5,188 research outputs found

    PRS-Net: planar reflective symmetry detection net for 3D models

    Get PDF
    In geometry processing, symmetry is a universal type of high-level structural information of 3D models and beneļ¬ts many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar reļ¬‚ective symmetry is the most fundamental one. Traditional methods based on spatial sampling can be time-consuming and may not be able to identify all the symmetry planes. In this paper, we present a novel learning framework to automatically discover global planar reļ¬‚ective symmetry of a 3D shape. Our framework trains an unsupervised 3D convolutional neural network to extract global model features and then outputs possible global symmetry parameters, where input shapes are represented using voxels. We introduce a dedicated symmetry distance loss along with a regularization loss to avoid generating duplicated symmetry planes. Our network can also identify generalized cylinders by predicting their rotation axes. We further provide a method to remove invalid and duplicated planes and axes. We demonstrate that our method is able to produce reliable and accurate results. Our neural network based method is hundreds of times faster than the state-of-the-art methods, which are based on sampling. Our method is also robust even with noisy or incomplete input surfaces

    PRS-Net: Planar Reflective Symmetry Detection Net for 3D Models

    Get PDF
    In geometry processing, symmetry is a universal type of high-level structural information of 3D models and benefits many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar reflective symmetry is the most fundamental one. Traditional methods based on spatial sampling can be time-consuming and may not be able to identify all the symmetry planes. In this paper, we present a novel learning framework to automatically discover global planar reflective symmetry of a 3D shape. Our framework trains an unsupervised 3D convolutional neural network to extract global model features and then outputs possible global symmetry parameters, where input shapes are represented using voxels. We introduce a dedicated symmetry distance loss along with a regularization loss to avoid generating duplicated symmetry planes. Our network can also identify generalized cylinders by predicting their rotation axes. We further provide a method to remove invalid and duplicated planes and axes. We demonstrate that our method is able to produce reliable and accurate results. Our neural network based method is hundreds of times faster than the state-of-the-art methods, which are based on sampling. Our method is also robust even with noisy or incomplete input surfaces.Comment: Corrected typo

    3D alignment for interactive evolutionary design

    Get PDF
    3D model alignment (ā€˜Pose Normalizationā€™ in the literature) is investigated as part of wider research into guided evolutionary Computer-Aided Design. CAD technology in development will combine human interaction and geometric optimization, within an evolutionary design system. Evolving shapes will be influenced by simple pre-set geometric fuzzy-constraints ā€“ internal voids and external bounding geometry created by users. To compare evolving candidate shapes with these pre-set constraints they must first be aligned (rotated, scaled, and co-located). A shortlist of five promising alignment techniques is described. Benchmark data generated using standard CAD functions (centre of gravity, principle axes etc.) will be presented at the conference

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Planar Symmetry Detection and Quantification using the Extended Persistent Homology Transform

    Full text link
    Symmetry is ubiquitous throughout nature and can often give great insights into the formation, structure and stability of objects studied by mathematicians, physicists, chemists and biologists. However, perfect symmetry occurs rarely so quantitative techniques must be developed to identify approximate symmetries. To facilitate the analysis of an independent variable on the symmetry of some object, we would like this quantity to be a smoothly varying real parameter rather than a boolean one. The extended persistent homology transform is a recently developed tool which can be used to define a distance between certain kinds of objects. Here, we describe how the extended persistent homology transform can be used to visualise, detect and quantify certain kinds of symmetry and discuss the effectiveness and limitations of this method.Comment: 9 pages, 13 figure

    Generalized intrinsic symmetry detection

    Get PDF
    In this paper, we address the problem of detecting partial symmetries in 3D objects. In contrast to previous work, our algorithm is able to match deformed symmetric parts: We first develop an algorithm for the case of approximately isometric deformations, based on matching graphs of surface feature lines that are annotated with intrinsic geometric properties. The sensitivity to non-isometry is controlled by tolerance parameters for each such annotation. Using large tolerance values for some of these annotations and a robust matching of the graph topology yields a more general symmetry detection algorithm that can detect similarities in structures that have undergone strong deformations. This approach for the first time allows for detecting partial intrinsic as well as more general, non-isometric symmetries. We evaluate the recognition performance of our technique for a number synthetic and real-world scanner data sets
    • ā€¦
    corecore