2,845 research outputs found

    A planning method for safe interaction between human arms and robot manipulators

    Full text link
    This paper presents a planning method based on mapping moving obstacles into C-space for safe interaction between human arms and robot manipulators. In pre-processing phase, a hybrid distance metric is defined to select neighboring sampled nodes in C-space to construct a roadmap. Then, two kinds of mapping are constructed to determine invalid and dangerous edges in the roadmap for each basic cell decomposed in workspace. For updating the roadmap when an obstacle is moving, basic cells covering the obstacle's surfaces are mapped into the roadmap by using new positions of the surfaces points sampled on the obstacle. In query phase, in order to predict and avoid coming collisions and reach the goal efficiently, an interaction strategy with six kinds of planning actions of searching, updating, walking, waiting, dodging and pausing are designed. Simulated experiments show that the proposed method is efficient for safe interaction between two working robot manipulators and two randomly moving human arms.Computer Science, Artificial IntelligenceRoboticsCPCI-S(ISTP)

    Folding Assembly by Means of Dual-Arm Robotic Manipulation

    Full text link
    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.Comment: 7 pages, accepted for ICRA 201

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    Towards Assistive Feeding with a General-Purpose Mobile Manipulator

    Get PDF
    General-purpose mobile manipulators have the potential to serve as a versatile form of assistive technology. However, their complexity creates challenges, including the risk of being too difficult to use. We present a proof-of-concept robotic system for assistive feeding that consists of a Willow Garage PR2, a high-level web-based interface, and specialized autonomous behaviors for scooping and feeding yogurt. As a step towards use by people with disabilities, we evaluated our system with 5 able-bodied participants. All 5 successfully ate yogurt using the system and reported high rates of success for the system's autonomous behaviors. Also, Henry Evans, a person with severe quadriplegia, operated the system remotely to feed an able-bodied person. In general, people who operated the system reported that it was easy to use, including Henry. The feeding system also incorporates corrective actions designed to be triggered either autonomously or by the user. In an offline evaluation using data collected with the feeding system, a new version of our multimodal anomaly detection system outperformed prior versions.Comment: This short 4-page paper was accepted and presented as a poster on May. 16, 2016 in ICRA 2016 workshop on 'Human-Robot Interfaces for Enhanced Physical Interactions' organized by Arash Ajoudani, Barkan Ugurlu, Panagiotis Artemiadis, Jun Morimoto. It was peer reviewed by one reviewe

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    Get PDF
    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer

    Safe local aerial manipulation for the installation of devices on power lines: Aerial-core first year results and designs

    Get PDF
    Article number 6220The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehicles, the AERIAL-CORE project proposes the development of aerial robots capable of performing aerial manipulation operations to assist human operators in power lines inspection and maintenance, allowing the installation of devices, such as bird flight diverters or electrical spacers, and the fast delivery and retrieval of tools. This manuscript describes the goals and functionalities to be developed for safe local aerial manipulation, presenting the preliminary designs and experimental results obtained in the first year of the project.European Union (UE). H2020 871479Ministerio de Ciencia, Innovación y Universidades de España FPI 201
    corecore