28,261 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Entanglement in the full state vector of boson sampling

    Full text link
    The full state vector of boson sampling is generated by passing S single photons through beam splitters of M modes. The initial Fock state is expressed withgeneralized coherent states, and an exact application of the unitary evolution becomes possible. Due to the favorable polynomial scaling in M , we can investigate Renyi entanglement entropies for moderate particle and huge mode numbers. We find (almost) Renyi index independent symmetric Page curves with maximum entropy at equal partition. Furthermore, the maximum entropy as a function of mode index saturates as a function of M in the collision-free subspace case. The asymptotic value of the entropy increases linearly with S. Furthermore, we show that the build-up of the entanglement leads to a cusp at subsystem size equal to S in the asymmetric entanglement curve. The maximum entanglement is reached surprisingly early before the mode population is distributed over the whole system

    Towards Advantages of Parameterized Quantum Pulses

    Full text link
    The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidance for pulse circuit design. To address this gap, our study proposes a set of design spaces for parameterized pulses, evaluating these pulses based on metrics such as expressivity, entanglement capability, and effective parameter dimension. Using these design spaces, we demonstrate the advantages of parameterized pulses over gate circuits in the aspect of duration and performance at the same time thus enabling high-performance quantum computing. Our proposed design space for parameterized pulse circuits has shown promising results in quantum chemistry benchmarks.Comment: 11 Figures, 4 Table

    Adaptive Kernel Kalman Filter

    Get PDF

    Geometry of Rounding: Near Optimal Bounds and a New Neighborhood Sperner's Lemma

    Full text link
    A partition P\mathcal{P} of Rd\mathbb{R}^d is called a (k,ε)(k,\varepsilon)-secluded partition if, for every pRd\vec{p} \in \mathbb{R}^d, the ball B(ε,p)\overline{B}_{\infty}(\varepsilon, \vec{p}) intersects at most kk members of P\mathcal{P}. A goal in designing such secluded partitions is to minimize kk while making ε\varepsilon as large as possible. This partition problem has connections to a diverse range of topics, including deterministic rounding schemes, pseudodeterminism, replicability, as well as Sperner/KKM-type results. In this work, we establish near-optimal relationships between kk and ε\varepsilon. We show that, for any bounded measure partitions and for any d1d\geq 1, it must be that k(1+2ε)dk\geq(1+2\varepsilon)^d. Thus, when k=k(d)k=k(d) is restricted to poly(d){\rm poly}(d), it follows that ε=ε(d)O(lndd)\varepsilon=\varepsilon(d)\in O\left(\frac{\ln d}{d}\right). This bound is tight up to log factors, as it is known that there exist secluded partitions with k(d)=d+1k(d)=d+1 and ε(d)=12d\varepsilon(d)=\frac{1}{2d}. We also provide new constructions of secluded partitions that work for a broad spectrum of k(d)k(d) and ε(d)\varepsilon(d) parameters. Specifically, we prove that, for any f:NNf:\mathbb{N}\rightarrow\mathbb{N}, there is a secluded partition with k(d)=(f(d)+1)df(d)k(d)=(f(d)+1)^{\lceil\frac{d}{f(d)}\rceil} and ε(d)=12f(d)\varepsilon(d)=\frac{1}{2f(d)}. These new partitions are optimal up to O(logd)O(\log d) factors for various choices of k(d)k(d) and ε(d)\varepsilon(d). Based on the lower bound result, we establish a new neighborhood version of Sperner's lemma over hypercubes, which is of independent interest. In addition, we prove a no-free-lunch theorem about the limitations of rounding schemes in the context of pseudodeterministic/replicable algorithms

    Self-Supervised Learning to Prove Equivalence Between Straight-Line Programs via Rewrite Rules

    Full text link
    We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system, two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no programs may be incorrectly reported as equivalent. Our system is fully implemented for a given grammar which can represent straight-line programs with function calls and multiple types. To efficiently train the system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection. We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programsComment: 30 pages including appendi

    Full trajectory optimizing operator inference for reduced-order modeling using differentiable programming

    Full text link
    Accurate and inexpensive Reduced Order Models (ROMs) for forecasting turbulent flows can facilitate rapid design iterations and thus prove critical for predictive control in engineering problems. Galerkin projection based Reduced Order Models (GP-ROMs), derived by projecting the Navier-Stokes equations on a truncated Proper Orthogonal Decomposition (POD) basis, are popular because of their low computational costs and theoretical foundations. However, the accuracy of traditional GP-ROMs degrades over long time prediction horizons. To address this issue, we extend the recently proposed Neural Galerkin Projection (NeuralGP) data driven framework to compressibility-dominated transonic flow, considering a prototypical problem of a buffeting NACA0012 airfoil governed by the full Navier-Stokes equations. The algorithm maintains the form of the ROM-ODE obtained from the Galerkin projection; however coefficients are learned directly from the data using gradient descent facilitated by differentiable programming. This blends the strengths of the physics driven GP-ROM and purely data driven neural network-based techniques, resulting in a computationally cheaper model that is easier to interpret. We show that the NeuralGP method minimizes a more rigorous full trajectory error norm compared to a linearized error definition optimized by the calibration procedure. We also find that while both procedures stabilize the ROM by displacing the eigenvalues of the linear dynamics matrix of the ROM-ODE to the complex left half-plane, the NeuralGP algorithm adds more dissipation to the trailing POD modes resulting in its better long-term performance. The results presented highlight the superior accuracy of the NeuralGP technique compared to the traditional calibrated GP-ROM method

    Countermeasures for the majority attack in blockchain distributed systems

    Get PDF
    La tecnología Blockchain es considerada como uno de los paradigmas informáticos más importantes posterior al Internet; en función a sus características únicas que la hacen ideal para registrar, verificar y administrar información de diferentes transacciones. A pesar de esto, Blockchain se enfrenta a diferentes problemas de seguridad, siendo el ataque del 51% o ataque mayoritario uno de los más importantes. Este consiste en que uno o más mineros tomen el control de al menos el 51% del Hash extraído o del cómputo en una red; de modo que un minero puede manipular y modificar arbitrariamente la información registrada en esta tecnología. Este trabajo se enfocó en diseñar e implementar estrategias de detección y mitigación de ataques mayoritarios (51% de ataque) en un sistema distribuido Blockchain, a partir de la caracterización del comportamiento de los mineros. Para lograr esto, se analizó y evaluó el Hash Rate / Share de los mineros de Bitcoin y Crypto Ethereum, seguido del diseño e implementación de un protocolo de consenso para controlar el poder de cómputo de los mineros. Posteriormente, se realizó la exploración y evaluación de modelos de Machine Learning para detectar software malicioso de tipo Cryptojacking.DoctoradoDoctor en Ingeniería de Sistemas y Computació

    Regret Distribution in Stochastic Bandits: Optimal Trade-off between Expectation and Tail Risk

    Full text link
    We study the trade-off between expectation and tail risk for regret distribution in the stochastic multi-armed bandit problem. We fully characterize the interplay among three desired properties for policy design: worst-case optimality, instance-dependent consistency, and light-tailed risk. We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario. A novel policy is proposed to characterize the optimal regret tail probability for any regret threshold. Concretely, for any given α[1/2,1)\alpha\in[1/2, 1) and β[0,α]\beta\in[0, \alpha], our policy achieves a worst-case expected regret of O~(Tα)\tilde O(T^\alpha) (we call it α\alpha-optimal) and an instance-dependent expected regret of O~(Tβ)\tilde O(T^\beta) (we call it β\beta-consistent), while enjoys a probability of incurring an O~(Tδ)\tilde O(T^\delta) regret (δα\delta\geq\alpha in the worst-case scenario and δβ\delta\geq\beta in the instance-dependent scenario) that decays exponentially with a polynomial TT term. Such decaying rate is proved to be best achievable. Moreover, we discover an intrinsic gap of the optimal tail rate under the instance-dependent scenario between whether the time horizon TT is known a priori or not. Interestingly, when it comes to the worst-case scenario, this gap disappears. Finally, we extend our proposed policy design to (1) a stochastic multi-armed bandit setting with non-stationary baseline rewards, and (2) a stochastic linear bandit setting. Our results reveal insights on the trade-off between regret expectation and regret tail risk for both worst-case and instance-dependent scenarios, indicating that more sub-optimality and inconsistency leave space for more light-tailed risk of incurring a large regret, and that knowing the planning horizon in advance can make a difference on alleviating tail risks
    corecore