traditional paternity inference software and also dramatically restricts the

pedigree search space. So these programs typically take an offspring list, if known their

mothers, and a list of candidate parents or fathers as input and output the most likely

parentage for each offspring.

The most popular tool is CERVUS [Marshall et al. 1998, Kalinowski et al. 2007] which started

as a paternity inference tool but supports now also parentage inference. CERVUS estimates

the statistical significance of the parentages by simulation, which requires knowledge of the

number of unsampled candidate parents and the genotyping error rate. Then it compares

the observed likelihood distributions in the simulation (Sec. 3.3.4) with the likelihood scores

in the data and assigns parentages if these scores exceed a given threshold. Only assigned

parentages are considered in downstream analyses. Parentage inference is restricted to rather

small datasets in the current version 3.0.3. Apart from the fact that CERVUS proved its

robustness in hundreds of studies, one important reason for the popularity of this software

is its graphical user interface and its comprehensive allele frequency analysis. Concerning

features, very similar tools are PASOS [Duchesne et al. 2005] and FaMoz [Gerber et al. 2003].

The latter is one of the very few tools that support dominant markers, such as amplified

fragment length polymorphisms (AFLPs). The counterpart of PASOS for closed systems, i.e,

when all parental genotypes are known, is PAPA [Duchesne et al. 2002]. FAP [Taggart 2007] is

another tool for closed systems.

An alternative to the simulation-based methods are tools that use Bayesian frameworks.

PARENTE [Cercueil et al. 2002] was one of the first parentage inference tools. In contrast

to CERVUS and FaMoz, it generates the lists of candidate parents internally by analyzing

the specified years of birth and death and the age ranges in which individuals can repro-

duce. PARENTE assigns parentages by their posterior probabilities (we will explain this later

in detail in Sec. 3.3.7 and 3.4.1). Another tool that uses a Bayesian framework is PATRI

[Signorovitch and Nielsen 2002]. It only supports paternity inference. As two special fea-

tures, it can estimate the male population size and can compare the reproductive success of

groups of males. The MASTERBAYES R package [Hadfield et al. 2006] uses a similar full proba-

bility approach. Instead of using only assigned parentages, it estimates parameters of interest

jointly with parentages. For example in Hadfield et al. [2006], the authors investigate how

the distance d of the sampling locations between offspring and father affects the probability

of paternity. They model the probability of paternity as an exponential function exp−dλ and
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estimate means and quantiles of the parameter λ in a MCMC approach simultaneously with

the pedigree. MASTERBAYES was written for datasets where almost all candidate parents were

sampled, but recent versions now support also incomplete sampling. It is one of the very few

tools that still get regular updates. Finally, another tool with a Bayesian framework is NEST

[Jones et al. 2007] which is an approach of parentage analysis for nest structured data.

3.2.3 Multigenerational pedigree reconstruction

Much less attention [e.g. in Almudevar 2003; 2007, Fernández and Toro 2006, Koch et al. 2008,

Cowell 2009] compared to parentage and paternity inference or sibship algorithms has been

given to multigenerational pedigrees in which the offspring and candidate parent sets are not

necessarily non-overlapping. This is the case for example in the absence of age data. Then the

ordering of genotypes into generations is not known a priori and has to be estimated from the

genotype data only. Thus, at difference with parentage inference programs, this general case

does not admit all possible parentage combinations as valid pedigrees. The task is therefore to

find the parentage combinations that define the maximum likelihood pedigree. If the number

of possible pedigrees is too large to enumerate, heuristics are necessary. So far, a flexible

software package has not been available that allows the incorporation of prior information in

addition to the genotypes and that is robust in the case of errors. We have implemented a

package called FRANz which fills this gap and which we will introduce in detail in this chapter.

As parentage inference and paternity inference are easier as age or even mothers are known,

such a package has a much wider scope of application than the classical tools. Fig. 3.1 shows

that most other tools only work with a very limited number of sampling schemes.

3.3 Background

3.3.1 Pedigrees

The core of our pedigree reconstruction tool FRANz is a probabilistic model calculating the

likelihood of a given pedigree. Let us start with the necessary definitions.

A pedigree P = (V, A) is an acyclic digraph with vertex set V and arc set A, where the

vertices represent the individuals and the arcs the parent-offspring relationships (Fig. 3.2).

Thus V represents the set of all genotyped individuals in the sample. For an arc (ui, v), we

say that v is a child of ui and ui is a parent of v. The set of parents of v in P is denoted by

N+(v) ⊆ V ; this set may contain two elements, {ui, uj}, one element, {ui}, or none, ∅. In the

latter case, v is called a founder. In selfing species, ui = uj is allowed and P thus becomes a
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M F

1 2 3

Figure 3.2. A simple example pedigree P = (V, A) in a digraph representation. The vertex

set V represents the individuals, here a family with a mother, a father and three offspring.

The arc set A represent the parent-offspring relationships.

multigraph. With N−(u) ⊆ V we denote the offspring of u.

3.3.2 Genotypes

The pedigree in Fig. 3.3 shows the genotypes of the believed remains of the Romanov family

[Gill et al. 1994, Coble et al. 2009]. Short tandem repeat (STR) data is available from four

different loci. A locus is a fixed position in a genome and genetic markers such as STRs are

loci that have a variable content in a population. The different possible contents are called

alleles. SNPs are mostly diallelic which means that one part of the population has for example

the nucleotide Cytosine and the other part a Thymine at a particular SNP locus. So we have

the alleles T and C at this locus. STRs in contrast are highly polymorphic with many more

alleles. They are short (2-6 base pair) repeated DNA motifs, e.g. [GT ]n and the alleles are

the observed n, the repeat numbers. Highly polymorphic loci typically show high mutation

rates and are neutral, i.e., mutations [e.g. Levinson and Gutman 1987] have no influence on

the fitness of the individual. In diploid species, every individual has two homologous copies

of each chromosome, typically one inherited from the mother and one from the father. As a

consequence, we can observe two alleles at a given locus (Fig. 3.3). If both alleles are equal,

we call the locus homozygous, if they are different heterozygous.

For a given individual i, we denote in the following an observed single-locus genotype by gi

and its multi-locus genotype by Gi.

3.3.3 Mendelian segregation probability

The Mendelian segregation probability is the probability that an offspring of Fi and Mj has

the genotype GO. In the pedigree in Fig. 3.3 for example, both parents have at the first locus

the same genotype 15.16 and as an offspring randomly inherits one allele from each parent,

the possible offspring genotypes are 15.15, 15.16, 16.15 and 16.16. As the haplotypes are

almost always unknown, i.e., it is not known which allele was inherited from the mother and
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15.16 7.10 7.7 12.12

15.16 8.10 5.7 12.13 15.16 8.10 3.7 12.1315.16 7.8 3.7 12.13

15.16 8.8 3.5 12.13

Figure 3.3. The example pedigree of Fig. 3.2 showing parental (gray) and offspring (white)

alleles at four different loci. The data are STR genotypes of skeletons found in Ekatarin-

burg, Russia and are believed to be the remains of the Romanov family [Gill et al. 1994,

Coble et al. 2009].

which from the father, the order is ignored and the probability of the heterozygous genotype

15.16 is therefore 0.5. The well-known general equation for triples (offspring and two putative

parents) is:

δ(ao1.ao2, ap1.ap2) =

{

1 if ao1.ao2 = ap1.ap2

0 otherwise

T(ao1.ao2|am1.am2, af1.af2) =
1

4

2
∑

i=1

2
∑

j=1

δ(ao1.ao2, ami.afj) (3.1)

For multi-locus genotypes, we assume throughout this chapter that the loci are unlinked, i.e.,

that the loci are inherited independently during meiosis. Multi-locus segregation probabilities

are thus calculated by multiplication of all nL single-locus probabilities:

T(Go|Gm, Gf ) =

nL
∏

i

T(goi|gmi, gfi) (3.2)

We can also calculate the segregation probabilities for offspring-parent pairs. By calculat-

ing the population allele frequencies and by assuming Hardy-Weinberg equilibrium, we have

[Meagher and Thompson 1986]:

T(ai.aj |ai.ai) = Pr(aj),

T(ai.ai|ai.aj) = 0.5 Pr(ai),

T(ai.aj |ai.ak) = 0.5 Pr(aj),

T(ai.aj |ai.aj) = 0.5 (Pr(ai) + Pr(aj)) .

(3.3)
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Here, Pr(ai) denotes the allele frequency of the allele ai. Explicit equations for T(·) that

tolerate genotyping errors are derived in Sec. 3.3.5.

3.3.4 LOD Scores

Consider a triplet of individuals (A, B, C ) with single locus genotypes gA, gB and gC . In

likelihood-based paternity analyses, one compares the likelihood of the hypothesis (H1) that

the three individuals are offspring, mother and father, with the likelihood of the alternative

hypothesis (H2) that the three individuals are unrelated. This comparison is usually expressed

as a log-ratio, the difference in log-likelihood (LOD) score [e.g. Meagher and Thompson 1986]:

LOD(gA, gB, gC) = log
Pr(gA, gB, gC |H1)

Pr(gA, gB, gC |H2)
= log

T(gA|gB, gC)

Pr(gA)
(3.4)

The likelihood of (H2) is the probability of observing the three genotypes when randomly

drawn from a population in Hardy-Weinberg equilibrium. For diploid heterozygotes, the

probability of a genotype with the alleles a1 and a2 and with the allele frequencies p and q

is Pr(a1, a2) = 2pq; for homozygotes, we have Pr(a1, a1) = p2. The Mendelian segregation

probability is again denoted by T(·).

If one parent, typically the mother is known, we have [Meagher and Thompson 1986]:

LOD(gA, gB, gC) = log
T(gA|gB, gC)

T(gA|gB)
(3.5)

LOD scores in Maximum Likelihood pedigree reconstruction are important because only

parentages with positive LOD score need to be considered, because adding the arcs of a

parentage with negative LOD score would decrease the pedigree likelihood.

In parentage and paternity inference, LOD scores are also often used of for assessing the

confidence of the parentage with the largest LOD score. Marshall et al. [1998] use ∆LOD as

test statistic, which is the difference of the LOD scores between the two most likely parentages.

The critical value of this test statistic is obtained by simulation. Gerber et al. [2003] use the

LOD scores as test statistic.

3.3.5 Genotyping Errors

If a single-locus genotype of an offspring does not share one allele with each of the candidate

parents, we call this a mismatch. In true parent(s)-offspring pairs or triples, we will observe

mismatches only in case of genotyping error or in case of somatic mutations [Bonin et al. 2004].

The latter case is even for markers with relatively high mutation rates such as microsatellites
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rather rare, but even high quality datasets contain genotyping errors. Genotyping errors

occur when the genotype determined by molecular analysis does not correspond to the real

genotype. For instance, a common type of genotyping error in microsatellite datasets are null

alleles, which are often the result of a mutation in the primer annealing site. Thus it is unwise

to exclude a parent immediately when observing such a mismatch.

The model implemented in FRANz defines an error to be the replacement of the true genotype

at a particular locus in an individual with a random genotype. This leads to a modification

of the expressions for the LOD score [Kalinowski et al. 2007].

In the following, we present the likelihood formulas for paternity or parentage inference of

the typing error model described in Kalinowski et al. [2007]. We corrected some typos in the

original version presented in the appendix of Kalinowski et al. [2007] and also simplified the

formulas where possible. L(H1) is the likelihood of the hypothesis H1 that the alleged parent

is the true parent; the alternative hypothesis H2 is that the alleged parent is unrelated. We

follow the notation of the original paper instead of ours: the single locus genotypes of mother,

alleged father and offspring are denoted with gm, ga and go (corresponding to gf , gm and go

in our notation). Pr(g) is again the probability of observing the genotype g in a population

in Hardy-Weinberg equilibrium (for heterozygotes Pr(a1.a2) = 2pq; for homozygotes, we have

Pr(a1.a1) = p2 where p and q are the allele frequencies of a1 and a2, respectively). The

estimated typing error rate is the probability that one or both alleles of an genotype are not

correctly observed and is denoted as ǫ. Finally, T(·) denotes again the Mendelian segregation

probability. For details see Marshall et al. [1998], Kalinowski et al. [2007]. The likelihoods

for paternity when the mother is unknown are:

L(H1) = Pr(ga){(1 − ǫ)2T(go|ga) + ǫ(1 − ǫ)2 Pr(go) + ǫ2 Pr(go)}

= Pr(ga){(1 − ǫ)2T(go|ga) + ǫ(2 − ǫ) Pr(g0)}

L(H2) = Pr(ga){Pr(go)}

(3.6)

In the curly bracket of the likelihood of H1, the terms consider the three possible cases that

both, one or no genotypes are correctly observed.

The likelihoods for paternity and maternity jointly are

L(H1) = Pr(gm) Pr(ga){(1 − ǫ)3T(go|gm, ga) + ǫ(1 − ǫ)2 [T(go|gm) + T(go|ga) + Pr(go)]

+ ǫ2(3 − 2ǫ) Pr(go)}

L(H2) = Pr(gm) Pr(ga){Pr(go)}

(3.7)
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The likelihood of the alternative hypothesis H2 for paternity when the mother is known is:

L(H2) = Pr(gm) Pr(ga){(1 − ǫ)3T(go|gm) + ǫ(1 − ǫ)2[T(go|gm) + 2 Pr(g0)]

+ ǫ2(3 − 2ǫ) Pr(go)}
(3.8)

L(H1) is the same as for the parentage inference case (Eq. 3.7).

If some parent-offspring relationships are known, then a simple formula for estimation of

typing error rate el at locus l is given in Marshall et al. [1998]:

el ≈
1

2Pl

·
ml

Ml

(3.9)

where Pl is the exclusion probability [Jamieson and Taylor 1997, see Sec. 3.4.7] at locus l, ml

the number of mismatches in Ml comparisons. If the number of comparisons is too low or if

the error rate is constant across n loci, a better estimate is:

e ≈
1

n

n
∑

l

el (3.10)

3.3.6 IBD coefficients

For each pair of individuals, we can calculate the probability that the two have a particular

relationship R: unrelated U, parent-offspring PO, full-sib FS, half-sib HS, etc. The usual way

of calculating the likelihoods Pr(gA.gB|R) uses the so-called IBD (identical by descent) coef-

ficients k0, k1 and k2. Alleles are identical by descent if they are identical and are segregated

from a recent common ancestor. A child, for example, shares with each parent exactly one

allele that is identical by descent (k1 = 1); monozygotic twins share two (k2 = 1) whereas

unrelated individuals share no alleles (k0 = 1) identical by descent. For full-sibs, it is easy to

show that the probability that they share one allele identical by descent is 0.5 and that they

share no or two is in both cases 0.25 (so k0 = 0.25, k1 = 0.5 and k2 = 0.25). Given the allele

frequencies, the probabilities that the genotype pair gA.gB shares 0, 1 or 2 alleles identical

by descent, P0, P1 and P2, are then calculated and are inserted in the final IBD likelihood

formula [for details, see e.g. Blouin 2003]:

Pr(gA.gB|R) = k0P0 + k1P1 + k2P2 (k0 + k1 + k2 = 1) (3.11)

For unlinked loci, the logarithms of the IBD scores are again additive over the loci.
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3.3.7 Bayesian MCMC

Bayes’ Theorem

The Bayes’ Theorem is best explained with an example. Assume that a casino uses five

different sets of dice. Now four of these sets are fair and one of them is unfair. Let the

probability of throwing a 6 with an unfair dice be 1/3. The dealer randomly picks one set

and then the player throws (6, 6). By applying Bayes’ Theorem, one can easily calculate the

probabilty that the player got the unfair set. The Theorem states that:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
(3.12)

Here, A and B are two dependent events (e.g. A = player got an unfair set of dice and B =

throwing (6, 6)). Pr(A) is often called the prior probability or just the prior of A and is in

the casino example the probability that the dealer picks the unfair set, which is 1/5. Pr(B)

is called the marginal probability of B and is here the probability of throwing (6, 6) with both

the fair and the unfair set. Pr(A|B), the conditional probability of A given B, is called the

posterior probability of A. The posterior probability in this example is the probability that

the player got an unfair set after seeing his throw (6, 6):

Pr(unfair|6, 6) =
Pr(6, 6|unfair) Pr(unfair)

Pr(6, 6)

=
(1/3)2 · 1/5

(1/3)2 · 1/5 + (1/6)2 · 4/5

= 0.5

Thus, Pr(unfair|6, 6) and Pr(fair|6, 6) are equal in this example, the experiment gives no hint

whether the player got the fair or unfair set.

So typically we have some observed data D and a discrete set of n hypotheses H where a

hypothesis is often a set of r parameters Hi = (β1, ..., βr). Then by applying Bayes’ Theorem

one can calculate the posterior of a particular hypothesis Hi:

Pr(Hi|D) =
Pr(D|Hi) Pr(Hi)

∑n
j Pr(D|Hj) Pr(Hj)

(3.13)

So all is needed is Pr(D|Hi), the likelihood function which calculates the likelihood of Hi

given the observation D. However, the number of hypotheses is often very large. For ex-

ample assume we want to reconstruct a phylogeny of m species from which we have DNA

data D. Further assume we have a likelihood function that calculates the likelihood of a

tree Ti, Pr(D|Ti). Now we want to calculate the posterior probability of a particular tree.

46



3.4. Methods

However, the number of trees, n, we need to consider in the denominator grows extremely

fast [Felsenstein 2003]:

n =
(2m − 5)!

2m−3(m − 2)!

For ten species, we already have to calculate the likelihood of over 2 million different trees,

for 13 species there are more than 13 billion trees. Thus an exhaustive enumeration and

evaluation of all hypotheses is computationally intractable in most cases of interest.

Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a technique that allows indirect sampling from the

posterior distribution Pr(Hi|D). It does so by generating a sample path H1, ..., Ht where

each parameter Hj = (β1j , ...βrj) has the posterior distribution Pr(Hi|D). Bayesian MCMC

thus uses the posterior distribution to estimate means and quantiles of the parameters β.

Although a complete overview of MCMC is beyond the scope of this thesis, we will later use

and explain the two most common MCMC algorithms, the Metropolis-Hastings method and

Gibbs sampling. For an introduction to MCMC, see for example Fishman [2005].

3.4 Methods

In the following, we will describe the main steps FRANz does to reconstruct the pedigree and

how this software estimates the statistical significance of the procedure (see Fig. 3.4).

3.4.1 Likelihood Model

Using Bayes’ Theorem, we calculate the posterior probability that the female Fi and the male

Mj are the parents of O,

Pr(GFi, GMj |GO, GF , GM , A, Nm, Nf ) =
T(GO|GFi, GMj) Pr(GFi, GMj)

Pr(GO)
(3.14)

where GO, GF , and GM are the offspring, candidate maternal, and paternal genotypes, A the

population allele frequencies, Nm the total number of breeding males (alleged fathers) in the

population. Correspondingly, Nf is the total number of candidate mothers. The symbol T(·)

denotes again the Mendelian segregation probability, Pr(GFi, GMj) is the prior probability

of Fi and Mj being parents of O and Pr(GO) is the marginal probability of the offspring

genotype.
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Load Data (A.2)

?

Allele Frequency Analysis (3.4.7)

?

Simulation (3.4.2, 3.4.4)

?

Find all plausible parentages H (3.4.2)

?

Search Maximum Likelihood pedigree (3.4.3, 3.4.5)

?

MCMC (3.4.5)

Figure 3.4. Schematic outline of the methodology. The flow chart shows the main steps of the

FRANz algorithm. First, the input files as described in Appendix A.2 are parsed. Then the

allele frequencies are analyzed (see Sec. 3.4.7). In simulations, mismatch (Sec. 3.4.2) and

IBD distributions (Sec. 3.4.2) are generated. In the next step, for every offspring FRANz

finds all plausible parentages. These are all parentages that do not exceed the mismatch

and posterior probability thresholds (Sec. 3.4.2). Then, FRANz searches for the Maximum

Likelihood pedigree, either by an exact algorithm or by Simulated Annealing (Sec. 3.4.3,

3.4.5). Finally we do an MCMC sampling to estimate the statistical significance of the

parentages (Sec. 3.4.5).
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By assuming equal priors, it can be computed as

Pr(GO) =
1

Nm

[

nm
∑

k

T(GO|GFi, GMk) + (Nm − nm) T(GO|GFi, A)

]

(3.15)

provided the mother Fi is already known [Nielsen et al. 2001]. The first term is the sum of

segregation probabilities of all nm sampled candidate paternal genotypes, the second term

accounts for the unsampled ones. This second term is the probability, given the population’s

allele frequencies, that a random genotype is the true father, weighted by the number of

unsampled candidates. For the case that the mother is unknown, we may write

Pr(GO) =
1

NfNm

[

nm
∑

k

nf
∑

l

T(GO|GMk, GFl)

+ (Nm − nm)

nf
∑

l

T(GO|GFl, A) + (Nf − nf )

nm
∑

k

T(GO|GMk, A)

+ (Nm − nm)(Nf − nf ) Pr(GO|A)

]

(3.16)

with nf denoting the number of sampled female candidates. Here, the first term again collects

the segregation probabilities of all sampled male and female genotypes. The following two

sums are the cases that either the true father or the true mother are unsampled. The last term

accounts for the case that both parents are unsampled, which is the probability of observing

the offspring genotype in a population with allele frequencies A, weighted by the number of

unsampled pairs.

In monoecious plant populations, where all individuals can mate with each other and with

themselves, we finally have:

Pr(GO) =
2

Ng(Ng + 1)

[

ng
∑

k=1

ng
∑

l=k

T(GO|Gk, Gl)

+ (Ng − ng)

ng
∑

k

T(GO|Gk, A)

+
(Ng − ng)(Ng − ng + 1)

2
Pr(GO|A)

]

(3.17)

with ng denoting the number of sampled genets and Gk the multi-locus genotype of k-th

genet; Gk 6= GO. This assumes equal prior probabilities for selfed and outcrossed parentages.

3.4.2 Efficient Likelihood Calculation

With a marker panel of sufficient power for parentage inference, most of the multi-locus

segregation probabilities T(·) that appear in the marginal probabilities Pr(GO) (Eq. 3.15,
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3.16, and 3.17) will be 0 in the absence of typing errors and mutations. This is because

the probability that an unrelated individual has a genotype that fits without mismatches

to an offspring genotype according the Mendelian laws is very low. In fact, these exclusion

probabilities are a common measure of the power of the marker panel (see Sec. 3.4.7). Thus

only parentages without mismatching loci need to be considered, which reduces the pedigree

search space and the parentage posterior calculation. The first is important for the mixing

time of the MCMC sampling, the latter can be a significant speedup especially when A, N

and G are variables (see section 3.4.5).

When tolerating typing errors, however, all parentages have a non-zero probability. An exact

computation, therefore, needs to take into account all pairs and triples. However, parentages

with many mismatches will have a very small posterior probability and can be ignored. Our

implementation therefore uses simulations to generate mismatch distributions for parent(s)-

offspring/unrelated relationships in order to determine an appropriate mismatch cutoffs.

For an offspring v, we denote the set of all plausible parents according to this cutoff by Hv.

It includes in particular also the cases that none or only one of the parents are sampled. Note

that Hv ⊂ V × V ∪ V ∪ {∅}. Apart from the number of mismatches, also prior information

such as sex, age, and known mothers restrict Hv. The posterior probability of a parentage x

of offspring i can be expressed in the form

πi(x) =
Pr(Oi|x)

∑

yj∈Hi

Pr(Oi|yj)
. (3.18)

With Pr(Oi|x) denoting the probability of parentage x as shown in Eq. 3.15 to 3.17. For

Eq. 3.16 we have for example:

Pr(Oi|{Fi, Mj}) = T(GOi|GFi, GMj)/(NfNm)

Pr(Oi|{Fi}) =
(Nm − nm)

(NfNm)
T(GOi|GFi, A)

Pr(Oi|{∅}) =
(Nm − nm)(Nf − nf )

(NfNm)
Pr(GOi|A)

Eq. 3.18 is thus an approximation of Eq. 3.14 because only plausible parentages are considered.

In a second filter step, all parentages with negative LOD score [e.g. Meagher and Thompson

1986] are ignored. These are all parentages which would decrease the pedigree likelihood

if the corresponding arcs would be added to the pedigree. If N is estimated jointly with

the pedigree, then these two filter steps can introduce a bias. We thus store the sum of

the probabilities of all in the second step filtered offspring-candidate mother and offspring-

candidate father pairs and all offspring-candidate parents triples. This sum is then added
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to the denominator of Eq. 3.18 and the two pair sums are weighted according Eq. 3.15 to

3.17. The log-likelihood of a pedigree P is now the sum over all log-transformed parentage

posterior probabilities:

LL(P) =
∑

i∈V

log πi(N
+(i)) (3.19)

In clonal populations, we can include the number of ramets for every genet in the posterior

calculation:

πi(x) =
Pr(Oi|x)nr(x)

∑

yj∈Hi

Pr(Oi|yj)nr(yj)
(3.20)

where nr(x) is the sum of the number of ramets of the parents in parentage x, and nr(x) = 1

if x = {∅}. This prior increases the likelihood of parentages with frequently observed genets.

3.4.3 Maximum Likelihood Pedigree

For each individual v, we have to choose one parentage N+(v) ∈ Hv. If age data is not or

only partially available, then not all such combinations of parents are possible, because this

may introduce directed cycles into the pedigree. T denotes the set of all valid pedigrees. If

no parentages are known a priori, then T is never empty. In this case, H contains for every

individual the empty set {∅} and thus the empty pedigree without arcs is a valid pedigree.

Further, every directed cycle can be elimated by removing arcs.

If parentages are known, then the minimal pedigree that only includes the corresponding

arcs is always a valid pedigree. If the minimal pedigree is cyclic, then the priors are wrong,

because a cycle in a pedigree means an individual is its own ancestor.

We now consider the problem of finding the pedigree that maximizes the likelihood:

max
P∈T

LL(P) =
∑

i∈V

log π(N+(i)) (3.21)

This problem is similar to learning a Bayesian network from data [Cooper and Herskovits

1992]. The biological restrictions make the problem less complex, however. First, as an

individual has only two parents, the maximal indegree of a node in pedigree is 2 and second,

the number of considered incoming arcs, here |H v|, is typically restricted. The maximium

number of elements in H is when selfing is allowed:

(n − 1) +
n(n − 1)

2
+ 1

This is because all remaining (n− 1) individuals could be parents of the offspring v, without

prior knowledge we assume that they can all mate with each other and with themselves and
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finally, we also consider the case that both parents are unsampled. Without selfing, we have

a maximum number of:

n(n − 1)

2
+ 1

However, as we have already shown in the previous section, with a powerful marker panel

or prior knowledge, many parentages can be ignored and the average number of possible

parentages per offspring is therefore much smaller. Nevertheless, the number of pedigrees still

grows very fast with n. FRANz guarantees to find the correct maximum likelihood pedigree for

datasets with about less than 26 individuals by using the currently state-of-the art algorithm

of Silander and Myllymäki [2006] described in Cowell [2009] for the pedigree reconstruction

problem. It has a runtime of O(n32n) and a memory usage of O(2n). For larger datasets,

heuristics are necessary [Almudevar 2003].

3.4.4 Full siblings

As described in detail in Thompson and Meagher [1987], if we cannot exclude two full-sibs, vi

and vj , as parent and offspring, they in general give a higher likelihood than do true parents.

Thus, for highly probable full-sibs, a reasonable strategy is to use only the intersection of the

valid parent combinations: Hi = Hj = Hi ∩ Hj . A problem with this approach is that false

positives may result in an exclusion of the true parents in the pedigree reconstruction. In

FRANz it is possible in input known full-sib groups (see Appendix A.2.2). This information

is available for example in nest structured data when it is known that both parents are

monogamous.

Unfortunately, no sibship software package was able to assign full-sib p-values to pairs of

individuals. In contrast, they try to partition the dataset in full-sib and half-sib groups,

typically by maximum likelihood. We have implemented this feature in FRANz and it is

available over the --fullsibtest command line flag.

We test the null hypothesis that a pair is a full-sib against the alternative hypotheses that

they are unrelated, parent-offspring or half-sib. The p-values are calculated by simulation.

Given the population allele frequencies and the expected typing error rate, which are either

estimated using the sample itself or provided by the user, we generate individuals with known

relationships (again FS, HS, PO, U) to determine following distributions:
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∆u = log Pr(Gi.Gj |FS) − log Pr(Gi.Gj |U)

∆po = log Pr(Gi.Gj |FS) − log Pr(Gi.Gj |PO) (3.22)

∆hs = log Pr(Gi.Gj |FS) − log Pr(Gi.Gj |HS)

For example ∆po is generated for full-sibs and parent-offspring pairs to estimate the statistical

significance of an observed positive ∆po value. So ∆po should be always positive for full-sibs

and always negative for parent-offspring pairs. A p-value of 0.05 can be interpreted as 5%

of all pairs with a value larger than this delta value, say 1.4, were parent-offspring pairs in

the simulation, and not full-sibs despite the fact that 1.4 is positive. As another example,

assume a delta value of 0 that has a corresponding p-value of 0.1. Then we would make in

10% of all comparisons an error if we would just look at the sign of ∆po. Note that HS are all

second degree relationships (half-sib, grandparent-grandoffspring and avuncular), which can

be considered by weighting in FRANz in the p-value calculation.

If two individuals have a common parent pair in H , this is an additional hint that vi and

vj are full-sibs. Modelling this in the p-value calculation is difficult, we could use however a

less conservative critical α value in this case. As default values for α, we use 0.001 and 0.05,

respectively. The observed p-values are adjusted for multiple-testing [Holm 1979, Benjamini

and Hochberg 1995].

FRANz also performs a sanity check of the full-sib assignments. Consider three individuals

A, B and C. If (A, B) and (B, C) are full-sibs with significant p-value, then FRANz will test

(A, C). If (A, C) are unlikely full-sibs, then (A, B) or (B, C) is a false positive, if they are

likely, which means the p-value of (A, C) is close to the threshold, then (A, B, C) are probably

full-sibs. It is recommended that the user tries to manually resolve these unsure assignments

by careful inspection of the p-values.

3.4.5 Algorithm

If age data is not or only partially available, then an ordering of individuals in generations

is not possible. Thus not all combinations of parentages may represent a valid pedigree of

the sample as some of these combinations may introduce directed cycles into the pedigree.

In such a “cyclic pedigree”, some individuals would be their own ancestors. The MCMC

and Simulated Annealing (SA) procedures now sample valid, cycle-free, pedigrees from the

pedigree posterior distribution [Almudevar 2007]. We will later use these sampled pedigrees

to estimate parameters and to estimate the statistical significance of a parentage. FRANz also
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supports the joint estimation of the population’s allele frequencies, the number of unsampled

candidate parents or missing data imputation (see below in section 3.4.6) in which cases we

also need MCMC or SA. In these algorithms, one computes the likelihood of a given pedigree

Pi−1, randomly generates a new pedigree Pi and then accepts the change if either Pi has

a higher likelihood or with probability exp([LL(Pi) − LL(Pi−1)]/T ). More precisely, in the

following Pi−1,j(y) denotes a pedigree Pi−1 where the parentage of offspring Oj has been

changed from x to y; x, y ∈ Hj , x 6= y.

We set i = 1 and repeat the following steps until convergence (SA) or until i is greater than

a given maximum number of iterations (MCMC).

Pedigree Change Step:

We select a random offspring genotype Oj and select a new parentage for Oj from the proposal

function {q(Pi−1, Pi−1,j(y))} which is defined as

q(Pi−1, Pi−1,j(y)) =

{

πj(y)
1−πj(x) if y 6= x

0 if y = x
(3.23)

This function thus selects a new parentage according their posterior probabilities. We then

accept this change with the following probability:

α(Pi−1, Pi−1,j(y)) =















0 if Pi−1,j(y) cyclic

exp
([

LL(Pi−1,j(y)) − LL(Pi−1)+

log
q(Pi−1,j(y),Pi−1)
q(Pi−1,Pi−1,j(y))

]

/T
)

otherwise

(3.24)

With (partially) missing age data, to ensure irreducibility of the MCMC sampler, it is nec-

essary to perform swap steps in which the direction of a random arc (j, k) of the pedigree is

reversed [Koch et al. 2008]. Note that age data implies the direction of an pedigree arc, so a

swap step would always return an invalid pedigree in the case that age data is available. We

can therefore write down the probability to perform such a swap change in the following form

Pr(swap) =

{

|A|
|A|+no

if age data missing

0 otherwise
(3.25)

Otherwise we change the parentage of a random offspring as described above. With no we

denote the number of sampled individuals in the offspring generation(s) (no = ng in the

absence of age data) and |A| is the number of arcs in the pedigree. In a swap change, the
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parentages of two individuals j and k are changed and this change is accepted with probability

α(Pi−1, Pi−1,j,k(y, z)) =



























0 if Pi−1,j,k(y, z) cyclic

0 if y /∈ Hj ∨ z /∈ Hk

exp([LL(Pi−1,j,k(y, z)) − LL(Pi−1)]/T )

otherwise

(3.26)

The second case is necessary because a swap might generate an invalid parentage, for instance

one with too many mismatches. In selfing parentages, both arcs are swapped as otherwise a

swap would always produce a cycle.

Estimation of the size of the unsampled population:

If the number of unsampled candidates is not known within reasonable accuracy, it is possible

to estimate this number together with with the pedigree, either by sampling N every no

steps from a uniform distribution in the interval [n, Nmax] (where Nmax is specified by the

user) or by treating N as a latent variable, estimated again every no steps from the indegree

distribution of the pedigree. In the latter case we utilize the fact that the pedigree structure

itself contains information about the sampling rate in the ratio of the number vertices with

indegree 1 and with indegree 2, d1 and d2:

r =
1

d1

2d2
+ 1

and N ≈
n

r
· x for x ≥ r . (3.27)

For larger samples, setting x = 1 should give a good point estimate of N when we assume

that r and x are constant across sampled generations and are the same for both sexes. To

increase the accuracy, we sample x from a flat distribution [r, xmax]. A value of 4 for xmax

showed a very robust performance in our tests.

Temperature schedule:

In standard MCMC sampling, the temperature T is always kept at the constant value 1. To

speedup mixing of the sampler, FRANz supports Metropolis-Coupled Markov Chain Monte

Carlo (MCMCMC) [Geyer 1991] where k chains are run in parallel. The temperature of the

i-th chain is set to

Ti =
1

1 + t(i − 1)
(3.28)

where t is the heating parameter with default of 0.2. These are the temperature values used

in the MrBayes software [Huelsenbeck and Ronquist 2001, Altekar et al. 2004]. Then, the
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states of the chains i and j are swapped and accepted with probability:

α ((Pi, Ti), (Pj , Tj)) = exp

(

LL(Pi) − LL(Pj)

Tj
+

LL(Pj) − LL(Pi)

Ti

)

. (3.29)

Pedigrees are only sampled from the first, unheated chain. The higher the temperature, the

faster the chains moves through the pedigree space, but also the lower the probability that

the states of chains are swapped.

In the SA optimization, we use the temperature schedule as described in Aarts and Korst

[1989], which has been shown to be efficient in pedigree reconstruction [Almudevar 2003]. In

short, the SA optimization starts by determining a temperature that yields in an acceptance

probability close to 1, commonly 0.95. A simple algorithm for this purpose performs a random

walk in the pedigree space and stores the observed likelihood scores. Then the minimum

temperature that would have accepted 95% of the transitions is used as initial SA temperature

T0. The temperature is then lowered every βN iterations, where N is the neighborhood size,

which is the sum of the number of plausible parentages over all individuals, and β a parameter

with default of 3. The new temperature Ti,j+1 of the i-th chain is calculated with the following

equation:

Ti,j+1 =
Ti,j

1 +
Ti,j log(1+iδ)

3σTi,j

(3.30)

where δ the increment parameter with default 0.1 and σTi,j
the observed variance of the

process in the previous βN iterations. The reason for the staggered heating of the parallel

chains is that good solutions are found very fast. The advantage is twofold: First, the chains

with small i still perform a very thorough search, but don’t find new maximum likelihood

solutions too often which have to be stored. Second, if the pedigree search space is too large

for some given β and δ, the first chains might not converge within a reasonable number of iter-

ations. Convergence is inferred when the difference of the likelihood means in nǫ consecutive

temperature changes is smaller than a given ǫ (defaults are nǫ = 3, ǫ = 0.001σTi,0
).

The MCMCMC and the parallel SA procedures require a compiler that supports OpenMP

Version 2.0 or higher. All main loops are parallelized and all libraries are thread-safe. FRANz

uses a thread-safe Mersenne Twister (DCMT Version 0.6.1, [Matsumoto and Nishimura 2000])

for obtaining random numbers.

3.4.6 Missing Values

A common problem in most datasets is that genotyping failed for a significant amount of loci.

The problem of dealing with missing data has seen remarkably few attention in parentage

analysis. FRANz offers two options for dealing with missing data. The first is imputation by
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a single-site Gibbs sampler. Here, the alleles of a random genotype gij with unobserved data

of individual i at locus j are sampled proportional to the product of all affected segregation

probabilities of the pedigree:

Pr(gij |P, A) = T(Gi|N
+(i), A)

∏

o∈N−(i)

T(Go|N
+(o), A) (3.31)

So the segregation probability of i and of all offspring of i need to be updated. The reason

for sampling conditional to this product instead of the pedigree likelihood is that it is more

sensitive to changes of a single allele. This Gibbs sampling is available in FRANz and can

be selected with the --gibbsmissing command line flag. An example output is shown in

Appendix Fig. A.3.

A well-known problem of this approach is that the irreducibility condition is only guaranteed

for diallelic loci [Thompson 2000]. This can be circumvented with non-zero segregation prob-

abilities or for example with MCMCMC [Geyer 1991] samplers [Sheehan and Thomas 1993,

Cannings and Sheehan 2002]. The implemented error model ensures the first with non-zero

typing error rates and the latter is also available in our implementation. We make such a

Gibbs sampling step after no pedigree changes.

The second option for dealing with missing data is to include only observed alleles in the

likelihood calculations. Noteworthy, this is the standard method employed by most other

parentage or paternity inference tools. FRANz also supports partially observed genotypes. In

general, if one allele of a single locus genotype is missing, then all alleles are considered and we

have Pr(?) = 1, where the question mark codes a missing allele. The genotype probabilities

are thus:

Pr(?.?) = 1, Pr(ai.?) = Pr(ai) (3.32)

For parent-offspring pairs, we have with both parental alleles missing no additional informa-

tion and thus have the genotype probability:

T(ai.aj |?.?) = Pr(ai.aj) (3.33)

With one offspring allele missing we have:

δ(ao, ap) =















1 if ao = ap ∨ ao =?

Pr(ao) if ap =?

0 otherwise

T(ai.?|aj .ak) = 0.5 Pr(ai) + 0.25 [δ(ai, aj) + δ(ai, ak)] (3.34)
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Finally, with one parental allele missing, we can write down the Mendelian segregation prob-

ability as:

T(ai.ai|aj .?) = 0.5 [δ(ai, aj) Pr(ai) + Pr(ai.ai)]

T(ai.aj |ak.?) = 0.5 [δ(ai, ak) Pr(aj) + δ(aj , ak) Pr(ai)] + 0.5 Pr(ai.aj)
(3.35)

For parents-offspring triples, when both maternal or paternal alleles missing, we again use

the equations for pairs as there is no additional information. If one offspring allele is missing,

we have:

T(ai.?|aj1.aj2, aj3.aj4) =
1

4

4
∑

k=1

δ(ai, ajk) (3.36)

And finally, if one maternal and/or paternal allele is missing, we have:

δ(ao1.ao2, ap1.ap2) =



































1 if ao1.ao2 = ap1.ap2

Pr(ao1.ao2) if ap1 =? ∧ ap2 =?

Pr(ao1) if ao2 = ap1 ∧ ap2 =?

Pr(ao2) if ao1 = ap1 ∧ ap2 =?

0 otherwise

T(ao1.ao2|am1.am2, af1.af2) =
1

4

2
∑

i=1

2
∑

j=1

δ(ao1.ao2, ami.afj) (3.37)

3.4.7 Allele frequencies

The population allele frequencies are often unknown. If the sample size is large and family

sizes are small, it is reasonable to assume that individuals are unrelated and then to use all

genotypes for the estimation. Maximum likelihood estimates of the frequency q of allele a are

then calculated as q̂ = y/n where y is the number of a alleles and n the total number of typed

alleles. Standard errors (SEs) for the estimates are given by the binomial formula
√

q̂(1 − q̂)/n

[Ceppellini et al. 1955]. This is the default method for allele frequency estimation in FRANz.

If not, if individuals in the population are related, then this strategy will overestimate the

frequency of rare alleles in large families and underestimate the frequency of common alleles.

This is because offspring genotypes are derived by chance from the parental genotypes and can

provide no further information concerning allele frequencies [Ceppellini et al. 1955]. FRANz

therefore optionally updates the allele frequencies during SA optimization or MCMC sampling

by counting the alleles in the founder generation only. This is computationally extensive, but

it is not necessary to update after every change of the pedigree [Thomas and Hill 2000]. So a

simple algorithm for this new Maximum Likelihood estimator ignores nodes in the pedigree

58



3.4. Methods

with indegree 2. For nodes with indegree 1, only offspring alleles that are not in the parental

genotype are counted. Nodes with indegree 0 are included normally. To avoid that rare

alleles get lost by this procedure, all observed alleles are counted at least once. This method

is available in FRANz over the --updatefreqs command line flag.

It is also possible in FRANz to provide allele frequencies as input file (see Appendix A.2.3).

This is useful for example when pedigree reconstruction is only applied to a small subset of

sampled individuals. Then the complete dataset can be used to estimate the frequencies.

Allele frequencies are required for the pedigree likelihood calculation, but they provide im-

portant additional information about the data. For example, one important question when

applying parentage inference methods on marker data is whether the marker panel has suf-

ficient power. The higher this power is, the more statistically significant parentages can be

assigned. A standard measure of this power are the exclusion probabilities [Jamieson and

Taylor 1997, Wang 2007]. These are the probabilities that a random male in a population

has a genotype compatible to a offspring-mother pair. FRANz outputs these probabilities and

variants for different scenarios of it (i.e., when the mother is unknown or n offspring fullsibs

are genotyped). A related measure is the probability of identity, the probability that two

random genotypes are equal, which is commonly used in forensics. A third measure of the

power of the marker panel is the polymorphic information content (PIC) [Botstein et al. 1980]

which is often used in linkage analysis. FRANz outputs all these probabilities for each locus

and for the complete marker panel, assuming that loci are unlinked.

If an exclusion probability is high enough for a successful application of parentage inference

methods in a particular population mainly depends on the population size. The larger the

population is, the more loci are needed. In fact, there is linear relationship between the log

of the population size and the number of loci needed to attain a certain level of uncertainity

[Jones 2003]. Furthermore, exclusion probabilities assume unrelatedness among candidate

parents. If it is likely that relatives (e.g. grand-parents, aunts and uncles) are present in

the sample, then more loci are needed to attain the desired level of uncertainity [e.g. Ford

and Williamson 2010]. There is however still a linear relationship between the log of the

population size and the number of required loci [Jones 2003].

The likelihood model assumes that the population is under Hardy-Weinberg equilibrium

(HWE) and allele frequencies are also used to test for this. FRANz includes a thread-safe

version of the original implementation of Guo and Thompson [1992] for the exact test of

Hardy-Weinberg proportion for multiple alleles. For diallelic loci, the standard exact test is

performed [Hartl and Clark 2007].
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Finally, a common problem in many datasets are null alleles (allelic dropout) which is when the

genotyping of one of the two alleles of a particular locus failed [Bonin et al. 2004]. For example

consider that the true genotype is a1.a2 and genotyping of a2 failed, maybe due to a mutation

in the PCR primer site, then the observed genotype will be a1.a1. FRANz outputs the estimates

of the EM-Algorithm of Kalinowski and Taper [2006]. If parent-offspring relationships are

known, we include observed homozygote mismatches in the likelihood calculation by assuming

that the reason for these mismatches are null alleles.

On computers with multiple CPUs, FRANz distributes the analysis loci-wise among the avail-

able CPUs. Examples of the FRANz allele frequency analysis output are shown in Appendix

Fig. A.1 and A.2.

3.4.8 Rates of Self-fertilization

Given a pedigree P, we can estimate the selfing rate rs over the number of observed self-

fertilizations S in P:

rs =
2S

∑

i∈V

|N+(i)|
(3.38)

The normalization according the indegrees takes account for the fact that the probability of

observing an outcrossed parentage is twice as high observing a selfed one, as in the latter case

there is only one instead of two parents.

3.4.9 Rates of Clonality

Estimating the rate at which a population reproduces clonally is notoriously difficult [de Meeûs

and Balloux 2004]. We assume in the following that we can estimate Nr, the total number of

ramets in the population, within reasonable accuracy for example over the occupied space. We

further assume a population in which Nr is constant across generations. In every generation,

a ramet reproduces either clonally with rate c or sexually with rate (1− c). A random ramet

is killed to keep Nr constant if necessary. Then we use pedigree reconstruction to estimate

the total number of genets, Ng. We then estimate the rate of clonal reproduction with the

following equations.

By h(s) we denote the expectation value of the number of genets with exactly s ramets, for

integer s ∈ {0, . . . , Nr}. We have h(0) = 0 by definition. Let us establish conditions for the

stationary values of h. In a birth event, h(s) changes by

∆b(s) = −c
s

Nr
h(s) + c

s − 1

Nr
h(s − 1) (3.39)
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for all s ∈ {2, . . . , Nr}, whereas h(1) is changed by

∆b(1) = (1 − c) −
c

Nr
h(1) . (3.40)

A death event causes a change

∆d(s) = −
s

Nr
h(s) +

s + 1

Nr
h(s + 1) . (3.41)

for all s ∈ {1, . . . , N}. At constant population size Nr, birth and death events occur equally

often. Therefore

∆b(s) + ∆d(s) = 0 (3.42)

must be fulfilled in equilibrium for all s{1, . . . , Nr}. We obtain the set of equations

h(0) = 0

h(1) = Nr(1 − c)

h(2) =
1

2
[(1 + c)h(1) − Nr(1 − c)]

h(s + 1) =
1

s + 1
[s(1 + c)h(s) − c(s − 1)h(s − 1)]

(3.43)

the last equation being valid for all s ∈ {2, . . . , Nr}. Taken together, this is a second order

linear difference equation for a given c and Nr. We solve it numerically and obtain the

expected number of genotypes as

Ng =

Nr
∑

s=1

h(s) . (3.44)

For the inverse problem with given Ng, we obtain c by means of nested intervals.

3.5 Results

To test our algorithm and implementation, we apply it to one empirical and several simulated

datasets with known genealogies.

3.5.1 Real Microsatellite Data

Our first dataset is a microsatellite dataset of the black tiger shrimp Penaeus monodon [Jerry

et al. 2006]. The true pedigree is known from direct observation. The dataset consists of 13

families with a total number of 85 individuals (of which 59 offspring), genotyped at seven

highly polymorphic loci. For ten individuals, alleles are missing at one locus. The error rate

is very low, with only one observed mismatch. Fig. 3.5 shows the best pedigrees with and
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(a) Without full-sib calculation

(b) With full-sib calculation

Figure 3.5. Reconstructed Penaeus monodon pedigree (Section 3.5.1). The white vertices are

the parental genotypes, black the offspring genotypes.

without full-sib calculation. Full-sibs tend to have higher parentage likelihoods, but large

full-sib groups greatly enhance the performance of our algorithm such that the accuracy of

the reconstructed pedigree increases from 82.8 to 97.1 percent. A recent publication [Berger-

Wolf et al. 2007] listed an accuracy rate of several sibling reconstruction methods ranging

from 67.8 to 78.0 percent on the same dataset. Classic parentage inference programs such as

CERVUS [Marshall et al. 1998], where the absence of age data violates main assumptions, assign

statistical significant parentages to the parental genotypes even when the correct parameters

(sampling rate, fraction of relatives in the candidate parents) are provided.

3.5.2 Simulated Human Population

We artificially generate human population datasets as follows. A population of 100 unrelated

founders is created by drawing genotypes independently with allele frequencies of 64 human

microsatellites [Jin et al. 2000]. Then we let individuals die, mate or marry according to

rates extracted from the statistics of the German population [Federal Statistical Office 2007].

As mating partners or husbands, we only allow unrelated individuals. Married couples only

mate with each other. We stop when the desired number of individuals is reached. In order

to simulate typing errors, we replace the true allele with a random one. Null alleles are

simulated in heterozygote genotypes by replacing the null allele with the other allele (ai.an

becomes ai.ai). Homozygote genotypes are marked as missing.

We analyze the accuracy of the Maximum Likelihood pedigree, found by Simulated Annealing

or during MCMCMC, as a function of the number of available loci, see Fig. 3.6a. In all cases

where the accuracy is below 1, the optimal pedigree from our algorithm has an even larger

likelihood than the true one. Thus without exceptions, our algorithm finds a pedigree with

at least the log-likelihood of the true pedigree (data not shown). The plots show that the
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(b) The proportion of incorrect (unfilled

symbols) and correct parentages with a

posterior probability > 0.95.
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(c) The sensitivity and specificity of the sib-

ling calculation.

Figure 3.6. These plots visualize the results of the reconstruction of simulated human pedi-

grees (Section 3.5.2). The various measurements are plotted as a function of the number

of loci. The values are the median of ten randomly generated pedigrees of size 1000, recon-

structed with different combinations of available prior knowledge. The error bars indicate

the first and third quartile. The dataset has a sampling rate of 0.5 (1000 of 2000 indi-

viduals sampled) and has an overall typing error rate of 0.01. In addition, the first locus

comprises one null allele (pn = 0.05). The pedigree depth ranges from 5 to 9 and the mean

number of sampled candidate parents is 82. Nmax was largely overestimated set to 1000.
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reconstruction is robust even when the upper limit of the total number of breeding individuals

per generation in the population Nmax was largely overestimated (164 vs. 1000).

Age data is clearly the most informative prior knowledge. Knowledge about the sex rarely

helps to exclude a false parentage mainly because mothers are sampled like all individuals

with a rate of 0.5 and sex requires candidate parent pairs for exclusion. Thus the knowledge

of the sex does not resolve the difficult cases where the true parents are unsampled but a

close relative (e.g. aunt or uncle) is sampled.

In Nielsen et al. [2001], a parentage was assigned when the posterior probability was higher

than 0.95. These are parentages that are observed in at least 95% of all sampled pedigrees.

Fig. 3.6b visualizes the proportion of correct and incorrect assignments. In almost all cases,

the proportion of wrongly assigned parentages was smaller than 0.01. These parentages are

mainly the difficult cases mentioned above or false positives of the sibling calculation, whose

sensitivity and specificity is plotted in Fig. 3.6c. Without age data, the direction of a large

fraction of parent-offspring arcs cannot be determined, which explains the plateaus in the

plots. These parentages are easily identified by their posterior probability which is typically

near 0.5.

3.5.3 Simulated Clonal Plant Population

Growing Population

We next simulate data of clonal populations. We use the model of a growing population,

where individuals do not die once they reproduced sexually. The data is simulated with

allele frequencies with 8 alleles per locus. We use random (“broken stick”) frequencies with a

maximum frequency of 0.5. In every year, a ramet reproduces either sexually or clonally. For

sexual reproduction we assume a fixed rate of self-fertilization or outcrossing with a random

ramet. With a probability of 0.01, we replace one allele of a single-locus genotype with a

random one to simulate genotyping errors.

We choose relatively high rates of selfing (0.1) and clonality (0.9). This results in an extremely

difficult test dataset as individuals are closely related because old plants grow fast and thus

mate very often. Exclusion probabilities [Jamieson and Taylor 1997, Wang 2007], which

assume unrelatedness among candidate parents, thus overestimate the power of a marker

suite. The exclusion probabilities of the simulated datasets are shown in Fig. 3.7.

For the sampling rates, we choose a relatively high one of 0.01 of (1.000 of about 100.000

ramets) and a more realistic one of 0.001 (350 of about 350.000). We generate 10 datasets
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Figure 3.7. The exclusion probabilities [Jamieson and Taylor 1997] of 10 randomly gener-

ated datasets (3.5.3). In our data, the average probability that a random individual has a

genotype that is compatible with an offspring genotype is < 1× 10−5 for more than 25 loci.

for each of the two sampling rates.

The accuracy of the pedigree reconstructions are shown in Fig. 3.8a as in the simulated human

population. The incorporation of the number of sampled ramets per genet (using Eq. 3.20

instead of Eq. 3.18) improves the reconstruction significantly. A reason for that improvement

is that the number of ramets is an approximation of the age of genets; without age data it is

sometimes not possible to identify parent and offspring in a parent-offspring pair, which is also

the reason why the accuracy does not reach 100%. The plot also shows that the sampling rate

has surprisingly little influence on the accuracy, the amount of available genomic information

is the crucial factor here.

Our implementation FRANz is highly efficient and is able to sample millions of large pedigrees

in a minute, see Table 3.1 for a benchmark. The Metropolis-Hastings acceptance rates are

for 12 loci close to the optimal acceptance rate of 0.234 [Roberts et al. 1997]. With higher

power of the marker panel, the acceptance rate gets lower because the likelihood differences

between correct and wrong parentages increases very fast and thus the Markov chain reaches

local optima very soon. For the same reason, swap steps are more likely to result in invalid

parentages with increasing amount of genomic information.

Fig. 3.8b shows the fraction of correct and incorrect parentages with a pedigree posterior

probability of > 0.95. Although these probabilities are not exactly comparable to the thresh-

olds of classical, simulation based paternity inference tools such as CERVUS [Marshall et al.
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Figure 3.8. The accuracy of the reconstructed Maximum Likelihood pedigrees of simulated

clonal populations is plotted in Fig. 3.8a as a function of the number of loci. The values

are the median accuracy of ten randomly generated pedigrees of size 10.000 genets with

a sampling rate (SR) of 0.01 (filled symbols) and 35.000 genets with a sampling rate of

0.001 (unfilled symbols). The simulated datasets are reconstructed once with the standard

parentage posterior probabilities (Eq. 3.18) and once with the number of ramets included

as priors (Eq. 3.20). The error bars indicate the first and third quartile. Fig. 3.8b lists the

proportion of correct and incorrect parentages with a posterior probability > 0.95.

1998] due to the very different approaches, the plot nevertheless shows that even with pow-

erful marker panels, i.e., when there is a high amount of genomic information in the data,

we can only assign relatively small numbers of parentages, which is especially a problem in

low sampling rate datasets. It is therefore crucial to use an approach that uses the complete

data for the estimation of parameters of interest, not only highly significant parentages. The

high rate of incorrect assignments, especially in the 0.001 dataset, is explained by the large

violation of the assumption that candidate parents are unrelated.

We then use the MCMC sampled pedigrees to estimate the parameters of interest. As an

example, we plot in Fig. 3.9 the estimated rates of self-fertilization (Eq. 3.38) for both sampling

rates (0.01 and 0.001, using Eq. 3.20) as a function of the number of loci. As to expect, the

accuracy of the test dataset with high sampling rate (Fig. 3.9a) is higher than the one with

lower sampling rate (Fig. 3.9b) because the number of observed parentages is much higher.
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Table 3.1. This table lists the performance of FRANz for simulated clonal datasets with 1000

ramets (about 430 genets). The values are the average over ten simulated datasets. In all

cases, 3.500.000 x 8 (CPUs) pedigrees were evaluated.

IntelR© XeonR© CPU, 2.33GHz, 8 cores, 16GB RAM

Loci Acceptance Rate Runtime

sec. Pedigrees/sec.

9 0.329 1455 19250

12 0.210 825 33946

15 0.139 363 77135

30 0.030 84 332016

Table 3.2. Comparison of the estimated rates of self-fertilization. This table lists the means

and standard deviations of the selfing rate estimates from the RMES software [David et al.

2007] and the present approach for simulated datasets (Sec. 3.5.3) with a true selfing rate

of 0.1.

S.R.a Loci RMES FRANz

0.01 9 0.154 ±0.044 0.100 ±0.012

0.01 35 0.176 ±0.026 0.096 ±0.023

0.001 9 0.148 ±0.055 0.099 ±0.027

0.001 35 0.175 ±0.025 0.103 ±0.034

aS.R. sampling rate (ramets)

The estimates are fairly independent of the number of loci and already accurate with very

low amount of genomic information. Other parameters such as male fertilities [Morgan and

Conner 2001] could be calculated analogously.

We also compare our selfing rate estimates with the Maximum Likelihood estimates of the

RMES software [David et al. 2007] in Table 3.2. RMES estimates selfing rates over observed

multi-locus heterozygosity deficiencies and does not require parent-offspring relationships.

These allele frequency approaches are therefore in principle capable of estimating long-term

selfing rates but are inherently less robust with respect to violations of the assumptions.

FRANz on the other hand, provides quite accurate estimates of the recent selfing rates for the

10 datasets.

This pedigree reconstruction approach works in the model of a growing population even with
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very low sampling rates extremely well. This is because old founder plants are sampled with

probability close to one and these plants have many offspring. This is the reason why we

observe enough parentages for reliable parameter estimation.

Constant Population Size

To show that the present approach is able to estimate the sampling rate of the genets, we

next simulate data under the model of population with a constant number of ramets Nr. We

start with a founder generation of 100 unrelated genets with 9 loci and use the same allele

frequencies as before. Then in every generation, all ramets reproduce again either sexually or

clonally. If sexually, then again with a selfing rate of 0.1. Outcrossing happens with a random

living ramet or with an migrated ramet. Here we use a migration rate of 0.01. If after such

a reproduction event there are more than Nr ramets, one random living ramet is killed. We

stop the simulation after the birth of the 20000-th genet. Then we sample nr = 500 living

ramets. We generate again 10 datasets for every parameter combination. Here we vary the

rate of clonality (0.5, 0.8, 0.9 and 0.95) and Nr (4.000 and 10.000). Ng is then estimated over

the indegree distributions of the MCMC sampled pedigrees [Riester et al. 2009]. The rate of

clonality is then estimated with the model described in Sec. 3.4.9. Nr is assumed to be known

a priori.

In Table 3.3 we present the results of the pedigree reconstruction of the datasets with constant

population size (Sec. 3.5.3). Our approach significantly underestimates the true Ng. This is

partly explained by the fact that the probability of sampling old and big plants, i.e., ones with

many ramets is higher than sampling small genets. And as old plants have in general more

offspring than young ones, we observe more parentages as we would expect by assuming equal

sampling probabilities of parents for all individuals, which we do. More observed parentages

result in a higher sampling rate and therefore a smaller Ng. Our model (Sec. 3.4.9) also slightly

underestimates the true Ng. Nevertheless, with relatively high sampling rates of 0.125, we

can observe fairly accurate estimates. As the number of genets increases with decreasing rate

of clonal reproduction, we observe less parentages if these rates are low. This explains the

high variances in the datasets with a clonal rate of 0.5. At clonal rates smaller than 0.9, we

see that a sampling rate of 0.05 is not high enough for a reliable parameter estimation: the

selfing rates are in these cases also significantly underestimated.
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Table 3.3. Estimated rates of Ng, clonality and self-fertilizations. This table lists means and

standard deviations of the in FRANz estimated Ng for ten simulated datasets (Sec. 3.5.3) for

each of the 8 parameter combinations. It further lists the true Ng and the ones estimated

of our model (Sec. 3.4.9). Then the estimated rates of clonality are presented. Finally,

the mean and standard deviations of estimated rates of self-fertilization are shown (with a

true selfing rate of 0.1).

S.R.a Ng Rate of Clonality Selfing Rate

FRANz True Model FRANz True FRANz

0.125 2574.95 ±614.77 2834.00 ±20.18 2772.59 0.541 ±0.19 0.5 0.079 ±0.04

0.05 5832.13 ±3508.20 6955.67 ±43.36 6931.47 0.611 ±0.32 0.5 0.037 ±0.03

0.125 1460.90 ±228.39 1711.20 ±18.88 1609.44 0.826 ±0.05 0.8 0.082 ±0.02

0.05 2447.02 ±522.00 4000.80 ±31.02 4023.59 0.905 ±0.03 0.8 0.068 ±0.02

0.125 876.26 ±80.41 1121.90 ±18.89 1023.37 0.920 ±0.01 0.9 0.095 ±0.02

0.05 1814.28 ±243.40 2792.70 ±37.12 2558.43 0.939 ±0.01 0.9 0.066 ±0.03

0.125 555.72 ±45.25 720.10 ±21.70 630.68 0.958 ±0.01 0.95 0.094 ±0.03

0.05 1218.60 ±121.70 1847.80 ±31.42 1576.70 0.965 ±0.01 0.95 0.081 ±0.03

aS.R. sampling rate (ramets)
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Figure 3.9. The estimated rates of self-fertilization of the simulated datasets. A line visualizes

the selfing rate of one of the 10 datasets for different amounts of genomic information.

Fig. 3.9a are the rates from the 0.01 sampling rate datasets, Fig. 3.9b from the 0.001 one.

In Fig. 3.9c we show a trace plot of the MCMCMC sampling of one simulated dataset (9

loci, sampling rate 0.01, 8 parallel chains). The dashed curve visualizes the mean of the

selfing rate.
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3.6 Discussion

We have presented a new algorithm for the multigenerational pedigree reconstruction problem.

The publicly available implementation is written in the C programming language and is

platform-independent. We have demonstrated the accuracy and good MCMC(MC) mixing

properties of the implementation on simulated and empirical data. Our efficient likelihood

calculations allows parentage analysis on huge datasets with thousands of individuals and

these genealogies are typically reconstructed in a few minutes. Our implementation is flexible

in incorporating additional data like age, sex, sampling locations, sub-pedigrees and allele

frequencies and works with a wide range of sampling schemes (Fig. 3.1). This was suggested

in Almudevar [2003] but not previously implemented in a publicly available software package.

The reconstruction of large and deep pedigrees is highly accurate with only 10-15 polymorphic

microsatellite loci. Our approach is to our knowledge the first one that combines paternity

inference and sibship reconstruction. As in contrast to most other newly developed parentage

analysis tools, it is not just a prototype implementation. Table 3.4 shows that FRANz is fairly

feature-complete.

In Almudevar [2003], some remaining challenges in the pedigree reconstruction problem were

listed. These are the assumption that founders are unrelated, a better estimation of allele

frequencies, linkage, support for typing errors or mutation, and estimation of the error of

the reconstruction procedure. FRANz makes significant progress in the latter two tasks by

combining the error model described in Kalinowski et al. [2007] with an MCMC sampling.

The error model, however, was criticized in the literature because of its simplicity. Other

programs explicitly model special kinds of errors, for example null alleles and sample the true

genotypes with an individual-by-individual Gibbs sampling [Wang 2004b, Hadfield et al. 2006].

For multigenerational pedigrees, one has to sample over the family to ensure irreducibility of

the Markov chain [Sheehan 2000]. For large pedigrees, this becomes very fast computationally

infeasible and the gain is questionable. Extending the likelihood formulas in [Kalinowski et al.

2007] to model null alleles, however, could be a valuable extension if they occur at higher

rates. Now, FRANz estimates the null allele frequency [Kalinowski and Taper 2006] and warns

the user when null alleles are likely to be present in the data.

It is possible in FRANz to estimate allele frequencies simultaneously with the pedigree. A pos-

sible extension in future versions of FRANz could be support of sub-populations with different

allele frequencies. As only very few tools support the estimation of allele frequencies, little is

currently known about the accuracy gain and further research is necessary here.

Extensions of the LOD scores for linked loci when the linkage phase is known are proposed

71



3.
W

il
d

P
ed

ig
re

es

Table 3.4. Feature comparison of several parentage analysis tools. Adapted and extended from Jones et al. [2009]. PM, pater-

nity/maternity; PP, parent pair allocation; MG, multigenerational; PR, parental reconstruction; SR, sibship reconstruction; IC,

Ability to assign statistical confidence for particular parent-offspring pairs; EC, Ability to assess the expected confidence in assign-

ments on an experiment-wide basis; EP, exclusion probabilities; EP (FS), exclusion probabilities for n full-sibs; FP, full probability

parentage analysis; DM, dominant markers; AF, Allele frequency estimation; HWE, Hardy-Weinberg equilibrium test.

Available functions Error accommodation

PM PP MG PR SR IC EC EP EP (FS) FP DM AF HWE Null Alleles Error/Mut

CERVUS 3.0 X X X X X chi square Moderate Good

COLONY 2.0 X X X X X X X Good Good

FaMoz X X X X X X Poor Good

FAP 3.6 X X None Moderate

FRANz X X X X X X X X X exact Moderate Good

GERUD X X X None None

MASTERBAYES X X X X X X Good Good

NEST X X None Poor

PAPA 2.0 X X X None Good

PARENTAGE X X None Moderate

PARENTE X X X Poor Good

PASOS 1.0 X X X None Good

PATRI X X X None None

PEDIGREE 2.2 X X Poor Poor
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in Devlin et al. [1988]. If the linkage phase and recombination rates are known with high

accuracy, the incorporation of this prior information can significantly enhance the performance

of the parentage assignments [Devlin et al. 1988]. However, in most cases the linkage phase is

unknown and has to be estimated jointly. Loose linkage of a small fraction of markers should

not seriously bias multilocus likelihood calculations [Meagher 1991]. Tightly linked loci in

contrast, such as neighboring SNPs, can be combined and treated as one single pseudolocus.

In general, linked loci are less informative than unlinked ones and therefore the calculated

LOD scores are too large. The best advice now is probably to avoid medium linked loci [Jones

and Ardren 2003].

The framework we have presented in this chapter may easily be extended to incorporate prior

knowledge in the likelihood calculation [Neff et al. 2001]. Currently, prior knowledge is only

used to reduce the search space and, in the case of clonal populations, to incorporate the

number of sampled ramets per genet. For parentages, sampling locations and behavioural

data have been successfully used to increase the parentage assignments in Hadfield et al.

[2006]. However, it should be noted that it is often very difficult to specify a good model

here. For example drops mating success exponential or linear with distance between sampling

locations? Wrong assumptions will seriously compromise the parentage assignments. In doubt

and if possible, one should consider acquiring genomic information from 1-2 additional loci

to increase the assignments to a reasonable level without the risk of compromising the results

with unsure priors.

Priors about the pedigree structure (the expected inbreeding rates, number of offspring, etc.)

might further improve the performance [Sheehan and Egeland 2007]. Information of this kind

is oftentimes unknown a priori, however. In fact, these are parameters that one typically

would like to infer from the reconstructed pedigrees.

Our implementation currently only allows co-dominant markers. In Gerber et al. [2000], the

original LOD scores for co-dominant markers [Meagher and Thompson 1986] were modified

for dominant markers. Statistics for estimating pairwise relationships with dominant markers

were proposed e.g. in Wang [2004a].

Our incorporation of full-sib probabilities is a reaction to the concern expressed in Meagher

and Thompson [1986] that non-excluded full-sibs of the offspring have on average a higher

LOD score than the true father. To keep the pedigree likelihood function simple and efficient

to calculate, we use only highly significant full-sibs to reduce the pedigree space. It seems

possible to include more siblings than just the highly significant ones into the pedigree likeli-

hood calculation without the risk of excluding the true parents. Since such “local” factors in

the pedigree likelihood are also not very computationally intensive, we plan to explore this
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avenue in future work.

We have also presented a novel likelihood model for the reconstruction of pedigrees in mo-

noecious clonal plant populations. We have shown that the joint estimation of parameters of

interest such as the rate of self-fertilization is possible with high accuracy even with marker

panels of moderate power. Classical methods can only assign a very limited number of sta-

tistically significant parentages in this case and would therefore fail, especially if sampling

rates are low which is still a problem in most parentage studies. We have also shown that our

likelihood model is surprisingly robust for violations of assumptions such as unrelatedness of

candidate parents and constant effective population size.

As mating success drops off with distance between mates, several authors suggested likelihood

models that include the sampling location of the genotypes [e.g. Burczyk et al. 1996, Smouse

et al. 1999, Hadfield et al. 2006]. In principle, it is possible to add the corresponding prior

probability distributions in our model. To calculate the distance between two clones A and B,

δAB, one can use the locations of all sampled ramets as an approximation for the real distance

between the (maybe unsampled) mating ramets. An obvious strategy for the calculation of

δAB would be the average distance between all sampled ramets of A and B. Another possibility

would be to use the minimum distance.

It should be noted that other methods for the estimation of recent selfing rates exist which

do not necessarily require that parental genotypes are sampled. For example if it is possible

to obtain progeny arrays, the known family structure in the data can be used to reconstruct

maternal genotypes. Selfing rates are then estimated by comparison of maternal with off-

spring genotypes [e.g. Jarne and David 2008, for a review]. If neither such a family structure

nor parental genotypes are known, then reconstruction of the genotypes of the previous gen-

erations might be possible by MCMC sampling [Wilson and Dawson 2007]. However, this

assumes that the model used in MCMC sampling fits the population under investigation.

We assumed in this chapter that all ramets have the same genotype. However, especially

in long-living plant populations with high rates of clonality, somatic mutations may lead to

clones with different genotypes. In this case it could be necessary to extend the model to

allow multiple genotypes per genet and include them in the segregation probability calculation

(see Sec. 3.3.5). FRANz supports partially genotyped loci where only one of the two alleles

are known and this feature could be used in these cases to mark an observed mutation as

unknown without loosing much information.

With the rapid progress and decay of cost in high-throughput sequencing techniques, it is

just a matter of time until there are whole genomes of complete populations available. Large

74



3.6. Discussion

amounts of SNP data with high quality genetic maps will be therefore available, at least for

some model organisms. The identification of parents with such an amount of data is a trivial

task and the methods are well known [Boehnke and Cox 1997]. The extraordinarily efficient

MCMC(MC) pedigree sampling procedure in FRANz could be then extended to allow gaps in

the pedigrees, i.e., also infer second degree relationships. A very challenging question is also

how many unobserved generations we can reconstruct back in time (see Steel and Hein [2006]

and Thatte and Steel [2007] for first results). As we cannot expect an elegant solution to

this problem, MCMC heuristics are promising tools for throwing some light on a population’s

immediate past.
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In this thesis, we developed means for genealogical reconstruction, in the first part of cancer

subtypes and in the second part of individuals in natural populations. In Chapter 2, we

successfully applied distance-based phylogenetic tree reconstruction methods to microarray

data of sarcoma, acute myeloid leukemia (AML) and breast cancer patients. We validated our

methodology on experimental data with known genealogy. With this method, we were further

able to find adipogenesis-related genes without the use of in vitro methods of differentiation,

which are available for only a few histologies [Beqqali et al. 2006].

In Chapter 3, we presented a flexible new software package for pedigree reconstruction and

parentage inference in natural populations called FRANz. It is the first tool that can estimate

the effective population size even for populations where the age of individuals is not easily

observable, for instance in clonal plant populations. Our research shows that pedigree recon-

struction can accurately infer parameters describing the population’s mating behaviour, such

as rates of self-fertilization and clonality. This is possible even with marker panels of only

moderate power, which is the case for many existing datasets. Additionally, we showed that

the present approach scales very well with increasing number of individuals. This is impor-

tant because sequencing becomes cheaper and faster and thus genotyping of many thousand

individuals in a population feasible. Furthermore, we developed the first method for the
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calculation of p-values for pairs of individuals being full-siblings. In contrast to many other

related tools, FRANz is fairly feature complete. Only few major features are left for future

versions, e.g., support for sub-populations with different allele frequencies or a better error

model that handles null alleles. A graphical user-interface would probably also help to reach

a wide distribution of the software among molecular ecologists. Especially as we could show

how powerful analyses of the MCMC sampled pedigrees are, it should be possible for users

to estimate their parameters of interest easily.

In the next years, the number and extend of single cell analyses in cancer research are ex-

pected to increase significantly. The pedigree of cells of the tumor will give information about

mutation rates and relative fitness values, very similar to our pedigrees of natural clonal

plant populations. It seems straightforward to extend our likelihood models for strictly asex-

ually reproducing clonal populations. The arcs between genets in the pedigree then visualize

mutations instead of matings.
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A.1 Availability

An open source implementation of FRANz is available at http://www.bioinf.uni-leipzig.

de/Software/FRANz. For a simple interaction and comparison with other tools, we provide

a user-friendly Web 2.0 input file generator (see Appendix A.4) on the FRANz website. Fur-

thermore, it is now possible to convert FRANz input files into several other formats (currently

supported are CERVUS [Marshall et al. 1998, Kalinowski et al. 2007], PARENTE [Cercueil et al.

2002], GENEPOP [Roussett 2008], and RMES [David et al. 2007]).

A.2 Input files

A.2.1 Main input file

The main input file lists all individuals and their genotypes as well as ecological data such as

years of birth and death, sex and for clonal organisms, the number of sampled ramets:

1 3 / SIMPSONS

LID1
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LID2

LID3

7 Springfield

Grampa 1 1920 ? M 110/100 200/208 ?/?

Homer 1 1950 ? M 110/170 200/210 300/302

Bart 1 1982 ? M 110/120 200/212 302/304

Lisa 1 1980 ? F 140/170 200/218 302/306

Maggie 1 1988 ? F 110/140 210/212 300/304

Marge 1 1952 ? F 120/140 212/218 ?/306

Flanders 1 ? ? ? 150/160 214/220 300/?

The first line in this example file,

1 3 / SIMPSONS

says the dataset includes one sampling location and three loci. The alleles of diploid genotypes

are separated by a slash (/), and the dataset title is ”SIMPSONS”. Optionally, loci ids can

be provided, one id per line. The next line is then for the first (and in this case the only)

sampling location:

7 Springfield

This means 7 genotypes in sampling location ”Springfield”. These genotypes have to be stored

in the following format:

Grampa 1 1920 ? M 110/100 200/208 ?/?

The first ten characters are a description of the genotype or individual. Then, the next

number is how often this genotype was observed. This is meant for clonal organisms where

it is the number of sampled ramets. The 1920 is year of birth of Grampa, ? his year of death

(unknown), M his sex (F for females and ? if unknown). The rest of the line is reserved for

the 3 diploid loci. Missing data is again coded with a ?.

A.2.2 Known relationships

Known parent-offspring relationships are defined in FRANz with a pedigree infile (--pedigreein

<filename>):

7

Grampa

Homer

Bart
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Lisa

Maggie

Marge

Flanders

Marge Bart

Marge Lisa

Marge Maggie

The first line is the number n of individuals, the next n lines are the exactly ten characters

long names or descriptions of the individuals. They must be identical to the ones in the

genotype file. Then, the remaining lines are the pedigree arcs in the format

parent child

Known fullsib relationships are defined with --fullsibin <filename>. If it is known that

some individuals are either fullsibs or halfsibs, one can specify this with the --halfsibin

<filename> command line argument. This is useful for example in nest structered data when

one or both sexes are monogamous. The file format is in both cases the same:

1

3

Bart

Lisa

Maggie

The first line is the number of sibling groups, the 3 is the number of siblings in the first group

and the following 3 lines contain the ids of the individuals as in the pedigree infile.

A.2.3 Allele frequencies

Allele frequencies are either be estimated from the data or provided by the user with the

--freqin <filename> command line parameter:

3

7 100 170

100 0.071429

110 0.285714

120 0.142857

140 0.214286

150 0.071429

160 0.071429

170 0.142857
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7 200 220

200 0.285714

208 0.071429

210 0.142857

212 0.214286

214 0.071429

218 0.142857

220 0.071429

4 300 306

300 0.300000

302 0.300000

304 0.200000

306 0.200000

The first line is the number of loci (3 in this example). The second line is for the first locus

and says that there are 7 different alleles in range 100 to 170. The next 7 lines are the alleles

with their frequency, separated by space.

A.2.4 Sampling locations

The sampling locations are provided either as pairwise distances (--geofile) or coordinates

(--coordfile). In both cases, the order of the locations must be the same as the one in the

genotype file.

3

AcquaAzz1 0.000 0.000 1030.116

AcquaAzz2 0.000 0.000 1030.116

Addaia 1030.116 1030.116 0.000

3

AcquaAzz 36.43 15.09

AcquaAzz2 36.43 15.09

Addaia 40.016 4.207
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A.3 Output files

*** Locus ZUXP4.82 ***

+--------+--------+------------+------------+-----------------------+--------------------------+

| Allele | Count | Heterozyg. | Homozyg. | Frequency SE | Frequency (Null Alleles) |

+--------+--------+------------+------------+-----------------------+--------------------------+

| 153 | 14 | 14 | 0 | 0.08235 0.02108 | 0.08235 |

| 155 | 9 | 9 | 0 | 0.05294 0.01717 | 0.05294 |

| 159 | 7 | 7 | 0 | 0.04118 0.01524 | 0.04118 |

| 162 | 86 | 50 | 18 | 0.50588 0.03835 | 0.50588 |

| 164 | 48 | 34 | 7 | 0.28235 0.03452 | 0.28235 |

| 169 | 4 | 4 | 0 | 0.02353 0.01163 | 0.02353 |

| 186 | 2 | 2 | 0 | 0.01176 0.00827 | 0.01176 |

+--------+--------+------------+------------+-----------------------+--------------------------+

Observed Heterozygosity : 0.7059

Expected Heterozygosity : 0.6562

Hardy-Weinberg Test

p-Value : 0.2784

Standard Error : 0.0088

Estimated Null Allele Freq. : 0.0000

Estimated Genotyping Failure: 0.0000 (0 untyped)

Polymorphic Inform. Content : 0.6035

Exclusion probability when 1 to 6 fullsibs are genotyped

First Parent : 0.2465613 0.3323548 0.4314385 0.4779754 0.4870763 0.4878616

Second Parent : 0.4142009 0.5289062 0.6202651 0.6592185 0.6677287 0.6685116

Parent Pair : 0.6009220 0.7255527 0.8085812 0.8373807 0.8421883 0.8425784

Probability of identity

2 unrelated individuals : 0.1715275

Siblings : 0.4662469

Sibship exclusion probability

3 unrelated individuals : 0.2262139

4 unrelated individuals : 0.4645058

Figure A.1. FRANz output of the allele frequency analysis. This is the detailed output of one

locus of the Penaeus monodon dataset [Jerry et al. 2006] dataset described in Sec. 3.5.1.
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*** Summary Statistics ***

Locus Alleles Min Max N Hobs Hexp PIC EX 1P EX 2P EX PP ID IDsib P_NULL HWE PV HWE SE

DTLP109 21 268 384 85 0.941 0.931 0.921 0.740 0.850 0.963 0.011 0.290 0.0000 0.0000 0.0000

DTLP103 19 363 620 85 0.882 0.881 0.864 0.608 0.756 0.912 0.027 0.319 0.0000 0.0584 0.0062

DTLP136 14 404 485 85 0.788 0.873 0.854 0.582 0.737 0.897 0.032 0.324 0.0211 0.0000 0.0000

ZUXP4.82 7 153 186 85 0.706 0.656 0.603 0.247 0.414 0.601 0.172 0.466 0.0000 0.2784 0.0088

DTLP110a 26 387 598 85 0.953 0.941 0.932 0.773 0.871 0.972 0.008 0.284 0.0000 0.0000 0.0000

DTLP402a 10 151 283 75 0.707 0.772 0.742 0.398 0.580 0.778 0.080 0.386 0.0398 0.1966 0.0093

DTLP313a 18 521 592 85 0.882 0.903 0.890 0.664 0.798 0.937 0.019 0.306 0.0163 0.0000 0.0000

Average number of alleles : 16.429 (+- 6.554)

Average observed heterozyg. : 0.837 (+- 0.104)

Average expected heterozyg. : 0.851 (+- 0.102)

Average PIC : 0.829 (+- 0.118)

Cumulative exclusion probability when 1 to 7 fullsibs are genotyped

First Parent : 0.9985224 0.9998560 0.9999961 0.9999996 0.9999997 0.9999997 0.9999997

Second Parent : 0.9999384 0.9999972 0.9999999 1.0000000 1.0000000 1.0000000 1.0000000

Parent Pair : 0.9999999 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Cumulative probability of identity

2 unrelated individuals : 0.0000000

Siblings : 0.0004689

Cumulative sibship exclusion probability

3 unrelated individuals : 0.9999442

4 unrelated individuals : 1.0000000

Figure A.2. FRANz output of the summary of the allele frequency analysis. The data is again the Penaeus monodon dataset.
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A.3. Output files

*** Locus DTLP402a ***

Genotype 151 203 207 231 235 259 263 267 279 283

313 0.1420 0.1270 0.1279 0.1085 *0.3282 0.0604 0.0426 0.0325 0.0215 0.0095

313 0.0111 0.0177 0.0330 0.0426 *0.2794 0.1070 0.1072 0.1217 0.1412 0.1391

222 0.1451 0.1343 0.1197 *0.1091 0.3375 0.0517 0.0418 0.0350 0.0167 0.0090

222 0.0101 0.0197 0.0301 0.0392 *0.2952 0.1011 0.1117 0.1250 0.1294 0.1386

1810 0.1812 0.1644 0.1519 *0.1265 0.1086 0.0904 0.0738 0.0495 0.0385 0.0152

1810 0.0167 0.0384 0.0586 0.0731 0.0925 0.1095 0.1324 0.1362 *0.1590 0.1835

1812 0.1819 *0.1686 0.1451 0.1305 0.1024 0.0880 0.0724 0.0546 0.0363 0.0201

1812 0.0176 0.0368 0.0577 0.0763 0.0918 *0.1061 0.1300 0.1469 0.1579 0.1790

1822 0.1061 0.1016 0.1081 *0.1016 0.0604 0.1112 0.1008 0.1182 0.0999 0.0921

1828 0.1753 0.1606 0.1473 0.1275 *0.1099 0.0935 0.0747 0.0545 0.0375 0.0192

1828 0.0174 0.0357 0.0541 0.0734 0.0862 0.1082 0.1280 *0.1459 0.1645 0.1866

2018 0.0000 *0.4728 0.0050 0.0053 0.4899 0.0001 0.0055 0.0167 0.0040 0.0007

227 0.0038 0.0454 0.0218 0.0187 0.1241 0.0056 0.0168 *0.7455 0.0136 0.0047

2116 *0.4795 0.0046 0.0014 0.0018 0.5001 0.0002 0.0030 0.0065 0.0026 0.0003

2122 0.4956 0.0045 0.0017 0.0027 *0.4874 0.0002 0.0016 0.0041 0.0012 0.0009

Figure A.3. FRANz output of the missing value Gibbs sampler. This output lists all genotypes

with missing data on a particular locus of the Penaeus monodon dataset (Sec. 3.5.1). The

numbers represent the fraction of MCMC sampled pedigrees with the alleles. The star

marks the alleles of the Maximum Likelihood pedigree.

Offspring,Loci Typed,Parent 1,Loci Typed,Parent 2,Loci Typed,LOD,Posterior,Common Loci Typed,

Mismatches,n_f,n_m,Pair LOD Parent 1,Pair LOD Parent 2

292,7,,,,,0.000000E+00,1.0000,7,0,12,12,,

218,7,,,,,0.000000E+00,1.0000,7,0,12,12,,

1590,7,218,7,292,7,1.969629E+01,0.9972,7,0,42,42,7.941741E+00,8.982472E+00

1592,7,218,7,292,7,1.998774E+01,0.7098,7,0,42,42,6.388146E+00,9.094778E+00

1594,7,218,7,292,7,2.039001E+01,0.8495,7,0,42,42,6.995817E+00,9.390651E+00

1596,7,218,7,292,7,1.749679E+01,0.9824,7,0,42,42,7.477002E+00,8.450023E+00

288,7,,,,,0.000000E+00,1.0000,7,0,12,12,,

215,7,,,,,0.000000E+00,1.0000,7,0,12,12,,

1612,7,215,7,288,7,1.884399E+01,0.9839,7,0,42,42,8.802218E+00,6.061792E+00

1614,7,215,7,288,7,1.908858E+01,0.8233,7,0,42,42,8.620373E+00,6.475110E+00

1616,7,1618,7,1614,7,2.188524E+01,0.6490,7,0,42,42,9.379043E+00,1.181620E+01

1618,7,215,7,288,7,1.881211E+01,0.9797,7,0,42,42,1.029590E+01,4.392019E+00

1622,7,215,7,288,7,1.627626E+01,0.8404,7,0,42,42,7.593334E+00,5.246640E+00

Figure A.4. FRANz output of the parentages. This output lists the LOD scores (Sec. 3.3.4),

posterior probabilities and additional information such as the number of typed loci and

mismatches. It is formatted as CSV file to be read in Excel for example. Here we show the

parentages of two families again of the Penaeus monodon dataset.
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A. FRANz

A.4 Web 2.0 Interface

A user-friendly interface for FRANz is available on the FRANz website. Data formatted as CSV

files can be uploaded and input files (A.2.1 and A.2.2) are then generated. In Fig. A.5, we

show how to convert the Romanov data [Gill et al. 1994] into FRANz input files.

Name,Mother,Sex,HUMVWAa,HUMVWAb,HUMTH01a,HUMTH01b,

HUMF13A1a,HUMF13A1b,HUMFESa,HUMFESb

servant1,,?,14,20,9,10,6,16,10,11

doctor,,?,17,17,6,10,5,7,10,11

child1,Tsarina,?,15,16,8,10,5,7,12,13

Tsar,,?,15,16,7,10,7,7,12,12

child2,Tsarina,?,15,16,7,8,3,7,12,13

child3,Tsarina,?,15,16,8,10,3,7,12,13

Tsarina,,?,15,16,8,8,3,5,12,13

servant2,,?,15,17,6,9,5,7,8,10

servant3,,?,16,17,6,6,6,7,11,12

(a)

(b) (c)

Figure A.5. FRANz Web 2.0 Interface. This figure demonstrates how to convert CSV formatted

data, here in A.5a from the Romanov family [Gill et al. 1994] into FRANz input files. The

user specifies the file and which columns contain the supported ecological information (sex,

years of birth and death, known mothers) in A.5b. If some mothers are known, the resulting

pedigree infile is also generated (A.5c).
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Silander, T. and P. Myllymäki (2006). A simple approach for finding the globally optimal

bayesian network structure. In Proceedings of the 22nd Annual Conference on Uncertainty

in Artificial Intelligence (UAI-06), Arlington, Virginia, pp. 445–452. AUAI Press.

Singer, S., C. R. Antonescu, E. Riedel, and M. F. Brennan (2003, Sep). Histologic sub-

type and margin of resection predict pattern of recurrence and survival for retroperitoneal

liposarcoma. Ann Surg 238 (3), 358–370.

104



Singer, S., N. D. Socci, G. Ambrosini, E. Sambol, P. Decarolis, Y. Wu, R. O’Connor, R. Maki,

A. Viale, C. Sander, G. K. Schwartz, and C. R. Antonescu (2007, Jul). Gene expression

profiling of liposarcoma identifies distinct biological types/subtypes and potential thera-

peutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67 (14),

6626–6636.

Smith, B. R., C. M. Herbinger, and H. R. Merry (2001, Jul). Accurate partition of individuals

into full-sib families from genetic data without parental information. Genetics 158 (3),

1329–1338.

Smouse, P. E. and T. R. Meagher (1994, Jan). Genetic analysis of male reproductive contri-

butions in Chamaelirium luteum (L.) Gray (Liliaceae). Genetics 136 (1), 313–322.

Smouse, P. E., T. R. Meagher, and C. J. Kobak (1999). Parentage analysis in Chamaelirium

luteum (L.) Gray (Liliaceae): why do some males have higher reproductive contributions?

Journal of Evolutionary Biology 12 (6), 1069–1077.

Sokal, R. R. and C. D. Michener (1958). A statistical method for evaluating systematic

relationships. University of Kansas Science Bulletin 38, 1409–1438.

Sotiriou, C., P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds, H. Nordgren, P. Farmer, V. Praz,

B. Haibe-Kains, C. Desmedt, D. Larsimont, F. Cardoso, H. Peterse, D. Nuyten, M. Buyse,

M. J. Van de Vijver, J. Bergh, M. Piccart, and M. Delorenzi (2006, Feb). Gene expression

profiling in breast cancer: understanding the molecular basis of histologic grade to improve

prognosis. J Natl Cancer Inst 98 (4), 262–272.

Steel, M. and J. Hein (2006, Jun). Reconstructing pedigrees: a combinatorial perspective. J.

Theor. Biol. 240, 360–367.

Stirewalt, D. L., S. Meshinchi, K. J. Kopecky, W. Fan, E. L. Pogosova-Agadjanyan, J. H.

Engel, M. R. Cronk, K. S. Dorcy, A. R. McQuary, D. Hockenbery, B. Wood, S. Heimfeld,

and J. P. Radich (2008, Jan). Identification of genes with abnormal expression changes in

acute myeloid leukemia. Genes Chromosomes Cancer 47 (1), 8–20.

Taggart, J. G. (2007). FAP: an exclusion-based parental assignment program with enhanced

predictive functions. Molecular Ecology Notes 7 (3), 412–415.

Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander,

and T. R. Golub (1999, Mar). Interpreting patterns of gene expression with self-organizing

maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S

A 96 (6), 2907–2912.

105



Tenen, D. G. (2003, Feb). Disruption of differentiation in human cancer: AML shows the

way. Nat Rev Cancer 3 (2), 89–101.

Thatte, B. D. and M. Steel (2007, Dec). Reconstructing pedigrees: A stochastic perspective.

J. Theor. Biol. 251 (3), 440–449.

Thomas, S. C. and W. G. Hill (2000, Aug). Estimating quantitative genetic parameters using

sibships reconstructed from marker data. Genetics 155, 1961–1972.

Thomas, S. C. and W. G. Hill (2002, Jun). Sibship reconstruction in hierarchical population

structures using Markov chain Monte Carlo techniques. Genet. Res. 79, 227–234.

Thompson, E. A. (1976). Inference of genealogical structure. Social Science Information 15 (2-

3), 477–526.

Thompson, E. A. (2000). Statistical inference from genetic data on pedigrees. IMS, Beachwood,

OH: NSF-CBMS Regional Conference Series in Probability and Statistics.

Thompson, E. A. and T. R. Meagher (1987, Sep). Parental and sib likelihoods in genealogy

reconstruction. Biometrics 43, 585–600.

Tripathi, A., C. King, A. de la Morenas, V. K. Perry, B. Burke, G. A. Antoine, E. F. Hirsch,

M. Kavanah, J. Mendez, M. Stone, N. P. Gerry, M. E. Lenburg, and C. L. Rosenberg (2008,

Apr). Gene expression abnormalities in histologically normal breast epithelium of breast

cancer patients. Int J Cancer 122 (7), 1557–1566.

Uddin, M., D. E. Wildman, G. Liu, W. Xu, R. M. Johnson, P. R. Hof, G. Kapatos, L. I.

Grossman, and M. Goodman (2004, Mar). Sister grouping of chimpanzees and humans as

revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc Natl

Acad Sci U S A 101 (9), 2957–2962.
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