771 research outputs found

    A Frame Work for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C0C^0 IP methods

    Full text link
    In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers reliable and efficient a posteriori error estimators. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posed ness of the problem. Subsequently, applications of C0C^0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. Finally, we also discuss the variational discontinuous discretization method (without discretizing the control) and its corresponding error estimates.Comment: 23 pages, 5 figures, 1 tabl

    Adaptive discontinuous Galerkin approximations to fourth order parabolic problems

    Full text link
    An adaptive algorithm, based on residual type a posteriori indicators of errors measured in L(L2)L^{\infty}(L^2) and L2(L2)L^2(L^2) norms, for a numerical scheme consisting of implicit Euler method in time and discontinuous Galerkin method in space for linear parabolic fourth order problems is presented. The a posteriori analysis is performed for convex domains in two and three space dimensions for local spatial polynomial degrees r2r\ge 2. The a posteriori estimates are then used within an adaptive algorithm, highlighting their relevance in practical computations, which results into substantial reduction of computational effort

    The DPG-star method

    Get PDF
    This article introduces the DPG-star (from now on, denoted DPG^*) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG^* methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG^* and DPG methods can be seen as generalizations of LL\mathcal{L}\mathcal{L}^\ast and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG^* method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG^* and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable
    corecore