14,658 research outputs found

    Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory

    Get PDF
    [EN] The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio's performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.GarcĂ­a GarcĂ­a, F.; GonzĂĄlez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2020). Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory. Technological and Economic Development of Economy (Online). 26(6):1165-1186. https://doi.org/10.3846/tede.2020.13189S11651186266Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503. doi:10.1016/s0378-4266(02)00283-2Ahmed, A., Ali, R., Ejaz, A., & Ahmad, I. (2018). Sectoral integration and investment diversification opportunities: evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514-527. doi:10.9770/jesi.2018.5.3(8)Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8Arribas, I., EspinĂłs-Vañó, M. D., GarcĂ­a, F., & TamoĆĄiĆ«nienė, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566-1586. doi:10.9770/jesi.2019.6.4(2)Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. doi:10.1111/1467-9965.00068Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2BermĂșdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16-26. doi:10.1016/j.fss.2011.05.013Bezoui, M., MoulaĂŻ, M., Bounceur, A., & Euler, R. (2018). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479-498. doi:10.1007/s10589-018-0052-9Bi, T., Zhang, B., & Wu, H. (2013). Measuring Downside Risk Using High-Frequency Data: Realized Downside Risk Measure. Communications in Statistics - Simulation and Computation, 42(4), 741-754. doi:10.1080/03610918.2012.655826Carlsson, C., FullĂ©r, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. doi:10.1016/s0165-0114(01)00251-2Chen, W., & Xu, W. (2018). A Hybrid Multiobjective Bat Algorithm for Fuzzy Portfolio Optimization with Real-World Constraints. International Journal of Fuzzy Systems, 21(1), 291-307. doi:10.1007/s40815-018-0533-0Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364-370. doi:10.1016/0377-2217(86)90332-2Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Fang, Y., Lai, K. K., & Wang, S.-Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879-893. doi:10.1016/j.ejor.2005.05.020Favre, L., & Galeano, J.-A. (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments, 5(2), 21-25. doi:10.3905/jai.2002.319052GarcĂ­a, F., GonzĂĄlez-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the Environmental, Social, and Governance Rating of Firms by Using Corporate Financial Performance Variables: A Rough Set Approach. Sustainability, 12(8), 3324. doi:10.3390/su12083324GarcĂ­a, GonzĂĄlez-Bueno, Oliver, & Riley. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustainability, 11(9), 2496. doi:10.3390/su11092496GarcĂ­a, F., GonzĂĄlez-Bueno, J., Oliver, J., & TamoĆĄiĆ«nienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317GarcĂ­a, F., Guijarro, F., & Moya, I. (2013). A MULTIOBJECTIVE MODEL FOR PASSIVE PORTFOLIO MANAGEMENT: AN APPLICATION ON THE S&P 100 INDEX. Journal of Business Economics and Management, 14(4), 758-775. doi:10.3846/16111699.2012.668859GarcĂ­a, F., Guijarro, F., & Oliver, J. (2017). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30(8), 2625-2641. doi:10.1007/s00521-017-2882-2GarcĂ­a, F., Guijarro, F., Oliver, J., & TamoĆĄiĆ«nienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361-380. doi:10.1016/j.cam.2017.12.015GonzĂĄlez-Bueno, J. (2019). OptimizaciĂłn multiobjetivo para la selecciĂłn de carteras a la luz de la teorĂ­a de la credibilidad. Una aplicaciĂłn en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620-5632. doi:10.1016/j.eswa.2010.10.073Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17. doi:10.1016/j.ins.2012.12.011Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization Using Credibility Theory. Studies in Fuzziness and Soft Computing, 127-160. doi:10.1007/978-3-642-54652-5_5Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020). A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns. International Journal of Fuzzy Systems, 22(3), 824-843. doi:10.1007/s40815-020-00801-4Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285. doi:10.1016/j.ins.2010.02.007Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24(16), 11931-11956. doi:10.1007/s00500-019-04639-3Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Heidari-Fathian, H., & Davari-Ardakani, H. (2019). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89-111. doi:10.1108/jm2-07-2018-0106Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48-57. doi:10.9770/ird.2019.1.1(4)Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8. doi:10.1016/j.cam.2007.06.009Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263-281. doi:10.1007/s10700-009-9064-3Huang, X. (2010). Portfolio Analysis. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-11214-0Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent & Fuzzy Systems, 32(6), 4453-4465. doi:10.3233/jifs-169211Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284-296. doi:10.1016/j.amc.2015.12.018Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization, 70(2), 225-249. doi:10.1080/02331934.2019.1705821Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking & Finance, 111, 105726. doi:10.1016/j.jbankfin.2019.105726Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014Jalota, H., Thakur, M., & Mittal, G. (2017). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512-528. doi:10.1016/j.asoc.2017.05.054Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in Risk-Based Index Construction. The Journal of Investing, 6(2), 82-87. doi:10.3905/joi.1997.408419Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550. doi:10.1016/j.apm.2017.12.016Li, H.-Q., & Yi, Z.-H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49-58. doi:10.1016/j.eswa.2019.05.008Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338-344. doi:10.1016/j.econmod.2014.05.036Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Liu, B. (2004). Uncertainty Theory. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39987-2Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent & Fuzzy Systems, 34(1), 335-347. doi:10.3233/jifs-171298Liu, Y.-J., & Zhang, W.-G. (2018). Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory. International Journal of Information Technology & Decision Making, 17(03), 941-968. doi:10.1142/s0219622018500190Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. doi:10.1016/j.eswa.2019.07.027Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.xMarkowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Martin, R. D., Rachev, S. (Zari), & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. Wilmott, 2003(6), 70-83. doi:10.1002/wilm.42820030619Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26. doi:10.1016/j.ins.2016.01.042Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework. IEEE Transactions on Fuzzy Systems, 28(11), 2726-2737. doi:10.1109/tfuzz.2020.2969406Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24(17), 13331-13345. doi:10.1007/s00500-020-04751-9Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research. doi:10.1007/s10100-019-00633-0Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125-138. doi:10.9770/jesi.2018.6.1(10)Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249-258. doi:10.1007/s12540-009-0249-7Pflug, G. C. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic Constrained Optimization, 272-281. doi:10.1007/978-1-4757-3150-7_15Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. doi:10.21314/jor.2000.038Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Rubio, A., BermĂșdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1-12. doi:10.1016/j.ijar.2016.03.007Saborido, R., Ruiz, A. B., BermĂșdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. doi:10.1016/j.asoc.2015.11.005Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/294846Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk Framework. The Journal of Investing, 3(3), 59-64. doi:10.3905/joi.3.3.59Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221Vercher, E., & BermĂșdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Vercher, E., & BermĂșdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Vercher, E., BermĂșdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. doi:10.1016/j.fss.2006.10.026Wang, S., & Zhu, S. (2002). Fuzzy Optimization and Decision Making, 1(4), 361-377. doi:10.1023/a:1020907229361Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and its Applications, 465, 124-140. doi:10.1016/j.physa.2016.08.009Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23(17), 8159-8179. doi:10.1007/s00500-018-3452-yZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59-69. doi:10.1016/j.cam.2017.07.038Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 28(3), 201-207. doi:10.1080/13504851.2020.174015

    Portfolio optimization based on downside risk: a mean-semivariance efÂżcient frontier from Dow Jones blue chips

    Full text link
    To create efficient funds appealing to a sector of bank clients, the objective of minimizing downside risk is relevant to managers of funds offered by the banks. In this paper, a case focusing on this objective is developed. More precisely, the scope and purpose of the paper is to apply the mean-semivariance efficient frontier model, which is a recent approach to portfolio selection of stocks when the investor is especially interested in the constrained minimization of downside risk measured by the portfolio semivariance. Concerning the opportunity set and observation period, the mean-semivariance efficient frontier model is applied to an actual case of portfolio choice from Dow Jones stocks with daily prices observed over the period 2005Âż2009. From these daily prices, time series of returns (capital gains weekly computed) are obtained as a piece of basic information. Diversification constraints are established so that each portfolio weight cannot exceed 5 per cent. The results show significant differences between the portfolios obtained by mean-semivariance efficient frontier model and those portfolios of equal expected returns obtained by classical Markowitz mean-variance efficient frontier model. Precise comparisons between them are made, leading to the conclusion that the results are consistent with the objective of reflecting downside riskPla SantamarĂ­a, D.; Bravo Selles, M. (2013). Portfolio optimization based on downside risk: a mean-semivariance efÂżcient frontier from Dow Jones blue chips. Annals of Operations Research. 205(1):189-201. doi:10.1007/s10479-012-1243-xS1892012051Aouni, B. (2009). Multi-attribute portfolio selection: new perspectives. INFOR. Information Systems and Operational Research, 47(1), 1–4.Arenas, M., Bilbao, A., & RodrĂ­guez, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133, 287–297.Arrow, K. J. (1965). Aspects of the theory of risk-bearing. Helsinki: Academic Bookstore.Ballestero, E. (2005). Mean-semivariance efficient frontier: a downside risk model for portfolio selection. Applied Mathematical Finance, 12(1), 1–15.Ballestero, E., & Pla-Santamaria, D. (2004). Selecting portfolios for mutual funds. Omega, 32, 385–394.Ballestero, E., & Pla-Santamaria, D. (2005). Grading the performance of market indicators with utility benchmarks selected from Footsie: a 2000 case study. Applied Economics, 37, 2147–2160.Ballestero, E., PĂ©rez-Gladish, B., Arenas-Parra, M., & Bilbao-Terol, A. (2009). Selecting portfolios given multiple Eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas. INFOR. Information Systems and Operational Research, 47(1), 59–70.Ben Abdelaziz, F., & Masri, H. (2005). Stochastic programming with fuzzy linear partial information on time series. European Journal of Operational Research, 162(3), 619–629.Ben Abdelaziz, F., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811–1823.BermĂșdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188, 16–26.Bilbao, A., Arenas, M., JimĂ©nez, M., PĂ©rez- Gladish, B., & RodrĂ­guez, M. V. (2006). An extension of Sharpe’s single-index model: portfolio selection with expert betas. Journal of the Operational Research Society, 57(12), 1442–1451.Chang, T. J., Yang, S. Ch., & Chang, K. J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. IEEE Intelligent Systems & Their Applications, 36, 10529–10537.Haugen, R. A. (1997). Modern investment theory. Upper Saddle River: Prentice-Hall.Huang, H. J., Tzeng, G. H., & Ong, C. S. (2006). A novel algorithm for uncertain portfolio selection. Applied Mathematics and Computation, 173(1), 350–359.Konno, H., Waki, H., & Yuuki, A. (2002). Portfolio optimization under lower partial risk measures. Asia-Pacific Financial Markets, 9, 127–140.Lin, C. M., Huang, J. J., Gen, M., & Tzeng, G. H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation, 175(2), 1139–1146.Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). A novel hybrid model for portfolio selection. Applied Mathematics and Computation, 169(2), 1195–1210.Pendaraki, K., Doumpos, M., & Zopounidis, C. (2004). Towards a goal programming methodology for constructing equity mutual fund portfolios. Journal of Asset Management, 4(6), 415–428.PĂ©rez-Gladish, B., Jones, D. F., Tamiz, M., & Bilbao-Terol, A. (2007). An interactive three-stage model for mutual funds portfolio selection. Omega, 35(1), 75–88.Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1–2), 122–136.Sharpe, W. F. (1994). The Sharpe ratio. The Journal of Portfolio Management, 21(1), 49–58.Sortino, F. A., & Van der Meer, V. (1991). Downside risk. The Journal of Portfolio Management, 17(4), 27–31.Speranza, M. G. (1993). Linear programming model for portfolio optimization. Finance, 14, 107–123.Steuer, R., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 5–20.Steuer, R., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152, 297–317.Vercher, E., BermĂșdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158, 769–782

    What is the cost of maximizing ESG performance in the portfolio selection strategy? The case of The Dow Jones Index average stocks

    Full text link
    [EN] Portfolio selection is one of the main financial topics. The original portfolio selection problem dealt with the trade-off between return and risk, measured as the mean returns and the variance, respectively. For investors more variables other than return and risk are considered to select the stocks to be included in the portfolio. Nowadays, many investors include corporate social responsibility as one eligibility criterion. Additionally, other return and risk measures are being employed. All of this, together with further constraints such as portfolio cardinality, which mirror real-world demands by investors, have made the multicriteria portfolio selection problem to be NP-hard. To solve this problem, heuristics such as the non-dominated sorting genetic algorithm II have been developed. The aim of this paper is to analyse the trade-off between return, risk and corporate social responsibility. To this end, we construct pareto efficient portfolios using a fuzzy multicriteria portfolio selection model with real-world constraints. The model is applied on a set of 28 stocks which are constituents of the Dow Jones Industrial Average stock index. The analysis shows that portfolios scoring higher in corporate social responsibility obtain lower returns. As of the risk, the riskier portfolios are those with extreme (high or low) corporate social responsibility scores. Finally, applying the proposed portfolio selection methodology, it is possible to build investment portfolios that dominate the benchmark. That is, socially responsible portfolios, measured by ESG scores, must not necessarily be penalized in terms of return or risk.GarcĂ­a GarcĂ­a, F.; Gankova-Ivanova, T.; GonzĂĄlez-Bueno, J.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2022). What is the cost of maximizing ESG performance in the portfolio selection strategy? The case of The Dow Jones Index average stocks. Enterpreneurship and Sustainability Issues. 9(4):178-192. https://doi.org/10.9770/jesi.2022.9.3(9)1781929

    A credibilistic mean-semivariance-PER portfolio selection model for Latin America

    Get PDF
    Many real-world problems in the financial sector have to consider different objectives which are conflicting, for example portfolio selection. Markowitz proposed an approach to determine the optimal composition of a portfolio analysing the trade-off between return and risk. Nevertheless, this approach has been criticized for unrealistic assumptions and several changes have been proposed to incorporate investors’ constraints and more realistic risk measures. In this line of research, our proposal extends the mean-semivariance portfolio selection model to a multiobjective credibilistic model that besides risk and return, also considers the price-to-earnings ratio to measure portfolio performance. Uncertain future returns and PER ratio of each asset are approximated using L-R power fuzzy numbers. Furthermore, we consider budget, bound and cardinality constraints. To solve the constrained portfolio optimization problem, we use the algorithm NSGA-II. We assess the proposed approach generating a portfolio with shares included in the Latin American Integrated Market. Results show that this new approach is a good alternative to solve the portfolio selection problem when multiple objectives are considered

    Strict Solution Method for Linear Programming Problem with Ellipsoidal Distributions under Fuzziness

    Get PDF
    This paper considers a linear programming problem with ellipsoidal distributions including fuzziness. Since this problem is not well-defined due to randomness and fuzziness, it is hard to solve it directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed model is transformed into the deterministic equivalent problems. Furthermore, since it is difficult to solve the main problem analytically and efficiently due to nonlinear programming, the solution method is constructed introducing an appropriate parameter and performing the equivalent transformations

    Moments and Semi-Moments for fuzzy portfolios selection

    Get PDF
    The aim of this paper is to consider the moments and the semi-moments (i.e semi-kurtosis) for portfolio selection with fuzzy risk factors (i.e. trapezoidal risk factors). In order to measure the leptokurtocity of fuzzy portfolio return, notions of moments (i.e. Kurtosis) kurtosis and semi-moments(i.e. Semi-kurtosis) for fuzzy port- folios are originally introduced in this paper, and their mathematical properties are studied. As an extension of the mean-semivariance-skewness model for fuzzy portfolio, the mean-semivariance-skewness- semikurtosis is presented and its four corresponding variants are also considered. We briefly designed the genetic algorithm integrating fuzzy simulation for our optimization models.Fuzzy moments, Credibility theory, Portfolios, Asset allocation, multi-objective optimization

    Asset Allocation with Aversion to Parameter Uncertainty: A Minimax Regression Approach

    Get PDF
    This paper takes a minimax regression approach to incorporate aversion to parameter uncertainty into the mean-variance model. The uncertainty-averse minimax mean-variance portfolio is obtained by minimizing with respect to the unknown weights the upper bound of the usual quadratic risk function over a fuzzy ellipsoidal set. Beyond the existing approaches, our methodology offers three main advantages: first, the resulting optimal portfolio can be interpreted as a Bayesian mean-variance portfolio with the least favorable prior density, and this result allows for a comprehensive comparison with traditional uncertainty-neutral Bayesian mean-variance portfolios. Second, the minimax mean-variance portfolio has a shrinkage expression, but its performance does not necessarily lie within those of the two reference portfolios. Third, we provide closed form expressions for the standard errors of the minimax mean-variance portfolio weights and statistical significance of the optimal portfolio weights can be easily conducted. Empirical applications show that incorporating aversion to parameter uncertainty leads to more stable optimal portfolios that outperform traditional uncertainty-neutral Bayesian mean-variance portfolios.Asset allocation, estimation error, aversion to uncertainty, min-imax regression, Bayesian mean-variance portfolios, least favorable prior
    • 

    corecore