
Journal of Discrete Algorithms 5 (2007) 304–322

www.elsevier.com/locate/jda

Algorithms for finding distance-edge-colorings of graphs

Takehiro Ito ∗, Akira Kato, Xiao Zhou, Takao Nishizeki

Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai, 980-8579, Japan

Received 8 September 2005; accepted 27 March 2006

Available online 14 July 2006

Abstract

For a bounded integer �, we wish to color all edges of a graph G so that any two edges within distance � have different colors.
Such a coloring is called a distance-edge-coloring or an �-edge-coloring of G. The distance-edge-coloring problem is to compute
the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width
bounded by a fixed constant k. We first present a polynomial-time exact algorithm to solve the problem for partial k-trees, and then
give a polynomial-time 2-approximation algorithm for planar graphs.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Approximation algorithm; Distance-edge-coloring; Partial k-trees; Planar graphs

1. Introduction

We denote by G = (V ,E) a graph with vertex set V and edge set E. An ordinary edge-coloring of a graph G is to
color all edges of G so that any adjacent edges have different colors. For two vertices u and v, we denote by dist(u, v)

the distance between u and v in G, that is, the number of edges in a shortest path between u and v in G. For two
edges e = (u, v) and e′ = (u′, v′), the distance between e and e′ in G is defined as follows:

dist(e, e′) = min
{
dist(u,u′),dist(u, v′),dist(v,u′),dist(v, v′)

}
.

For a given bounded nonnegative integer �, we wish to color all edges of G so that any two edges e and e′ with
dist(e, e′) � � have different colors. Such a coloring is called a distance-edge-coloring or an �-edge-coloring of G.
Thus a 0-edge-coloring is merely an ordinary edge-coloring, and a 1-edge-coloring is a “strong edge-coloring” [15,
16]. The �-chromatic index χ ′

�(G) of G is the minimum number of colors required for an �-edge-coloring of G. The
distance-edge-coloring problem or the �-edge-coloring problem is to compute the �-chromatic index χ ′

�(G) of a given
graph G. For example, the coloring of a graph in Fig. 1 is a 1-edge-coloring with six colors c1, c2, . . . , c6, and is of
course a 0-edge-coloring, but is not a 2-edge-coloring. One can easily observe that χ ′

1(G) = 6 for the graph G in
Fig. 1.

Since the edge-coloring problem is NP-hard [12], the �-edge-coloring problem is NP-hard in general and hence
it is very unlikely that the �-edge-coloring problem can be efficiently solved for general graphs. A partial k-tree is a

* Corresponding author. Tel.: +81 22 795 7163; fax: +81 22 263 9304.
E-mail addresses: take@nishizeki.ecei.tohoku.ac.jp (T. Ito), akira@nishizeki.ecei.tohoku.ac.jp (A. Kato), zhou@ecei.tohoku.ac.jp (X. Zhou),

nishi@ecei.tohoku.ac.jp (T. Nishizeki).
1570-8667/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2006.03.020

http://www.elsevier.com/locate/jda
mailto:take@nishizeki.ecei.tohoku.ac.jp
mailto:akira@nishizeki.ecei.tohoku.ac.jp
mailto:zhou@ecei.tohoku.ac.jp
mailto:nishi@ecei.tohoku.ac.jp
http://dx.doi.org/10.1016/j.jda.2006.03.020

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 305
Fig. 1. A 1-edge-coloring of a partial 3-tree G with six colors.

graph with tree-width bounded by a fixed constant k. The class of partial k-trees is fairly large, and includes trees,
outerplanar graphs, series-parallel graphs, etc. It is known that many combinatorial problems can be solved very
efficiently for partial k-trees even if the problems are NP-hard for general graphs [2,3,8–10]. Such classes of problems
have been characterized in terms of “forbidden subgraphs” or “extended monadic second-order logic” [2,3,8–10]. The
�-edge-coloring problem does not belong to such a class of the “maximum or minimum subgraph problems” [10]. The
�-edge-coloring problem is indeed one of the “edge-covering problems” which, as mentioned in [8], does not appear
to be efficiently solved for partial k-trees. However, the following two results have been known. First, the ordinary
edge-coloring problem can be solved in linear time for partial k-trees [18]. Second, the 1-edge-coloring problem can
be solved in polynomial time for partial k-trees [16].

A vertex version of the distance-edge-coloring problem has been studied for partial k-trees and planar graphs. For
a given bounded nonnegative integer �, the distance-vertex-coloring or �-vertex-coloring is to color all vertices of
a graph G so that any two vertices u and v with dist(u, v) � � have different colors. The distance-vertex-coloring
problem, which finds an �-vertex-coloring of a given graph with the minimum number of colors, can be solved in
polynomial time for partial k-trees [17]. There is a polynomial-time 2-approximation algorithm for the distance-
vertex-coloring problem on planar graphs [1]. The distance-edge-coloring problem for a graph G can be reduced to
an ordinary vertex-coloring problem for a new graph G′ obtained from G by some operations. However, G′ is not
always a partial k-tree or a planar graph even if G is a partial k-tree or a planar graph.

In this paper we give two polynomial-time algorithms for the �-edge-coloring problem. The first is a polynomial-
time exact algorithm to solve the �-edge-coloring problem for partial k-trees. The algorithm determines in time
O(n(α + 1)22(k+1)(�+1)+1

) whether a partial k-tree G has an �-edge-coloring with a given number α of colors, where n

is the number of vertices in G. Remember that we assume k, � = O(1). One may assume without loss of generality
that α is smaller than the number of the edges in G; otherwise, G has a trivial �-edge-coloring with α colors. Thus the
�-edge-coloring problem can be solved in polynomial time. The algorithm takes linear time if α is a fixed constant.
The second algorithm is a polynomial-time 2-approximation algorithm for the �-edge-coloring problem on planar
graphs. An early version of the paper has been presented at [13].

The rest of the paper is organized as follows. Section 2 includes basic definitions and notations. Section 3 gives
an exact algorithm to solve the �-edge-coloring problem for partial k-trees. Section 4 gives a polynomial-time 2-
approximation algorithm to solve the �-edge-coloring problem for planar graphs. Finally, Section 5 is a conclusion.

2. Terminology and definitions

In this section we give some definitions. An edge joining vertices u and v is denoted by (u, v). We denote by n the
number of vertices in G, and by m the number of edges in G. We assume that k is a bounded positive integer.

A k-tree is defined recursively as follows [5]:

(1) A complete graph with k + 1 vertices is a k-tree.
(2) If G is a k-tree and k vertices induce a complete subgraph of G, then a graph obtained from G by adding a new

vertex and joining it with each of the k vertices is a k-tree.

Every subgraph of a k-tree is called a partial k-tree. Thus a partial k-tree G is a simple graph, and m < kn.

306 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
Fig. 2. A process of generating 3-trees.

Fig. 3. Tree-decomposition of the partial 3-tree in Fig. 1.

Fig. 2 illustrates a process of generating 3-trees. The graph in Fig. 1 is indeed a partial 3-tree since it is a subgraph
of the last 3-tree in Fig. 2.

A binary tree T = (VT ,ET) is called a tree-decomposition of a partial k-tree G = (V ,E) if T satisfies the follow-
ing conditions (a)–(e):

(a) every node X ∈ VT of T is a subset of V , and |X| � k + 1;
(b)

⋃
X∈VT

X = V ;
(c) for each edge e = (u, v) of G, T has a leaf X ∈ VT such that u,v ∈ X;
(d) if node Xq lies on the path in T from node Xp to node Xr , then Xp ∩ Xr ⊆ Xq ; and
(e) each internal node Xi of T has exactly two children, say XL and XR , and either Xi = XL or Xi = XR .

We will use notions leaf, node, child, and root in their usual meaning. Fig. 3 illustrates a tree-decomposition T of the
partial 3-tree in Fig. 1. Note that VT = {X0,X1, . . . ,X6}. We always denote by X0 the root of a tree-decomposition T .

Since a tree-decomposition T of a partial k-tree G can be found in linear time [6], we may assume that a partial
k-tree G and its tree-decomposition T are given. The number of nodes of T constructed by the algorithm in [6]
is O(n).

By the condition (c) of a tree-decomposition, for every edge e = (u, v) ∈ E, there is at least one leaf X of T such
that u,v ∈ X. We choose one of such leaves as the representative of the edge e, and denote it by rep(e). Each node Xi

of T corresponds to a subgraph Gi = (Vi,Ei) of G. The vertex set Vi and edge set Ei of Gi are recursively defined
as follows:

(i) if Xi is a leaf of T , then Vi = Xi and Ei = {e ∈ E | rep(e) = Xi}; and

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 307
Fig. 4. Graph Gi = GL ∪ GR .

Fig. 5. Graphs G and Gi .

(ii) if Xi is an internal node of T , the left child XL of Xi corresponds to a subgraph GL = (VL,EL) of G, and the
right child XR corresponds to GR = (VR,ER), then Vi = VL ∪ VR and Ei = EL ∪ ER , and hence Gi is a union
of two graphs GL and GR as illustrated in Fig. 4, where Xi (= XL) and XR are indicated by ovals drawn by thick
lines.

Note that EL ∩ ER = ∅. Clearly G = G0 for the root X0 of T . The condition (d) of a tree-decomposition implies that

VL ∩ VR = XL ∩ XR ⊆ Xi,

and that no edge of G joins a vertex in Vi − Xi and a vertex in V − Vi for each node Xi of T [11]. (See Fig. 5.)
The root X0 = {v1, v2, v3, v4} of the tree-decomposition T in Fig. 3 has two children X1 (= X0) and X2 =

{v1, v3, v4, v6}. Figs. 6(a), (b) and (c) illustrate the subgraphs G0, G1 and G2 corresponding to X0, X1 and X2,
respectively.

3. Algorithm for partial k-trees

The main result of this section is the following theorem.

Theorem 1. Let G be a partial k-tree, let � be a bounded nonnegative integer, and let α be a positive integer. Then it
can be determined in time O(n(α + 1)22(k+1)(�+1)+1

) whether G has an �-edge-coloring with α colors.

The number α is not assumed to be a fixed constant, but can be assumed to be smaller than the number m of edges
in G. Therefore, using a binary search technique, one can compute the �-chromatic index χ ′

�(G) of G by applying
Theorem 1 for at most log2 m values of α, 1 � α < m. We thus have the following corollary.

Corollary 1. The �-chromatic index χ ′(G) of a partial k-tree G can be computed in polynomial time.
�

308 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
Fig. 6. (a) Colorings f0 of G = G0, (b) f1 of G1, and (c) f2 of G2.

In the remainder of this section we give a proof of Theorem 1.

3.1. Idea and terms

From now on we call an �-edge-coloring simply a coloring. Although we give an algorithm to determine whether
a partial k-tree G has a coloring with α colors, it can be easily modified so that it actually finds a coloring of G

with α colors if G has. Our idea is to extend techniques developed for the ordinary edge-coloring problem [5,18]
and the distance-vertex-coloring problem [17] to the �-edge-coloring problem and is to reduce the size of a Dynamic
Programming (DP) table to O((α + 1)22(k+1)(�+1)

) by considering “counts” and “pair-counts”.
Let G = (V ,E) be a partial k-tree, and let T = (VT ,ET) be a tree- decomposition of G. Let C be a set of α colors

c1, c2, . . . , cα . For a node Xi of T , a mapping f :Ei → C is called an entire coloring of Gi = (Vi,Ei) if f (e)
= f (e′)
for any pair of edges e, e′ ∈ Ei with dist(e, e′) � �. Remember that dist(e, e′) is the distance between e and e′ in the
entire graph G, not in the subgraph Gi . Thus an entire coloring of Gi is a coloring of Gi , while a coloring of Gi is
not always an entire coloring of Gi . However, a coloring of G0 (= G) is an entire coloring of G. Figs. 6(a), (b) and
(c) illustrate entire colorings of G0, G1 and G2, respectively, for the case � = 1.

For a vertex u and an edge e = (v,w), the distance between u and e in G is defined as follows:

dist(u, e) = min
{
dist(u, v),dist(u,w)

}
.

Thus dist(u, e) = 0 if u is an end-vertex of e.
For an entire coloring f of Gi , an integer j , 0 � j � �, and a vertex v ∈ Xi , we define a set D(f, j, v) ⊆ C as

follows:

(1)D(f, j, v) = {
c ∈ C | Gi has an edge e such that f (e) = c and dist(v, e) = j

}
.

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 309
Thus D(f, j, v) consists of all colors c that are assigned to edges e of Gi with dist(v, e) = j . For example,
D(f1,0, v1) = {c2, c3} and D(f1,1, v1) = {c1, c4, c6} for the entire coloring f1 of the graph G1 in Fig. 6(b). Note
that dist(v1, v4) = 1 for the entire graph G depicted in Fig. 6(a) although there is no edge joining v1 and v4 in G1.

For a node Xi ∈ VT of T , an entire coloring f of Gi , an integer j , 0 � j � �, and a color c ∈ C, we define a set
Y(Xi;f, j, c) ⊆ Xi as follows:

(2)Y(Xi;f, j, c) = {
v ∈ Xi | c ∈ D(f, j, v)

}
.

Thus Y(Xi;f, j, c) consists of all vertices v in Xi for which Gi has an edge e such that f (e) = c and dist(v, e) = j .
For example, Y(X1;f1,0, c6) = {v3, v4} and Y(X1;f1,1, c6) = {v1} for the entire coloring f1 in Fig. 6(b).

We denote by 2Xi the power set of Xi , and by (2Xi)�+1 the direct product of � + 1 copies of 2Xi . Thus, if A ∈
(2Xi)�+1, then A is an (� + 1)-tuple (A0,A1, . . . ,A�) of sets A0,A1, . . . ,A� ⊆ Xi . For an entire coloring f of Gi ,
we define a mapping Cf : (2Xi)�+1 → 2C as follows:

(3)Cf (A) = {
c ∈ C | Aj = Y(Xi;f, j, c) for each j,0 � j � �

}
,

where A = (A0,A1, . . . ,A�) ∈ (2Xi)�+1. For example, Cf1({v3, v4}, {v1}) = {c6} and Cf1({v3, v4}, {v1, v2}) = ∅ for
the entire coloring f1 in Fig. 6(b). Probably Cf (A) = ∅ for many A ∈ (2Xi)�+1. We call the mapping Cf the color
function of f on Xi . We write

Ff = {
Cf (A) | A ∈ (2Xi)�+1},

then Ff is clearly a partition of the set C.
For a node Xi of T , we say that an entire coloring of Gi is extendable if it can be extended to a coloring of G = G0

without changing the entire coloring of Gi . Both the entire coloring f1 of G1 in Fig. 6(b) and the entire coloring f2
of G2 in Fig. 6(c) are extendable because both can be extended to the coloring f0 of G0 in Fig. 6(a).

A mapping γ : (2Xi)�+1 → {0,1, . . . , α} is called a count on node Xi . A count γ on Xi is defined to be active if Gi

has an entire coloring f whose color function Cf satisfies

(4)
∣∣Cf (A)

∣∣ = γ (A)

for each A ∈ (2Xi)�+1. Such a count γ is called the count of the entire coloring f . Since |C| = α and Ff is a partition
of C, an active count γ satisfies

(5)
∑

γ (A) = α,

where the summation above is taken over all A ∈ (2Xi)�+1.

Example. For the entire coloring f1 of G1 in Fig. 6(b), the color function Cf1 on X1 satisfies

Cf1

({v2}, {v1, v3}
) = {c1},

Cf1

({v1, v2}, {v4}
) = {c2},

Cf1

({v1}, {v2, v3, v4}
) = {c3},

Cf1

({v3}, {v1, v2, v4}
) = {c4},

Cf1(∅,∅) = {c5},
Cf1

({v3, v4}, {v1}
) = {c6},

and

Cf1(A) = ∅
for any other A ∈ (2X1)2. Therefore the count γ1 of f1 satisfies

γ1
({v2}, {v1, v3}

) = 1,

γ1
({v1, v2}, {v4}

) = 1,

310 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
γ1
({v1}, {v2, v3, v4}

) = 1,

γ1
({v3}, {v1, v2, v4}

) = 1,

γ1(∅,∅) = 1,

γ1
({v3, v4}, {v1}

) = 1,

and

γ1(A) = 0

for any other A ∈ (2X1)2.

We then have the following lemma.

Lemma 1. Assume that f and g are entire colorings of Gi for a node Xi of T , and that f and g have the same count.
Then f is extendable if and only if g is extendable.

Proof. See Appendix A. �
Define an equivalence relation ∼= on the set of all entire colorings of Gi , as follows: f ∼= g if the entire colorings

f and g of Gi have the same (active) count. Then each active count on Xi characterizes an equivalence class of entire
colorings of Gi . Lemma 1 implies that either all the entire colorings in an equivalence class are extendable or none of
them is extendable. Since |Xi | � k + 1, there are at most (α + 1)2(k+1)(�+1)

distinct counts γ : (2Xi)�+1 → {0,1, . . . , α}
on Xi .

The main step of our algorithm is to compute a table of all active counts on each node of T from the leaves to the
root X0 of T by means of dynamic programming. From the table on the root X0 one can easily know whether G has
a coloring with α colors, as follows.

Lemma 2. A partial k-tree G has a coloring with α colors if and only if the table on the root X0 has at least one
active count.

3.2. Algorithm

We first outline an algorithm to determine whether a partial k-tree G has a coloring with α colors c1, c2, . . . , cα in
C, as follows.

Step 1: We compute the table of all active counts on each leaf Xi of T as follows:
(i) enumerate all mappings f :Ei → {c1, c2, . . . , cj }, where j = min{α, |Ei |};

(ii) remove mappings that are not entire colorings of Gi ; and
(iii) compute all the active counts corresponding to entire colorings of Gi ;

Step 2: We compute the table of all active counts on each internal node Xi of T from all active counts on its children
XL and XR , as follows:
(i) enumerate all “pair-counts” on Xi , and find “active” ones by using Lemma 3 below (a “pair-count” and

an “active pair-count” will be defined later); and
(ii) compute all active counts on Xi from all active pair-counts on Xi by using Lemma 4(b) below; and

Step 3: Using Lemma 2, we determine whether G = G0 has a coloring with α colors.

We then explain the details of Steps 1–3, and analyze the computation time of each step.

Step 1. As preprocessing, for all pairs of vertices u and v in the same leaf of T , we determine whether dist(u, v) � �

or not, and compute dist(u, v) if dist(u, v) � �. This preprocessing can be done in linear time as follows. For a partial
k-tree G, one can construct a data structure which allows to determine in time O(1) whether dist(u, v) � � for two
given vertices u and v in G and if so dist(u, v) is returned. Such a data structure can be constructed in linear time [14].

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 311
Since each leaf contains at most k + 1 vertices and T has O(n) leaves, the preprocessing can be done in linear time
by using the data structure.

Since Gi is a simple graph, j � |Ei | � k(k + 1)/2. Therefore the number of distinct mappings f enumerated in
Step 1(i) above is at most jk(k+1)/2 = O(1). Since the distances dist(u, v) have been computed for any two vertices
u and v with dist(u, v) � �, Step 1(ii) above can be done in time O(1) for each mapping f . Clearly Step 1(iii) above
can be done in time O(1) for each entire coloring f . Thus one can compute the table on a leaf Xi of T in time O(1).
Since T has O(n) leaves, the tables for all leaves can be computed in time O(n).

Step 2. We first define a “pair-count” and an “active pair-count” on an internal node Xi of T , and then explain how to
compute all active pair-counts on Xi from all active counts on its children XL and XR in Step 2(i). We finally explain
how to compute all active counts on Xi from all active pair-counts on Xi in Step 2(ii).

Either Xi = XL or Xi = XR by the condition (e) of a tree-decomposition. Therefore, one may assume without loss
of generality that Xi = XL. A mapping

ρ :
(
2XL

)�+1 × (
2XR

)�+1 → {0,1, . . . , α}
is called a pair-count on Xi . There are at most (α + 1)22(k+1)(�+1)

distinct pair-counts. For an entire coloring f of Gi ,
we denote by fL = f |GL the restriction of f to GL: fL(e) = f (e) for each edge e of GL. Similarly, we denote by
fR = f |GR the restriction of f to GR . We denote by CfL

the color function of fL on XL, and by CfR
the color

function of fR on XR . Then we define a pair-count ρ to be active if Gi has an entire coloring f such that

(6)ρ(AL,AR) = ∣∣CfL
(AL) ∩ CfR

(AR)
∣∣

for each pair of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1. Such a pair-count ρ is called the pair-count of the entire coloring
f of Gi . Thus, ρ(AL,AR) is the number of colors c ∈ C such that A

j
L = Y(XL;fL, j, c) and A

j
R = Y(XR;fR, j, c)

for each j , 0 � j � �, where AL = (A0
L,A1

L, . . . ,A�
L) and AR = (A0

R,A1
R, . . . ,A�

R). For example,

ρ
({v2}, {v1, v3}, {v4, v6}, {v1, v3}

) = ∣∣Cf1

({v2}, {v1, v3}
) ∩ Cf2

({v4, v6}, {v1, v3}
)∣∣

= ∣∣{c1}
∣∣

= 1

for the entire coloring f0 in Fig. 6(a), where f1 = f0|G1 and f2 = f0|G2 as illustrated in Figs. 6(b) and (c), respec-
tively. We now have the following lemma.

Lemma 3. Let Xi be an internal node of T , and let XL and XR be the children of Xi . Then a pair-count ρ on Xi is
active if and only if ρ satisfies the following conditions (a) and (b):

(a) if ρ(AL,AR) � 1 for a pair of AL = (A0
L,A1

L, . . . ,A�
L) ∈ (2XL)�+1 and AR = (A0

R,A1
R, . . . ,A�

R) ∈ (2XR)�+1,

then A
j1
L ∩ A

j2
R = ∅ for every pair of nonnegative integers j1 and j2 with j1 + j2 � �; and

(b) there is an active count γL on XL such that

(7)γL(AL) =
∑

ρ(AL,A),

for each AL ∈ (2XL)�+1 where the summation above is taken over all A ∈ (2XR)�+1, and there is an active count
γR on XR such that

(8)γR(AR) =
∑

ρ(A,AR),

for each AR ∈ (2XR)�+1 where the summation above is taken over all A ∈ (2XL)�+1.

Proof. See Appendix B. �
Using Lemma 3, we compute all active pair-counts ρ on Xi from all pairs of active counts γL on XL and γR on

XR , as follows. There are at most (α + 1)22(k+1)(�+1)
distinct pair-counts ρ on Xi . For each ρ of them, we determine

312 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
whether ρ satisfies conditions (a) and (b) in Lemma 3. For each pair-count ρ, one can know in time O(1) whether ρ

satisfies condition (a), because there are at most (� + 1)222(k+1)(�+1) = O(1) distinct pairs (A
j1
L ,A

j2
R). On the other

hand, for each pair-count ρ, one can know in time O((α + 1)2(k+1)(�+1)+1
) whether ρ satisfies condition (b), because

there are at most

(
(α + 1)2(k+1)(�+1))2 = (α + 1)2(k+1)(�+1)+1

pairs of active counts γL and γR , and one can know in time O(1) for each of them whether it satisfies Eqs. (7)
and (8). Thus all active pair-counts ρ on Xi can be found in time O((α + 1)22(k+1)(�+1)+1

), since there are at most
(α + 1)22(k+1)(�+1)

distinct pair-counts ρ on Xi and

(α + 1)2(k+1)(�+1)+1
(α + 1)22(k+1)(�+1) � (α + 1)22(k+1)(�+1)+1

.

In Step 2(ii) we compute all active counts on an internal node Xi from all active pair-counts on Xi , as in the
following Lemma 4(b).

Lemma 4. Assume that Xi is an internal node of T , XL and XR are the two children of Xi , and Xi = XL. Then the
following (a) and (b) hold.

(a) If f is an entire coloring of Gi , then the color functions Cf on Xi , CfL
on XL and CfR

on XR satisfy

(9)Cf (A) =
⋃(

CfL
(AL) ∩ CfR

(AR)
)

for every A = (A0,A1, . . . ,A�) ∈ (2Xi)�+1, where the union above is taken over all pairs of AL = (A0
L,A1

L, . . . ,

A�
L) ∈ (2XL)�+1 and AR = (A0

R,A1
R, . . . ,A�

R) ∈ (2XR)�+1 such that

(10)Aj = (
A

j
L ∪ A

j
R

) ∩ Xi

for each integer j , 0 � j � �.
(b) A count γ on Xi is active if and only if there exists an active pair-count ρ on Xi such that

(11)γ (A) =
∑

ρ(AL,AR)

for each A = (A0,A1, . . . ,A�) ∈ (2Xi)�+1, where the summation above is taken over all pairs of AL =
(A0

L,A1
L, . . . ,A�

L) ∈ (2XL)�+1 and AR = (A0
R,A1

R, . . . ,A�
R) ∈ (2XR)�+1 satisfying Eq. (10).

Proof. See Appendix C. �
Using Lemma 4(b), we compute all active counts γ on Xi from all active pair-counts ρ on Xi . There are at most

(α + 1)22(k+1)(�+1)
distinct active pair-counts ρ. From each ρ of them we compute an active count γ by Eq. (11). This

can be done in time O(1) since |Aj |, |Aj
L|, |Aj

R| � k + 1 = O(1) for each integer j , 0 � j � �. We have thus shown

that all active counts γ on Xi can be computed in time O((α + 1)22(k+1)(�+1)
) from all active pair-counts ρ on Xi .

One can thus compute the DP table for an internal node Xi from the tables of the children XL and XR in time

O
(
(α + 1)22(k+1)(�+1)+1 + (α + 1)22(k+1)(�+1)) = O

(
(α + 1)22(k+1)(�+1)+1)

.

Since T has O(n) internal nodes, one can compute the DP tables for all internal nodes in time O(n(α +1)22(k+1)(�+1)+1
).

Step 3. From the DP table for the root X0 one can know in time O(1) by Lemma 2 whether G has a coloring with α

colors.

This completes a proof of Theorem 1.

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 313
4. 2-approximation algorithm for planar graphs

The main result of this section is the following theorem.

Theorem 2. There is a polynomial-time 2-approximation algorithm for the distance-edge-coloring problem on planar
graphs.

In the remainder of this section, as a proof of Theorem 2, we give a polynomial-time algorithm to find an �-edge-
coloring of a given planar graph G with at most 2χ ′

�(G) colors. The approximation algorithm can be obtained by
combining our algorithm in Section 3 with a general method for obtaining approximation algorithms for NP-complete
problems on planar graphs [4].

The method [4] partitions the vertex set V of a planar graph G = (V ,E) into a number p of subsets
V0,V1, . . . , Vp−1 for some integer p so that every edge is between adjacent subsets or within the same subset, that is,
if (u, v) ∈ E and u ∈ Vi then v ∈ Vi−1 ∪ Vi ∪ Vi+1. Clearly, dist(u, v) � |i − j | if u ∈ Vi and v ∈ Vj . Let

V ′ =
⋃{

Vi | i mod 2(� + 1) � � + 1
}

and

V ′′ = (V − V ′) ∪
(⋃{

Vi | i mod 2(� + 1) = 0 or � + 1
})

,

then both of the ends u and v of each edge (u, v) ∈ E are contained in either V ′ or V ′′. Let G′ = (V ′,E′) be the
subgraph of G induced by V ′, and let G′′ = (V ′′,E′′) be the subgraph of G such that E′′ = E − E′. Then G′ is
a vertex-disjoint union of subgraphs H ′

j , 0 � j � �p/(2(� + 1)); H ′
j corresponds to V2(�+1)j ∪ V2(�+1)j+1 ∪ · · · ∪

V2(�+1)j+(�+1). Every subgraph H ′
j , 0 � j � �p/(2(� + 1)), is an (� + 2)-outerplanar graph and hence is a partial

(3� + 5)-tree [7]. Since G′ is a vertex-disjoint union of H ′
j , 0 � j � �p/(2(� + 1)), G′ is a partial (3� + 5)-tree.

Similarly, G′′ is a vertex-disjoint union of subgraphs H ′′
j , 0 � j � �p/(2(� + 1)), and is a partial (3� + 5)-tree; H ′′

j

corresponds to V2(�+1)j+�+1 ∪ V2(�+1)j+�+2 ∪ · · · ∪ V2(�+1)j+2(�+1).
We now describe the approximation algorithm. Using a data structure in [14], one can determine in time O(1)

whether the distance dist(u, v) is at most � for two given vertices u and v in a planar graph G and, if so, re-
turn dist(u, v). We find an entire �-edge-coloring of G′ with the minimum number χ∗

� (G′) of colors by using the
polynomial-time algorithm in Section 3. In the entire �-edge-coloring of G′, any two edges e and e′ with dist(e, e′) � �

must have different colors, where dist(e, e′) is the distance between e and e′ in the entire graph G, not in G′. Thus
χ∗

� (G′) � χ ′
�(G). Similarly, we find an entire �-edge-coloring of G′′ with the minimum number χ∗

� (G′′) of colors,
where χ∗

� (G′′) � χ ′
�(G). One may assume that the colors for G′ are different from the colors for G′′. Combining the

colorings of G′ and G′′, we finally obtain an �-edge-coloring of G with χ∗
� (G′) + χ∗

� (G′′) � 2χ ′
�(G) colors. This

completes the proof of Theorem 2.

5. Conclusions

In this paper, we obtained two algorithms. The first algorithm is to determine whether a given partial k-tree G has
an �-edge-coloring with α colors in time O(n(α + 1)22(k+1)(�+1)+1

), where n is the number of vertices in G and α is
an arbitrary positive integer. Using the algorithm, one can compute the �-chromatic index χ ′

�(G) of G in polynomial
time. Our algorithm takes linear time if α is a fixed constant. It is easy to modify the algorithm so that it actually finds
an �-edge-coloring of G with χ ′

�(G) colors. The second algorithm is a polynomial-time 2-approximation algorithm
for the distance-edge-coloring problem on planar graphs.

Many variants of the distance-edge-coloring problem can be solved for partial k-trees in polynomial time. Consider
for example a problem in which, for a given set L ⊆ {0,1, . . . , �}, one wishes to color all edges of a graph G with
the minimum number of colors so that every pair of edges e and e′ with dist(e, e′) ∈ L have different colors. Such a
problem can be solved in polynomial time for partial k-trees similarly as the �-edge-coloring problem.

Replace some of the edges in a partial k-tree by multiple edges. The resulting multigraph is called a partial k-
multitree. One can easily extend our algorithms for partial k-trees and planar simple graphs to those for partial k-
multitrees and planar multigraphs.

314 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
Appendix A. Proof of Lemma 1

Let Cf be a color function of f on Xi , and let Cg be a color function of g on Xi , then

(A.1)Cf (A) = {
c ∈ C | Aj = Y(Xi;f, j, c) for each j,0 � j � �

}
and

(A.2)Cg(A) = {
c ∈ C | Aj = Y(Xi;g, j, c) for each j,0 � j � �

}
for each A = (A0,A1, . . . ,A�) ∈ (2Xi)�+1. Since f and g have the same count, we have

(A.3)
∣∣Cf (A)

∣∣ = ∣∣Cg(A)
∣∣

for each A ∈ (2Xi)�+1. Since both Ff = {Cf (A) | A ∈ (2Xi)�+1} and Fg = {Cg(A) | A ∈ (2Xi)�+1} are partitions of
C, by Eq. (A.3) there exists a bijection ξ :C → C such that

(A.4)c ∈ Cg(A) if and only if ξ(c) ∈ Cf (A)

for every color c ∈ C.
Clearly

(A.5)Y(Xi;g, j, c) = Y
(
Xi;f, j, ξ(c)

)
holds for each color c ∈ C and each j , 0 � j � �.

Let fξ be an entire coloring of Gi such that

(A.6)fξ (e) = c if and only if f (e) = ξ(c)

for each edge e ∈ Ei . Then by Eqs. (1) and (A.6) we have

D(fξ , j, v) = {
c ∈ C | Gi has an edge e such that fξ (e) = c and dist(v, e) = j

}
= {

c ∈ C | Gi has an edge e such that f (e) = ξ(c) and dist(v, e) = j
}

(A.7)= {
c ∈ C | ξ(c) ∈ D(f, j, v)

}
for each vertex v ∈ Xi and each j , 0 � j � �. By Eqs. (2) and (A.7) we have

Y(Xi;fξ , j, c) = {
v ∈ Xi | c ∈ D(fξ , j, v)

}
= {

v ∈ Xi | ξ(c) ∈ D(f, j, v)
}

(A.8)= Y
(
Xi;f, j, ξ(c)

)
for each color c ∈ C and each j , 0 � j � �. By Eqs. (A.5) and (A.8) we have

(A.9)Y(Xi;g, j, c) = Y(Xi;fξ , j, c)

for each color c ∈ C and each j , 0 � j � �.
We are now ready to prove that f is extendable if and only if g is extendable. It suffices to show that if f is

extendable then g is extendable. Suppose that f is extendable. Then G has a coloring f ∗ which is an extension of f ,
and hence

(A.10)f ∗(e) = f (e)

for each edge e ∈ Ei . Let f ∗
ξ be a coloring of G such that

(A.11)f ∗
ξ (e) = c if and only if f ∗(e) = ξ(c)

for each edge e ∈ E.
Let G′ = (V ′,E′) be a graph with V ′ = (V − Vi) ∪ Xi and E′ = E − Ei . Then G can be partitioned into two

edge-disjoint subgraphs Gi and G′, and Xi = Vi ∩ V ′. Let f ′ be an entire coloring of G′ such that

(A.12)f ′(e) = f ∗
ξ (e)

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 315
Fig. A.1. Graphs G, Gi and G′.

for each edge e ∈ E′. (See Fig. A.1 where Gi is indicated by solid lines and G′ by dotted lines.)
Let g∗ :E → C be a mapping constructed from g and f ′ as follows:

g∗(e) =
{

g(e) if e ∈ Ei,

f ′(e) if e ∈ E′ = E − Ei.

Since g∗ is an extension of g, it suffices to show that g∗ is a coloring of G. Since g is an entire coloring of Gi , f ′ is
an entire coloring of G′, no edge of G joins a vertex in Vi −Xi and a vertex in V −Vi (see Figs. 5 and A.1), it suffices
to verify, for every color c ∈ C,

(A.13)j1 + j2 � � �⇒ Y(Xi;g, j1, c) ∩ Y(Xi;f ′, j2, c) = ∅,

where Y(Xi;f ′, j, c) is defined to be a set of all vertices v in Xi for which G′ has an edge e such that f ′(e) = c and
dist(v, e) = j .

Let c be a color in C, and let v be a vertex in Y(Xi;g, j1, c) for an integer j1, 0 � j1 � �. Then, by Eq. (A.9)
we have v ∈ Y(Xi;fξ , j1, c), and hence Gi has an edge e such that fξ (e) = c and dist(v, e) = j1. Since e ∈ Ei , by
Eq. (A.10) we have f ∗(e) = f (e). Therefore, by Eqs. (A.6) and (A.11) we have f ∗

ξ (e) = fξ (e) = c. Since f ∗
ξ is a

coloring of G, G′ has no edge e′ such that f ∗
ξ (e′) = c and dist(v, e′) = j2 for every integer j2 with j1 + j2 � �. There-

fore, by Eq. (A.12) G′ has no edge e′ such that f ′(e′) = c and dist(v, e′) = j2. Hence we have v /∈ Y(Xi;f ′, j2, c),
and consequently Y(Xi;g, j1, c) ∩ Y(Xi;f ′, j2, c) = ∅. We have thus verified Eq. (A.13). �
Appendix B. Proof of Lemma 3

Necessity: Assume that a pair-count ρ on Xi is active. Then Gi has an entire coloring f with pair-count ρ satisfying
Eq. (6). We show that ρ satisfies conditions (a) and (b), as follows.

(a) Assume that ρ(AL,AR) � 1 for a pair of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1. Then we shall prove that

(B.1)A
j1
L ∩ A

j2
R = ∅

for every pair of nonnegative integers j1 and j2 with j1 + j2 � �.
Since ρ(AL,AR) � 1, by Eq. (6) there exists a color c∗ ∈ C such that

c∗ ∈ CfL
(AL) ∩ CfR

(AR).

By Eq. (3) we have

(B.2)CfL
(AL) = {

c ∈ C | Aj
L = Y(XL;fL, j, c) for each j,0 � j � �

}
.

316 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
Since c∗ ∈ CfL
(AL), by Eq. (B.2) we have

(B.3)A
j
L = Y(XL;fL, j, c∗)

for each j , 0 � j � �. Similarly, we have

(B.4)A
j
R = Y(XR;fR, j, c∗)

for each j , 0 � j � �.
Let j1 and j2 be nonnegative integers with j1 + j2 � �. Let v be an arbitrary vertex in A

j1
L , and hence by Eq. (B.3)

we have v ∈ A
j1
L = Y(XL;fL, j1, c

∗). Then GL has an edge e such that fL(e) = c∗ and dist(v, e) = j1. Therefore,
GR has no edge e′ such that fR(e′) = c∗ and dist(v, e′) = j2; otherwise, f would not be an entire coloring of Gi .
Hence by Eq. (B.4) we have v /∈ Y(XR;fR, j2, c

∗) = A
j2
R . We have thus proved that Eq. (B.1) holds.

(b) Let γL be the count of fL, and let γR be the count of fR . Then γL and γR are active. Hence it suffices to show
that γL satisfies Eq. (7) and γR satisfies Eq. (8). However, we show only that γL satisfies Eq. (7) because one can
similarly show that γR satisfies Eq. (8).

Let AL = (A0
L,A1

L, . . . ,A�
L) ∈ (2XL)�+1. Since γL is the count of fL, by Eq. (4) we have

(B.5)γL(AL) = ∣∣CfL
(AL)

∣∣.
Since CfL

(AL) ⊆ C and FfR
= {CfR

(A) | A ∈ (2XR)�+1} is a partition of C, we have

CfL
(AL) = CfL

(AL) ∩ C

= CfL
(AL) ∩

(⋃
CfR

(A)
)

(B.6)=
⋃

CfL
(AL) ∩ CfR

(A),

where the unions above are taken over all A ∈ (2XR)�+1. By Eqs. (6), (B.5) and (B.6) we have

γL(AL) = ∣∣CfL
(AL)

∣∣
=

∑∣∣CfL
(AL) ∩ CfR

(A)
∣∣

=
∑

ρ(AL,A),

where the summations above are taken over all A ∈ (2XR)�+1. We have thus shown that γL satisfies Eq. (7).
Sufficiency: Assume that a pair-count ρ on Xi satisfies conditions (a) and (b). Then we shall prove that ρ is active.
Since condition (b) holds, there is an active count γL on XL satisfying Eq. (7). Therefore GL has an entire coloring

f ′ with count γL. Similarly, GR has an entire coloring f ′′ with count γR , and γR satisfies Eq. (8). It suffices to show
that the following (i), (ii) and (iii) hold.

(i) There exists a bijection ξ :C → C such that, for every color c ∈ C,

(B.7)j1 + j2 � � �⇒ Y(XL ∩ XR;f ′, j1, c) ∩ Y(XL ∩ XR;f ′′
ξ , j2, c) = ∅,

where f ′′
ξ is an entire coloring of GR such that, for each edge e ∈ ER ,

(B.8)f ′′
ξ (e) = c if and only if f ′′(e) = ξ(c);

Y(XL ∩ XR;f ′, j, c) is defined to be a set of all vertices v in XL ∩ XR for which GL has an edge e such that
f ′(e) = c and dist(v, e) = j ; and Y(XL ∩ XR;f ′′

ξ , j, c) is defined to be a set of all vertices v in XL ∩ XR for
which GR has an edge e such that f ′′

ξ (e) = c and dist(v, e) = j ;
(ii) Let f :Ei → C be a mapping constructed from f ′ and f ′′

ξ as follows:

(B.9)f (e) =
{

f ′(e) if e ∈ EL,

f ′′
ξ (e) if e ∈ ER.

Then f is an entire coloring of Gi ; and

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 317
(iii) ρ is the pair-count of f , and hence ρ is active.

(i) Let Cf ′ be the color function of f ′ on XL, and let Cf ′′ be the color function of f ′′ on XR . Since γL is the count
of f ′, by Eq. (4) we have

γL(AL) = ∣∣Cf ′(AL)
∣∣

for each AL ∈ (2XL)�+1. By Eq. (5) we have∑
γL(AL) = α,

where the summation above is taken over all AL ∈ (2XL)�+1. Furthermore γL satisfies Eq. (7). Therefore, to all pairs
of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1, one can assign pairwise disjoint subsets S(AL,AR) of C so that the following
(L-a), (L-b) and (L-c) hold:

(L-a) for each pair (AL,AR),

(B.10)ρ(AL,AR) = ∣∣S(AL,AR)
∣∣;

(L-b) for each AL, {S(AL,A) | A ∈ (2XR)�+1} is a partition of the set Cf ′(AL); and
(L-c) {S(A,B) | A ∈ (2XL)�+1,B ∈ (2XR)�+1} is a partition of C.

Similarly, to all pairs of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1, one can assign pairwise disjoint subsets U(AL,AR)

of C so that the following (R-a), (R-b) and (R-c) hold:

(R-a) for each pair (AL,AR),

(B.11)ρ(AL,AR) = ∣∣U(AL,AR)
∣∣;

(R-b) for each AR , {U(A,AR) | A ∈ (2XL)�+1} is a partition of the set Cf ′′(AR); and
(R-c) {U(A,B) | A ∈ (2XL)�+1,B ∈ (2XR)�+1} is a partition of C.

By Eqs. (B.10) and (B.11) we have∣∣S(AL,AR)
∣∣ = ∣∣U(AL,AR)

∣∣
for each pair (AL,AR). Therefore, by (L-c) and (R-c) there exists a bijection ξ :C → C such that

(B.12)c ∈ S(AL,AR) if and only if ξ(c) ∈ U(AL,AR)

for each color c ∈ C. We claim that Eq. (B.7) holds for the bijection ξ .
We now show that

(B.13)S(AL,AR) = {
c ∈ Cf ′(AL) | ξ(c) ∈ Cf ′′(AR)

}
for each pair (AL,AR). We first show that

(B.14)S(AL,AR) ⊆ {
c ∈ Cf ′(AL) | ξ(c) ∈ Cf ′′(AR)

}
.

Let c be an arbitrary color in S(AL,AR). Since AR ∈ (2XR)�+1, by (L-b) we have c ∈ Cf ′(AL). Since c ∈ S(AL,AR),
by Eq. (B.12) we have ξ(c) ∈ U(AL,AR). Therefore by (R-b) we have ξ(c) ∈ Cf ′′(AR). We have thus verified
Eq. (B.14). We next show that

(B.15)S(AL,AR) ⊇ {
c ∈ Cf ′(AL) | ξ(c) ∈ Cf ′′(AR)

}
.

Let c be an arbitrary color such that

(B.16)c ∈ Cf ′(AL)

318 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
and

(B.17)ξ(c) ∈ Cf ′′(AR).

By (L-b) and Eq. (B.16) there exists an (� + 1)-tuple B ∈ (2XR)�+1 such that

(B.18)c ∈ S(AL,B).

Then, by Eq. (B.12) we have ξ(c) ∈ U(AL,B), and hence by (R-b) we have

(B.19)ξ(c) ∈ Cf ′′(B).

Since Ff ′′ = {Cf ′′(A) | A ∈ (2XR)�+1} is a partition of C, by Eqs. (B.17) and (B.19) we have B = AR , and hence by
Eq. (B.18) we have c ∈ S(AL,AR). We have thus verified Eq. (B.15).

We are now ready to show that Eq. (B.7) holds for the bijection ξ . Let c be an arbitrary color in C. Since Ff ′ =
{Cf ′(A) | A ∈ (2XL)�+1} is a partition of C, there exists an (� + 1)-tuple AL = (A0

L,A1
L, . . . ,A�

L) such that

(B.20)c ∈ Cf ′(AL).

Therefore, by Eq. (3) we have

(B.21)A
j
L = Y(XL;f ′, j, c)

for each j , 0 � j � �. By (L-b) and Eq. (B.20) there exists an (� + 1)-tuple AR = (A0
R,A1

R, . . . ,A�
R) such that

(B.22)c ∈ S(AL,AR).

By Eqs. (B.13) and (B.22) we have ξ(c) ∈ Cf ′′(AR) and hence by Eq. (3) we have

(B.23)A
j
R = Y

(
XR;f ′′, j, ξ(c)

)
for each j , 0 � j � �. By Eqs. (1) and (B.8) we have

D(f ′′
ξ , j, v) = {

c ∈ C | GR has an edge e such thatf ′′
ξ (e) = c and dist(v, e) = j

}
= {

c ∈ C | GR has an edge e such that f ′′(e) = ξ(c) and dist(v, e) = j
}

(B.24)= {
c ∈ C | ξ(c) ∈ D(f ′′, j, v)

}
for each vertex v ∈ XR and each j , 0 � j � �. By Eqs. (2), (B.23) and (B.24) we have

A
j
R = Y

(
XR;f ′′, j, ξ(c)

)
= {

v ∈ XR | ξ(c) ∈ D(f ′′, j, v)
}

= {
v ∈ XR | c ∈ D(f ′′

ξ , j, v)
}

(B.25)= Y(XR;f ′′
ξ , j, c)

for each j , 0 � j � �. By Eqs. (B.21) and (B.25) we have

(B.26)Y(XL;f ′, j ′
1, c) ∩ Y(XR;f ′′

ξ , j ′
2, c) = A

j ′
1

L ∩ A
j ′

2
R

for every pair of integers j ′
1 and j ′

2, 0 � j ′
1, j

′
2 � �. Let j1 and j2 be nonnegative integers with j1 + j2 � �. By

Eqs. (B.10) and (B.22) we have

ρ(AL,AR) = ∣∣S(AL,AR)
∣∣ � 1.

Therefore by condition (a) we have

(B.27)A
j1
L ∩ A

j2
R = ∅.

By Eqs. (B.26) and (B.27) we have

(B.28)Y(XL;f ′, j1, c) ∩ Y(XR;f ′′
ξ , j2, c) = ∅.

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 319
Fig. B.1. Graph Gi = GL ∪ GR .

Since XL ∩ XR ⊆ XL and XL ∩ XR ⊆ XR , we have

Y(XL ∩ XR;f ′, j, c) ⊆ Y(XL;f ′, j, c)

and

Y(XL ∩ XR;f ′′
ξ , j, c) ⊆ Y(XR;f ′′

ξ , j, c)

for each j , 0 � j � �. Therefore, by Eq. (B.28) we have

Y(XL ∩ XR;f ′, j1, c) ∩ Y(XL ∩ XR;f ′′
ξ , j2, c)

⊆ Y(XL;f ′, j1, c) ∩ Y(XR;f ′′
ξ , j2, c)

= ∅.

We have thus proved that Eq. (B.7) holds.
(ii) No edge of G joins a vertex in VL − (XL ∩ XR) and a vertex in VR − (XL ∩ XR). Therefore, for every vertex

v in VL − (XL ∩ XR) and every edge e in ER , any path between v and e passes through a vertex u in XL ∩ XR , and
hence

(B.29)dist(u, e) < dist(v, e).

(See Fig. B.1.) Similarly, for every vertex v′ in VR − (XL ∩ XR) and every edge e′ in EL, there exists a vertex u′ in
XL ∩ XR such that

(B.30)dist(u′, e′) < dist(v′, e′).

Let f :Ei → C be the mapping defined by Eq. (B.9). Since f ′ is an entire coloring of GL and f ′′
ξ is an entire

coloring of GR , by Eqs. (B.7), (B.29) and (B.30) one can easily observe that f is an entire coloring of Gi .
(iii) Let ρf be the pair-count of the entire coloring f of Gi , then ρf is active. Thus it suffices to show that ρ = ρf .

Eq. (B.9) implies that fL = f |GL = f ′ and fR = f |GR = f ′′
ξ . Therefore by Eq. (6) we have

(B.31)ρf (AL,AR) = ∣∣Cf ′(AL) ∩ Cf ′′
ξ
(AR)

∣∣
for each pair of AL = (A0

L,A1
L, . . . ,A�

L) ∈ (2XL)�+1 and AR = (A0
R,A1

R, . . . ,A�
R) ∈ (2XR)�+1. By Eq. (3) we have

(B.32)Cf ′′(AR) = {
c ∈ C | Aj

R = Y(XR;f ′′, j, c) for each j,0 � j � �
}
,

and

(B.33)Cf ′′
ξ
(AR) = {

c ∈ C | Aj
R = Y(XR;f ′′

ξ , j, c) for each j,0 � j � �
}
.

By Eqs. (2) and (B.24) we have

(B.34)Y(XR;f ′′
ξ , j, c) = {

v ∈ XR | c ∈ D(f ′′
ξ , j, v)

} = {
v ∈ XR | ξ(c) ∈ D(f ′′, j, v)

} = Y
(
XR;f ′′, j, ξ(c)

)

320 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
for each color c ∈ C and each j , 0 � j � �. By Eqs. (B.32)–(B.34) we have

Cf ′(AL) ∩ Cf ′′
ξ
(AR) = {

c ∈ Cf ′(AL) | Aj
R = Y(XR;f ′′

ξ , j, c) for each j,0 � j � �
}

= {
c ∈ Cf ′(AL) | Aj

R = Y
(
XR;f ′′, j, ξ(c)

)
for each j,0 � j � �

}
(B.35)= {

c ∈ Cf ′(AL) | ξ(c) ∈ Cf ′′(AR)
}
.

By Eqs. (B.10), (B.13), (B.31) and (B.35) we have

ρf (AL,AR) = ∣∣Cf ′(AL) ∩ Cf ′′
ξ
(AR)

∣∣
= ∣∣{c ∈ Cf ′(AL): ξ(c) ∈ Cf ′′(AR)

}∣∣
= ∣∣S(AL,AR)

∣∣
= ρ(AL,AR)

for each pair (AL,AR). We have thus verified ρ = ρf . �
Appendix C. Proof of Lemma 4

(a) Let Z be the right side of Eq. (9), that is,

Z =
⋃(

CfL
(AL) ∩ CfR

(AR)
)

where the union above is taken over all pairs of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1 satisfying Eq. (10). We first verify

(C.1)Cf (A) ⊇Z
in (i) below, and then verify

(C.2)Cf (A) ⊆Z
in (ii) below.

(i) We verify Eq. (C.1). Let c be an arbitrary color in Z . Then

(C.3)c ∈ CfL
(AL) ∩ CfR

(AR)

for a pair of AL = (A0
L,A1

L, . . . ,A�
L) ∈ (2XL)�+1 and AR = (A0

R,A1
R, . . . ,A�

R) ∈ (2XR)�+1 such that

(C.4)Aj = (
A

j
L ∪ A

j
R

) ∩ Xi

for each j , 0 � j � �. It suffices to verify

Aj = Y(Xi;f, j, c)

for each j , 0 � j � �, because then we have c ∈ Cf (A). By Eq. (C.3) we have c ∈ CfL
(AL), and hence by Eq. (3) we

have

(C.5)A
j
L = Y(XL;fL, j, c)

for each j , 0 � j � �. Similarly, we have

(C.6)A
j
R = Y(XR;fR, j, c)

for each j , 0 � j � �.
We first verify Aj ⊆ Y(Xi;f, j, c) for each j , 0 � j � �. Let v be an arbitrary vertex in Aj . Then we shall show

that v ∈ Y(Xi;f, j, c). Since v ∈ Aj , by Eq. (C.4) we have v ∈ Xi and v ∈ A
j
L ∪A

j
R . Since v ∈ A

j
L ∪A

j
R , by Eqs. (C.5)

and (C.6) either v ∈ Y(XL;fL, j, c) or v ∈ Y(XR;fR, j, c). Hence either GL has an edge e such that fL(e) = c and
dist(v, e) = j , or GR has an edge e such that fR(e) = c and dist(v, e) = j . Therefore, in either case, Gi has an edge
e such that f (e) = c and dist(v, e) = j , and hence v ∈ Y(Xi;f, j, c). We have thus shown that Aj ⊆ Y(Xi;f, j, c).

T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322 321
We next verify Aj ⊇ Y(Xi;f, j, c) for each j , 0 � j � �. Let v be an arbitrary vertex in Y(Xi;f, j, c). Then we
shall show that v ∈ Aj . Since v ∈ Y(Xi;f, j, c), v ∈ Xi and Gi has an edge e such that f (e) = c and dist(v, e) = j . If
e ∈ EL, then by the definition of fL we have fL(e) = f (e) = c, and hence by Eq. (C.5) we have v ∈ Y(XL;fL, j, c) =
A

j
L. Similarly, if e ∈ ER , then we have v ∈ Y(XR;fR, j, c) = A

j
R . Therefore, by Eq. (C.4) we have v ∈ (A

j
L ∪ A

j
R) ∩

Xi = Aj . We have thus verified Aj ⊇ Y(Xi;f, j, c).
(ii) We then verify Eq. (C.2). Let c be an arbitrary color in Cf (A), and let A = (A0,A1, . . . ,A�). Then we shall

show that

(C.7)c ∈Z.

Since c ∈ Cf (A), we have

(C.8)Aj = Y(Xi;f, j, c)

for each j , 0 � j � �. For each j , 0 � j � �, let

(C.9)A
j
L = Y(XL;fL, j, c)

and

(C.10)A
j
R = Y(XR;fR, j, c).

Then we have c ∈ CfL
(AL) and c ∈ CfR

(AR). Therefore, it suffices to show that the pair AL = (A0
L,A1

L, . . . ,A�
L) and

AR = (A0
R,A1

R, . . . ,A�
R) satisfies Eq. (10), because then Eq. (C.7) holds.

We first show that Aj ⊆ (A
j
L ∪ A

j
R) ∩ Xi for each j , 0 � j � �. Let v be an arbitrary vertex in Aj . Then we shall

verify v ∈ (A
j
L ∪ A

j
R) ∩ Xi . Since v ∈ Aj , by Eq. (C.8) we have v ∈ Y(Xi;f, j, c), and hence v ∈ Xi and Gi has an

edge e such that f (e) = c and dist(v, e) = j . If e ∈ EL, then we have fL(e) = f (e) = c, and hence by Eq. (C.9) we
have v ∈ Y(XL;fL, j, c) = A

j
L. Similarly, if e ∈ ER , then we have v ∈ Y(XR;fR, j, c) = A

j
R . Therefore, in either

case, we have v ∈ (A
j
L ∪ A

j
R) ∩ Xi . We have thus shown that Aj ⊆ (A

j
L ∪ A

j
R) ∩ Xi .

We next show that Aj ⊇ (A
j
L ∪ A

j
R) ∩ Xi for each j , 0 � j � �. Let v be an arbitrary vertex in (A

j
L ∪ A

j
R) ∩ Xi .

Then we shall show that v ∈ Aj . Since v ∈ A
j
L ∪ A

j
R , by Eqs. (C.9) and (C.10) we have v ∈ Y(XL;fL, j, c) ∪

Y(XR;fR, j, c). Therefore either GL has an edge e such that fL(e) = c and dist(v, e) = j , or GR has an edge e such
that fR(e) = c and dist(v, e) = j . In either case, Gi has an edge e such that f (e) = c and dist(v, e) = j , and hence by
Eq. (C.8) we have v ∈ Y(Xi;f, j, c) = Aj . We have thus shown that Aj ⊇ (A

j
L ∪ A

j
R) ∩ Xi .

(b) Necessity: Suppose that a count γ on Xi is active. Then Gi has an entire coloring f with count γ . Let ρ be the
pair-count of f , then ρ is active. It suffices to show that ρ satisfies Eq. (11).

Since f has the count γ , we have

(C.11)γ (A) = ∣∣Cf (A)
∣∣

for each A ∈ (2Xi)�+1. Let fL = f |GL and fR = f |GR . Since ρ is the pair-count of f , we have

(C.12)ρ(AL,AR) = ∣∣CfL
(AL) ∩ CfR

(AR)
∣∣

for each pair of AL ∈ (2XL)�+1 and AR ∈ (2XR)�+1. By Eqs. (9), (C.11) and (C.12) we have

γ (A) =
∣∣∣⋃(

CfL
(AL) ∩ CfR

(AR)
)∣∣∣

=
∑∣∣(CfL

(AL) ∩ CfR
(AR)

)∣∣
=

∑
ρ(AL,AR)

for every A ∈ (2Xi)�+1, where the union and summations above are taken over all pairs (AL,AR) satisfying Eq. (10).
Thus ρ satisfies Eq. (11).

Sufficiency: Suppose that γ is a count on Xi and there exists an active pair-count ρ on Xi satisfying Eq. (11). Since
ρ is an active pair-count on Xi , Gi has an entire coloring f with the pair-count ρ. It suffices to show that γ is the

322 T. Ito et al. / Journal of Discrete Algorithms 5 (2007) 304–322
count of f , because then γ would be active. By Eq. (9) we have, for each A = (A0,A1, . . . ,A�) ∈ (2Xi)�+1,

(C.13)
∣∣Cf (A)

∣∣ =
∣∣∣⋃(

CfL
(AL) ∩ CfR

(AR)
)∣∣∣

where the union above is taken over all pairs of AL = (A0
L,A1

L, . . . ,A�
L) ∈ (2XL)�+1 and AR = (A0

R,A1
R, . . . ,A�

R) ∈
(2XR)�+1 satisfying Eq. (10). Since ρ is the pair-count of f , Eq. (6) holds. By Eqs. (6), (11) and (C.13) we have, for
each A,∣∣Cf (A)

∣∣ =
∑∣∣CfL

(AL) ∩ CfR
(AR)

∣∣
=

∑
ρ(AL,AR)

= γ (A),

where the summations above are taken over all pairs (AL,AR) satisfying Eq. (10). We have thus shown that γ is the
count of f , and hence γ is active. �
References

[1] G. Agnarsson, M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651–662.
[2] S. Arnborg, B. Courcelle, A. Proskurowski, D. Seese, An algebraic theory of graph reduction, J. ACM 40 (1993) 1134–1164.
[3] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (1991) 308–340.
[4] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41 (1994) 153–180.
[5] H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, J. Algorithms 11 (1990) 631–643.
[6] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.
[7] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1998) 1–45.
[8] R.B. Borie, R.G. Parker, C.A. Tovey, Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on

recursively constructed graph families, Algorithmica 7 (1992) 555–581.
[9] B. Courcelle, The monadic second-order logic of graphs I: Recognizable sets of finite graphs, Information and Computation 85 (1990) 12–75.

[10] B. Courcelle, M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs, Theoret. Comput. Sci. 109 (1993) 49–82.
[11] R. Diestel, Graph Theory, Springer, New York, 1997.
[12] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718–720.
[13] T. Ito, A. Kato, X. Zhou, T. Nishizeki, Algorithms for finding distance-edge-colorings of graphs, in: Proc. 11th Annual International Computing

and Combinatorics Conference (COCOON 2005), in: Lecture Notes in Computer Science, vol. 3595, Springer, Berlin, 2005, pp. 798–807.
[14] L. Kowalik, M. Kurowski, Short path queries in planar graphs in constant time, in: Proc. 35th Annual ACM Symposium on Theory of

Computing, 2003, pp. 143–148.
[15] M. Mahdian, On the computational complexity of strong edge coloring, Discrete Appl. Math. 118 (2002) 239–248.
[16] M.R. Salavatipour, A polynomial time algorithm for strong edge coloring of partial k-trees, Discrete Appl. Math. 143 (2004) 285–291.
[17] X. Zhou, Y. Kanari, T. Nishizeki, Generalized vertex-coloring of partial k-trees, IEICE Trans. on Fundamentals of Electronics, Communication

and Computer Sciences E83-A (2000) 671–678.
[18] X. Zhou, S. Nakano, T. Nishizeki, Edge-coloring partial k-trees, J. Algorithms 21 (1996) 598–617.

	Algorithms for finding distance-edge-colorings of graphs
	Introduction
	Terminology and definitions
	Algorithm for partial k-trees
	Idea and terms
	Algorithm

	2-approximation algorithm for planar graphs
	Conclusions
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Lemma 4
	References

