2,106 research outputs found

    Promoting Resiliency in Emergency Communication Networks: A Network Interdiction Modeling Approach

    Get PDF
    Emergency communication networks provide the basis for preparing for, and responding to, manmade and natural disasters. With the increasing importance of information security, emergency network operators such as non-governmental organizations (NGOs), local and national governmental agencies, and traditional network operators must deal with the possibility of sabotage and hacking of such networks. A network interdiction modeling approach is proposed that can be utilized for planning purposes in order to identify and protect critical parts of the network infrastructure. These critical nodes or links represent opportunities where investment or hardening of such infrastructure may reduce or prevent reductions in network traffic flows created by nefarious actors prior, during, or after an emergency or disaster

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    UAV Based 5G Network: A Practical Survey Study

    Full text link
    Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks that could handle high-speed transmissions and enable wireless broadcasts. When compared to communications that rely on permanent infrastructure, UAVs offer a number of advantages, including flexible deployment, dependable line-of-sight (LoS) connection links, and more design degrees of freedom because of controlled mobility. Unmanned aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT) components have the potential to completely transform a variety of industries. UAVs may transfer massive volumes of data in real-time by utilizing the low latency and high-speed abilities of 5G networks, opening up a variety of applications like remote sensing, precision farming, and disaster response. This study of UAV communication with regard to 5G/B5G WLANs is presented in this research. The three UAV-assisted MEC network scenarios also include the specifics for the allocation of resources and optimization. We also concentrate on the case where a UAV does task computation in addition to serving as a MEC server to examine wind farm turbines. This paper covers the key implementation difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models, and coupled trajectory-computation performance optimization, in order to promote widespread implementations of UAV-assisted MEC in practice. The primary problem for 5G and beyond 5G (B5G) is delivering broadband access to various device kinds. Prior to discussing associated research issues faced by the developing integrated network design, we first provide a brief overview of the background information as well as the networks that integrate space, aviation, and land

    Resource Allocation and Positioning of Power-Autonomous Portable Access Points

    Get PDF

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Envisioning the Future Role of 3D Wireless Networks in Preventing and Managing Disasters and Emergency Situations

    Full text link
    In an era marked by unprecedented climatic upheavals and evolving urban landscapes, the role of advanced communication networks in disaster prevention and management is becoming increasingly critical. This paper explores the transformative potential of 3D wireless networks, an innovative amalgamation of terrestrial, aerial, and satellite technologies, in enhancing disaster response mechanisms. We delve into a myriad of use cases, ranging from large facility evacuations to wildfire management, underscoring the versatility of these networks in ensuring timely communication, real-time situational awareness, and efficient resource allocation during crises. We also present an overview of cutting-edge prototypes, highlighting the practical feasibility and operational efficacy of 3D wireless networks in real-world scenarios. Simultaneously, we acknowledge the challenges posed by aspects such as cybersecurity, cross-border coordination, and physical layer technological hurdles, and propose future directions for research and development in this domain

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population

    Promoting Resiliency in Emergency Communication Networks: A Network Interdiction Stylized Initial Case Study Model of a Miami-Dade County Network

    Get PDF
    Police, fire, and emergency personnel rely on wireless networks to serve the public. Whether it is during a natural disaster, or just an ordinary calendar day, wireless nodes of varying types form the infrastructure that local, regional, and even national scale agencies use to communicate while keeping the population served safe and secure. We present a network interdiction modeling approach that can be utilized for analyzing vulnerabilities in public service wireless networks subject to hacking, terrorism, or destruction from natural disasters. We develop a case study for the wireless network utilized by the sheriff’s department of Miami-Dade County in Florida in the United States. Our modeling approach, given theoretical budgets for the “hardening” of wireless network nodes and for would-be destroyers of such nodes, highlights parts of the network where further investment may prevent damage and loss of capacity
    • 

    corecore