4 research outputs found

    Visual servoing based mobile robot navigation able to deal with complete target loss

    Full text link
    International audienceThis paper combines the reactive collision avoidance methods with image-based visual servoing control for mobile robot navigation in an indoor environment. The proposed strategy allows the mobile robot to reach a desired position, described by a natural visual target, among unknown obstacles. While the robot avoids the obstacles, the camera could lose its target, which makes visual servoing fail. We propose in this paper a strategy to deal with the loss of visual features by taking advantage of the odometric data sensing. Obstacles are detected by the laser range finder and their boundaries are modeled using B-spline curves. We validate our strategy in a real experiment for an indoor mobile robot navigation in presence of obstacles

    Visual servoing for path reaching with nonholonomic robots

    Get PDF
    International audienceWe present two visual servoing controllers (pose-based and image-based) en- abling mobile robots with a fixed pinhole camera to reach and follow a contin- uous path drawn on the ground. The first contribution is the theoretical and experimental comparison between pose-based and image-based techniques for a nonholonomic robot task. Moreover, our controllers are appropriate not only for path following, but also for path reaching, a problem that has been rarely tackled in the past. Thirdly, in contrast with most works, which require the path geometric model, only two path features are necessary in our image-based scheme, and three in the pose-based scheme. For both controllers, a conver- gence analysis is carried out, and the performance is validated by simulations, and outdoor experiments on a car-like robot

    A position-based visual servoing scheme for following paths with nonholonomic mobile robots

    Get PDF
    International audienceWe present an image-based visual servoing con- troller enabling nonholonomic mobile robots with a fixed pinhole camera to reach and follow a continuous path on the ground. The controller utilizes only a small set of features extracted from the image plane, without using the complete geometric representation of the path. A Lyapunov-based stability analysis is carried out. The performance of the controller is validated and compared by simulations and experimpinhole camera
    corecore