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Abstract
The 2048 game involves tiles labeled with powers of two that can be merged to form bigger powers
of two; variants of the same puzzle involve similar merges of other tile values. We analyze the
maximum score achievable in these games by proving a min-max theorem equating this maximum
score (in an abstract generalized variation of 2048 that allows all the moves of the original game)
with the minimum value that causes a greedy change-making algorithm to use a given number
of coins. A widely-followed strategy in 2048 maintains tiles that represent the move number
in binary notation, and a similar strategy in the Fibonacci number variant of the game (987)
maintains the Zeckendorf representation of the move number as a sum of the fewest possible
Fibonacci numbers; our analysis shows that the ability to follow these strategies is intimately
connected with the fact that greedy change-making is optimal for binary and Fibonacci coinage.
For variants of 2048 using tile values for which greedy change-making is suboptimal, it is the
greedy strategy, not the optimal representation as sums of tile values, that controls the length of
the game. In particular, the game will always terminate whenever the sequence of allowable tile
values has arbitrarily large gaps between consecutive values.
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1 Introduction

The solitaire game 2048 was developed in 2014 by Gabriele Cirulli, based on another game
called Threes developed earlier in 2014 by Asher Vollmer [28]. It is played on a 16-cell square
grid, each cell of which can either be empty or contain a tile labeled with a power of two. In
each turn, a tile of value 2 or 4 is placed by the game software on a randomly chosen empty
cell. The player then must tilt the board in one of the four cardinal directions, causing its
tiles to slide until reaching the edge of the board or another tile. When two tiles of equal
value slide into each other, they merge into a new tile of twice the value. The game stops
when the whole board fills with tiles, and the goal is to achieve the highest single tile value
possible. Figure 1 shows the state of the game after approximately 4000 moves, when a tile
with value 8192 has been reached.

As most players of the game quickly learn, it is not possible to keep playing a single game
of 2048 forever. At any step of the game, there must be at least one tile for each nonzero bit
in the binary representation of the total tile value. For total tile values just below a large
power of two, the number of ones in the binary representation is similarly large, eventually
exceeding the number of cells in the board.
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21:2 Making Change in 2048

Figure 1 A state in the game 2048 in which a tile of value 8192 has been reached.

But other variants of 2048 use different tile values than powers of two. Threes uses the
sequence of numbers that are either powers of two or three times a power of two:

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, . . .

(It also restricts tile merges to pairs of tiles whose values are equal or differ by a factor of
two.) Fives uses 2, 3, and powers of two times 5, giving the sequence of allowable values [12]

1, 2, 3, 5, 10, 20, 40, 80, 160, 320, 640, . . .

Another variant, called 987, uses as its tile values the Fibonacci numbers,

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

We can find analogous ad-hoc arguments for why these games must terminate, but can we
generalize them to arbitrary systems of tile values? If we define a 2048-like game with a set
S as its tile values, is the length of the game and the maximum value that can be achieved
controlled, as it is for binary numbers, by the lengths of the shortest representations of
arbitrary numbers as sums of members of S?

For instance, suppose that we allow any practical number as a tile value, and any merge
of two tiles that produces another practical number. The practical numbers are defined by
the property that, for a practical number n, every integer m < n can be expressed as a sum
of distinct divisors of n. Their sequence begins

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, . . .

There are many more practical numbers than powers of two, and the practical numbers
behave in many ways like the prime numbers. In particular, analogously to Goldbach’s
conjecture for the prime numbers, every even integer can be expressed as a sum of two
practical numbers [17], and therefore every integer can be expressed as a sum of three
practical numbers. Because we can express every tile value using a bounded number of
practical-number tiles, does the practical-number variant of 2048 go on forever?

Alternatively, suppose we use 3-smooth tile values, the numbers whose only prime factors
are two or three:

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, . . .
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Because the number of distinct 3-smooth numbers in the range from 1 to n is only O(log2 n),
an information-theoretic argument shows that some numbers in this range will require
Ω(log n/ log log n) terms in their shortest representation as a sum of 3-smooth numbers.
Therefore, for a game using these tile values to last for n moves, it must use a game board
that has at least Ω(log n/ log log n) cells. Is this analysis tight?

1.1 New results
In this paper we show that the answer to these questions is no. 2048-like games are not
controlled by the shortest representations of numbers as sums of tile values, but rather by
their greedy representations, representations generated by a greedy heuristic for the problem
of making change using the smallest number of coins from a given coinage system. For
the powers of two, the Fibonacci numbers, and the numbers used by Threes and Fives,
these greedy representations coincide with the shortest representations, but that is not true
for many other natural sets of numbers including the practical numbers and the 3-smooth
numbers. The lengths of greedy representations, in turn, are controlled by the lengths of the
gaps between consecutive tile values.

As a consequence, we show that whenever a sequence of numbers has arbitrarily large
gaps, the 2048-like game based on those numbers must terminate with a finite limit on its
number of moves and on its largest achievable tile value. For instance, because the practical
numbers have inverse-logarithmic density (analogously to the prime number theorem for the
density of the prime numbers) [29], they have arbitrarily large gaps and the game based on
them terminates, albeit much more slowly than for the powers of two.

1.2 Related work
2048 has been the subject of much past research. Its past investigations include studies of its
computational complexity [1, 2, 12, 16], artificial intelligence based game strategies [10, 15, 19,
23,27,30], computer science education [18], and computer-human interaction [22].

2 Simplification through abstraction

Several features of 2048 and its variants complicate their analysis, possibly making its game
play more interesting but without (it appears) greatly affecting the questions we wish to
study, on how long a game can last or which tile values can be achieved.

Board geometry. The cells of the 2048 board are arranged in a square grid, which controls
both the sliding movement of the tiles across the board and the pairs of tiles that can
become adjacent to each other and merge. Much of the strategy of the game involves
linearizing this two-dimensional arrangement of cells by finding a zigzag path that covers
all the cells of the grid and playing in such a way that tiles move and merge with each
other only along this path.

Restricted tile merges. In some variations of 2048, such as Threes, certain pairs of tiles
cannot merge even when their summed value would be an allowable tile value. For
instance, in Threes, the merge 3 + 1 = 4 is not allowed; only pairs of tiles with the same
value or with one twice the other can merge. Even in 2048, only pairs of tiles, and not
larger combinations of tiles, are allowed to merge.

Unknown or random future events. In 2048, the next tile could either have value 2 or 4.
In most cases this causes little change to game play, because a tile of value 4 is not
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significantly different than two consecutive tiles of value 2 that then became merged,
but it can interact with the board geometry to cause tiles to become out of position,
making continued play more difficult. And in many of these games, the location of each
newly placed tile could be any previously-open cell. These unknowns make the game
nondeterministic, and complicate the definition of the longest play or highest achievable
tile value: do we mean the worst case (the best that a player could achieve against a
malicious adversary), best case (the best one could hope to achieve against repeated play
with a random adversary), or some kind of probabilistic analysis that determines the
distribution or expected value of scores?

To avoid these complications, we define a class of variants of 2048 in which they are
eliminated.

I Definition 1 (abstract generalized games). Given a set A of allowable tile values, an initial
element a ∈ A (usually a = 1), and a number n of cells, we define the abstract generalized
2048 game for A and a to be a solitaire game in which there are n indistinguishable cells,
each of which can either be empty or contain a tile with a value in A. We define a position
of the game to be an assignment of either a tile with a value in A or no tile to each cell of
the game. The initial position of the game is a position in which all cells are empty. Starting
from the initial position, each step of the game consists of the following actions:

The player chooses any empty cell, and a tile of value a is placed into that cell.
The player may choose to merge any sets of non-empty cells whose total value belongs to
A into a single tile, which is placed on a single cell from its set. The remaining cells in
each chosen set become empty.

The game ends when, after one of these steps, all cells are nonempty. When this happens,
there would be nowhere to place the new tile of value a in the next step.

We denote the abstract generalized 2048 game on n cells with tile value set A and initial
tile value a by AGG(n, A, a) or (when a = 1) by AGG(n, A).

I Observation 2 (simulation by abstract games). With the possible exception of the value
of each newly placed tile, each action in 2048, Threes, Fives, or 987 can be simulated by a
corresponding action in the abstract generalized 2048 game with the same set of tile values
and the same number of cells. Therefore, any upper bound on the number of moves or
maximum tile value in the abstract generalized 2048 game provides a valid upper bound for
the number of moves or maximum tile value in the corresponding sliding-tile game.

3 Optimal strategy in the abstract game

The abstract generalized 2048 game eliminates the complications of board geometry, tile
position, and sliding mechanics from the game, making its analysis much simpler. As a
consequence, we can characterize the optimal strategies in this game. We begin by describing
some helpful move-ordering principles.

I Definition 3 (eager sequences). We say that a sequence of steps in AGG(n, A) is eager if
each merge of tiles is performed in the first step at which all of the tiles to be merged have
their merged values, rather than delaying the merge until some later step.

I Observation 4 (all sequences can be made eager). If a position in AGG(n, A) can be
reached by a sequence of steps, it can be reached by an eager sequence of steps.
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I Lemma 5 (single-tile-first strategy). Let P be a position in AGG(n, A) that can be reached
by a sequence of steps from the initial position. Then there exists a non-empty cell c of value
v in P , and a sequence of steps that reaches P from the initial position, with the following
structure:

First, perform a sequence of steps that reaches the position P ′, where P ′ has a tile of
value v in cell c and n− 1 empty cells.
Next, perform a sequence of steps in the game AGG(n− 1, A), using only the cells that
are empty in position P ′, to reach the position P ′′ in that game corresponding to position
P in AGG(n, A) (the position formed from P by removing one cell of value m).

Proof. Let S be an eager sequence of steps that produces position P . By assumption, S

exists, and we may assume by Observation 4 that S is eager. By running the sequence of
steps in S backwards from P , we may determine, for each position reached during the course
of sequence S, which of its nonempty tiles eventually contribute to each tile of P . By the
eager property of S, each merge produced in each step involves only tiles that contribute to
the same cell as the newly-placed tile in that step.

Let c be the cell of P to which the first newly-placed tile contributes, and let v be the
value of the tile in cell c of position P . Because the cells are indistinguishable, we may
rearrange the cells of AGG(n, A) so that the first newly-placed tile is placed into cell c, and
so that each subsequent merge step involving this tile places the merged tile back into cell c.
After this rearrangement, cell c is always occupied by a tile that contributes to the eventual
value in cell c. We may then separate S into two subsequences of steps, the subsequence S1
of steps whose newly placed tile contributes to c and the subsequence S2 of steps in which
the newly placed tile contributes to some other cell of P .

Then subsequence S1 may be performed first, before any steps of S2. This change of
order causes positions of the game to be empty in S1 that are non-empty in S, but those
positions do not contribute to c and therefore do not affect what happens in these steps.
Performing S1 reaches state P ′, as described by the statement of the lemma.

The cells other than c form an instance of AGG(n− 1, A), and each step of S2 operates
only on these cells because at each of these steps, c is occupied by a tile that is unchanged by
that step. Therefore, S2 may be performed on AGG(n−1, A) to reach position P ′′. Because c

is the only nonempty cell after S1 and is unused by S2, it is valid to perform the concatenation
of subsequences S1S2, which reaches state P with the desired step ordering. J

I Lemma 6 (step-by-step reachability for single tiles). Let x > 1 be a tile value in set A, and
let y be the largest value in A that is less than x. Let n be a positive integer, let Px be the
position consisting of one cell containing a tile of value x and n− 1 empty tiles, and let Py

be defined in the same way for value y. Then there is a sequence of steps in AGG(n, A) that
reaches Px if and only if the following conditions are both true:
1. There is a sequence of steps in AGG(n, A) that reaches Py.
2. There is a sequence of steps in AGG(n− 1, A) that reaches a position of total value x− y.

Proof. We prove separately that both conditions imply reachability of Px, and that reacha-
bility of Px implies both conditions.

(1 & 2) ⇒ Px:
Clearly if both conditions are true, then we can use the sequence from the first condition
to reach Py, then concatenate the sequence of steps from the second condition to reach a
position that includes both y and some other tiles of total value x−y, and finally perform
a single merge operation to combine all of these tiles to a single tile of value x.
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21:6 Making Change in 2048

Px ⇒ (1):
Let S be any sequence of steps that reach Px. Then the first y steps of S reach a position
of total value y, from which Py can be formed by one more merge operation.

Px ⇒ (2):
Px is reachable if and only if we can reach a position P ′ of total value x− 1, with at least
one empty cell, so that the newly placed tile of the next step creates total value x. By
the single-tile-first strategy (Lemma 5), P ′ is reachable if and only if there exists z ∈ A,
with 0 < z < x, such that Pz is reachable in AGG(n, A) and the remaining cells of P ′, of
total value x− z− 1 and with at least one empty cell, are reachable in AGG(n− 1, A). If
y = z then one more step in AGG(n− 1, A) places a new tile of value 1 in the empty cell
and creates a position of total value x− y, meeting condition 2. If, on the other hand,
y > z, then x− y ≤ x− z− 1 and the first x− y steps in AGG(n− 1, A) already create a
position of total value x− y, again meeting condition 2. J

I Corollary 7 (threshold of single-tile reachability). For every n and A then there exists a value
Single(n, A) ∈ A ∪ {∞} such that the positions Px (with one tile of value x and n− 1 empty
cells) are reachable in AGG(n, A) if and only if x ∈ A and x ≤ Single(n, A). If Single(n, A)
is finite, it is the maximum single tile value achievable in game AGG(n, A); if not, all tile
values are achievable.

I Observation 8 (monoticity of single-tile thresholds). For all n > 1 and A, Single(n, A) ≥
Single(n− 1, A).

Proof. If we can reach any single tile value v in game AGG(n− 1, A), we can also reach it
in AGG(n, A) by ignoring the extra cell. J

I Theorem 9 (characterization of reachable positions). Let n and A be given. Then a position
P of AGG(n, A) is reachable by a sequence of steps from its initial position if and only if the
sequence of its tile values v1, . . . vn (sorted from smallest to largest, with vi = 0 if there are
at least i empty cells in P ) satisfies the inequalities vi ≤ Single(i, A) for all i.

Proof. By applying the single-tile-first strategy (Lemma 5) recursively, we may decompose
P into a sequence of tile values un (the single tile used by the strategy to reach P ), un−1
(the tile used by applying Lemma 5 to the game AGG(n− 1, A) after constructing tile un,
. . . padding the sequence with zeros if necessary. Then by construction un is achievable in
game AGG(n, A), un−1 is achievable in game AGG(n − 1, A), etc., so these values satisfy
inequalities ui ≤ Single(i, A) for all i like the ones in the statement of the lemma.

This decomposition need not be sorted. However, because the values of Single(i, A) are
monotonically non-decreasing (Observation 8), swapping any two values of ui and uj that are
out of order preserves the inequalities between these values and Single(i, A) and Single(j, A).
Since the sorted sequence of values vi can be obtained from the sequence ui by such swaps,
it also obeys all the same inequalities. J

Using this characterization we can strengthen Lemma 5 to more explicitly describe a
game strategy for reaching any given position.

I Corollary 10 (how to play to reach any single position). Let P be any reachable position in
game AGG(n, A). Then the following strategy for playing the game reaches P :

If P contains more than one tile, first play the strategy recursively to reach a position
with one nonempty cell, containing the largest tile value in P . Then continue recursively
in the game AGG(n− 1, A) on the remaining cells to construct the remaining tiles of P .
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If P contains only one tile, of value x, let y be the largest value in A that is less than v.
Play the strategy recursively to reach a position with two nonempty cells, with values y

and x− y, and then in the final step of the recursive strategy merge these two values.

The correctness of this strategy follows easily by using Theorem 9 to prove that each
recursive goal within this strategy is itself reachable.

Putting the results of this section together, we have the following simple recurrence for
computing Single(n, A) and Total(n, A):

I Theorem 11 (recurrence for single-tile and total-value reachability). Beginning with

Single(0, A) = Total(0, A) = 0,

we may compute Single(n, A) as the smallest value in A whose difference from the next larger
value in A is larger than Total(n− 1, A), or ∞ if no such value exists. We may compute

Total(n, A) = Single(n, A) + Total(n− 1, A) =
n∑

i=1
Single(i, A).

Proof. The computation of Single(n, A) follows from Lemma 6. By that lemma, each tile
value up to the given value can be reached from its predecessor in A, and each larger value
cannot be reached.

The computation of Total(n, A) follows from Theorem 9. By that lemma, the tile values
of any reachable position are individually dominated by the values in the reachable position
that has one tile of each value Single(i, A) for i ranging from 1 to n. The sum in the formula
gives the value of this position, which clearly obeys the stated recurrence. J

I Corollary 12 (termination if and only if gaps are unbounded). For every A, the values
of Single(n, A) and Total(n, A) are finite for all n (and the game AGG(n, A) necessarily
terminates for all n) if and only if the gaps between consecutive members of A are not bounded
in size.

Proof. As a sum of values of Single, Total is finite if and only if Single is. Additionally, Total
is strictly monotonically increasing, because it is always possible to add a single tile of value
one to a reachable position in AGG(n− 1, A) and produce a higher-value reachable position
in AGG(n, A). Therefore, for larger and larger values of n, the formula for Single(n, A) will
require us to find correspondingly larger gaps in the sequence of values in A. This will
be possible, leading to finite values of Single(n, A) for all n, if and only if A has gaps of
unbounded size. J

4 Making change

The change-making problem involves making change for a given amount of money, using as
few coins as possible from a given set of coin denominations. Most countries have coinage
that allows the problem to be solved optimally by a greedy algorithm: to make change for a
given amount of money x, first select the largest-valued coin whose value y is less than or
equal to x, and then (if x 6= y) recursively solve the remaining change-making subproblem
for the value x − y. However, greedy change-making is not always optimal. For instance,
consider the situation of a cashier who is trying to make change in US money, for which
the most commonly-used coin denominations are 1 cent (the penny), 5 cents (the nickel),
10 cents (the dime), and 25 cents (the quarter). To make change for 30 cents, the optimal
choice would be the greedy choice, one quarter and one nickel. But if the change tray is out
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of nickels, so that the only coin values available are 1, 10, and 25 cents, the optimal choice
would be three dimes, while the greedy algorithm would instead choose a quarter and five
pennies, twice as many coins.

Optimal change-making is weakly NP-hard but has a pseudopolynomial time dynamic
program that is often used as an example or an exercise in undergraduate algorithms
classes [5, 7]. However, although there have also been studies on sets of coins that would
lead to small solutions [24] or on counting distinct ways of making change [4], much of the
research on change-making has focused on a different problem: for which coinage systems is
the greedy algorithm optimal [3, 6, 11,14,20]? This can be tested in polynomial time [20].

A particularly simple test (the Magazine–Nemhauser–Trotter one-shot test) determines
whether a system of coins has a stronger property, that if the coins are sorted by value from
smallest to largest, every prefix of this sorted sequence forms a set of coins for which greedy
change-making is optimal. For each prefix let x and y be the largest and second-largest coins
in the prefix; then the one-shot test rounds x up to an integer multiple ky of y and applies the
greedy change-making algorithm to this number ky. If it uses more than k coins, the greedy
algorithm is suboptimal, but if every prefix uses this number of coins or fewer, then the
greedy algorithm can be proven to be optimal for all prefixes [14]. Following Cowen et al. [6],
we call a system of coins that passes this test totally greedy. Although the change-making
problem is usually considered only for finite sets of coin denominations, the one-shot test and
the prefix-greedy definition make sense equally well for infinite sets. For instance, the powers
of two are totally greedy (the ith instance of the one-shot test uses one coin to represent the
test value 2 · 2i−1 = 2i) as are the Fibonacci numbers (the ith instance of the one-shot test
uses two coins to represent the test value 2Fi−1 = Fi + Fi−3).

In connection with our analysis of abstract generalized 2048, we are interested in the
behavior of the greedy algorithm on arbitrary coinage systems, regardless of whether the
greedy algorithm is optimal for the system. The following quantity is of particular interest:

I Definition 13 (hard-to-change inputs to the greedy algorithm). For any integer n ≥ 0 and
set of positive integer coin values A, we define GreedyCoins(n, A) to be the smallest integer
x that causes the greedy change-making algorithm to use at least n coins.

The following result is folklore; it is possible that it was first observed by Pillai in his
1930 study of greedy change-making for prime-number coin values [21] but we have been
unable to obtain a copy of his paper to check.

I Lemma 14 (recurrence for hard-to-change inputs). We may compute GreedyCoins(n, A)
using the recurrence

GreedyCoins(n, A) = GreedyCoins(n− 1, A) + x,

where x is the smallest member of A such that the difference between x and the next-larger
member of A exceeds GreedyCoins(n− 1, A), and with the base case GreedyCoins(0, A) = 0.

Proof. The greedy algorithm will use n or more coins on a given number s if and only if s

has the form t + u where t is a member of A, t + u is less than the next larger member of A

(so that the greedy algorithm begins by choosing t), and the greedy algorithm uses n− 1 or
more coins on u (its recursive subproblem). The number GreedyCoins(n− 1, A) + x has this
form, with t = x and u = GreedyCoins(n− 1, A). It is the smallest number with this form,
because any smaller value of u would not cause the greedy algorithm to use n− 1 or more
coins on u, and any smaller value of t with the same or larger value of u would cause there
to exist another member r of A in the range t < r ≤ t + u, preventing the greedy algorithm
from starting by choosing t. J
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Table 1 Python code to generate the sequence of values Total(n, A) from a generator for sequence
A, using only a constant number of additional integer variables.

def Total(A):
single ,total = 1,0
for tile in A:

while tile > single + total:
total += single
yield total

single = tile

We are now ready to prove our min-max theorem relating 2048 to change-making:

I Theorem 15 (equality of 2048 and greedy change-making). The maximum total value
achieved in an n-cell abstract greedy 2048 game, Total(n, A), equals the minimum value that
would cause the greedy change-making algorithm to use n or more coins, GreedyCoins(n, A).

Proof. By Theorem 11 and Lemma 14, both of these numbers are computed by the same
recurrence with the same base case. J

5 Specific sets of tile values

The Python code in Table 1 takes as input a generator for a sorted sequence A of tile values
in an abstract generalized 2048 game (or of coin values in a greedy change-making problem),
and returns a generator for the sequence of total tile values Total(n, A) achievable with
n = 1, 2, 3, . . . cells. It does so by computing, for each tile value in A, the gap between that
value and the previous value, and when that gap is large enough using it to take a step
in the recurrence for Total(n, A). As can be seen from the code, the total space necessary
(beyond that for generating A) consists only of a constant number of integer variables. It is
not possible to analyze the performance of this algorithm in terms of the variable n without
knowing more about the behavior of gaps in the sequence A, but we can at least state that
the time to generate all values Total(n, A) that are below some threshold value N is at most
proportional to the time to generate all values in A below the same threshold.

For sequences that are totally greedy, the same algorithm will determine more strongly
the smallest value that requires n terms to represent as a sum of sequence values (not just as
a greedy sum). We ran this code using several different integer sequences A, to determine for
each one its corresponding sequence of maximum achievable total game values Total(n, A).
We identify each sequence using its code in the Online Encyclopedia of Integer Sequences
(oeis.org), a string of the form Axxx where the x’s are decimal digits. Although some of these
sequences would be problematic for games that combine tile values only in pairs (because
their tile values cannot be reached by such pairwise combinations), this is not an issue for our
abstract generalized 2048 game, which allows combinations of more than two tiles at once.

A000040
This is the sequence of prime numbers, 2, 3, 5, 7, 11, . . . , in which we included also 1 (even
though it is not prime) to make a valid set of tile or coin values. It is not totally greedy.
When A is this sequence, Total(n, A) is Pillai’s sequence [13, 21] A066352 of the numbers
1, 4, 27, 1354, 401429925999155061, . . . . Because the gaps in the prime numbers grow so
slowly, it has been estimated in the OEIS that the next number of this sequence would
require hundreds of millions of digits.
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A000045
This is the sequence of Fibonacci numbers, 1, 2, 3, 5, 8, 13, . . . , used in the 987 game. It is
totally greedy. When A is this sequence, Total(n, A) is the sequence A027941 of numbers
F2n+1 − 1 = 1, 4, 12, 33, 88, . . . of every other Fibonacci number, minus one.

A000079
This is the sequence of powers of two, 2i = 1, 2, 4, 8, . . . , used in the 2048 game. It is
totally greedy. When A is this sequence, Total(n, A) is the sequence of Mersenne numbers
A000225, 2n−1 − 1 = 1, 3, 7, 15, . . . .

A000225
This is the sequence of Mersenne numbers, Mi = 2i+1 − 1 = 1, 3, 7, 15, . . . . It is also
totally greedy, because each prefix of the sequence passes the one-shot test according
to the identity 3Mi = Mi+1 + 2Mi−1. When A is this sequence, Total(n, A) is the
sequence A000325 of numbers 2n − n = 1, 2, 5, 12, 27, . . . which is not totally greedy
(3 · 12 = 27 + 5 + 2 + 2 is expanded to four coins, not three, by the greedy algorithm,
failing the one-shot test).

A005153
This is the sequence of practical numbers 1, 2, 4, 6, 8, 12, 16, . . . discussed in the introduc-
tion. It can be generated by using a variation of the sieve of Eratosthenes to generate
the factorizations of each positive integer, and then using an efficient test of Stewart and
Sierpinski [25, 26] to determine from each factorization whether each integer is practical.
When A is this sequence, Total(n, A) is a sequence beginning 1, 3, 11, 191, not in the
OEIS. Because the gaps in the sequence of practical numbers are (like the gaps in the
primes) slowly growing, the next number in the sequence should be quite large.

A003586
This is the sequence of 3-smooth numbers 1, 2, 3, 4, 6, 8, 9, . . . (the numbers having only 2
or 3 as prime factors), discussed in the introduction. It is not totally greedy. When A is
this sequence, Total(n, A) is the sequence A296840: 1, 5, 23, 185, 1721, 15545, 277689, . . . .

A029744
This is the sequence of numbers 2i or 3 ·2i = 1, 2, 3, 4, 6, 8, 12, . . . used in the game Threes.
It is totally greedy. When A is this sequence, Total(n, A) is the sequence A002450 of
numbers (4n+1 − 1)/3 = 1, 5, 21, 85, 341, . . . .

A126684
This is the sequence of numbers 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, . . . whose binary represen-
tations have either all even bit positions zero or all odd bit positions zero. It gives perhaps
the most extreme example of the distinction between optimal and greedy change-making:
for a system of coins with these values, any amount of change can be made with at most
two coins, and the Θ(n2) growth rate of this sequence is the fastest possible for this
two-coin property. However, greedy change-making will typically use more than two
coins. For instance, although 13 can be represented as the sum of two sequence members
8 + 5, its greedy representation is 10 + 2 + 1. When A is this sequence, Total(n, A) is the
sequence A302757 of numbers 1, 3, 13, 55, 225, 907, 3637, . . . , which grows exponentially
according to the recurrence an = 4an−1 + 2n− 5.

The tile values 1, 2, 3, 5, 10, 20, 40, 80, . . . in the game Fives are not listed in the OEIS,
but the maximum achievable values Total(n, A) form the sequence A052549 of numbers
1, 4, 9, 19, 39, 79. They have the formula b5 · 2n−2 − 1c.

https://oeis.org/A000045
https://oeis.org/A027941
https://oeis.org/A000079
https://oeis.org/A000225
https://oeis.org/A000225
https://oeis.org/A000325
https://oeis.org/A005153
https://oeis.org/A003586
https://oeis.org/A296840
https://oeis.org/A029744
https://oeis.org/A002450
https://oeis.org/A126684
https://oeis.org/A302757
https://oeis.org/A052549
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A similar analysis could be applied to many other sequences, yielding new sequences not
already part of the OEIS. For instance, sequences A296840 and A302757 were added to the
OEIS as a result of our investigations, not having been studied before.

6 Discussion

We have described an abstract version of the game 2048 that eliminates the geometry and
other complicating factors of the game, allowing us to provide a complete analysis of our
abstract game for any set of allowable tile values and any number of cells. We proved a
min-max theorem equating the maximum total tile value that can be achieved in this game
with the minimum value that would cause a greedy change-making algorithm, using coins
of the same value as the tiles, to use the same number of coins as the number of cells in
the game. Finally, we showed how to compute the values from this theorem by a streaming
algorithm that uses only a constant number of integer variables beyond the requirements
of generating the tile value sequence itself, and used our implementation to compute the
sequences of maximum game values for several choices of allowable tile value sets.

It would be of interest to understand in more detail for which non-abstract 2048-like games
this analysis is tight or nearly tight, and for which it fails to capture the game dynamics and
produces a bound on the total game value that is large compared to the actual achievable
value. For instance, experience with 2048 and 987 suggests that, in those games, a strategy
close to that of the abstract game can usually be followed, leading to total game values
similar to what could be achieved in the abstract game. On the other hand, in Threes, the
inability to add some pairs of game tiles such as 1 + 3, even when the sum would be another
allowable tile value, may cause this game’s maximum achievable value to be closer to 2n

than to the (4n+1− 1)/3 formula for the total score achievable on the corresponding abstract
game. We leave such questions open for future research.

Additionally, some variants of 2048 are not amenable to our analysis. These include
2048 Circle of Fifths, a game based on the circle of fifths in music theory whose tile values
involve modular arithmetic [9], and 2048 Numberwang, in which the tile combinations that
are allowed on each move vary randomly [8]. Developing a theoretical analysis of these games
could be fun.
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