5 research outputs found

    On the approximability of the maximum induced matching problem

    Get PDF
    In this paper we consider the approximability of the maximum induced matching problem (MIM). We give an approximation algorithm with asymptotic performance ratio <i>d</i>-1 for MIM in <i>d</i>-regular graphs, for each <i>d</i>≥3. We also prove that MIM is APX-complete in <i>d</i>-regular graphs, for each <i>d</i>≥3

    A polynomial time algorithm to find star chromatic index on bounded treewidth graphs with given maximum degree

    Full text link
    A star edge coloring of a graph GG is a proper edge coloring with no 2-colored path or cycle of length four. The star edge coloring problem is to find an edge coloring of a given graph GG with minimum number kk of colors such that GG admits a star edge coloring with kk colors. This problem is known to be NP-complete. In this paper, for a bounded treewidth graph with given maximum degree, we show that it can be solved in polynomial time.Comment: 11 pages, one figur

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    Algorithms for finding distance-edge-colorings of graphs

    Get PDF
    For a bounded integer , we wish to color all edges of a graph G so that any two edges within distance have different colors. Such a coloring is called a distance-edge-coloring or an -edge-coloring of G. The distance-edge-coloring problem is to compute the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width bounded by a fixed constant k. We first present a polynomial-time exact algorithm to solve the problem for partial k-trees, and then give a polynomial-time 2-approximation algorithm for planar graphs
    corecore