4,816 research outputs found

    Mining Frequency of Drug Side Effects Over a Large Twitter Dataset Using Apache Spark

    Get PDF
    Despite clinical trials by pharmaceutical companies as well as current FDA reporting systems, there are still drug side effects that have not been caught. To find a larger sample of reports, a possible way is to mine online social media. With its current widespread use, social media such as Twitter has given rise to massive amounts of data, which can be used as reports for drug side effects. To process these large datasets, Apache Spark has become popular for fast, distributed batch processing. In this work, we have improved on previous pipelines in sentimental analysis-based mining, processing, and extracting tweets with drug-caused side effects. We have also added a new ensemble classifier using a combination of sentiment analysis features to increase the accuracy of identifying drug-caused side effects. In addition, the frequency count for the side effects is also provided. Furthermore, we have also implemented the same pipeline in Apache Spark to improve the speed of processing of tweets by 2.5 times, as well as to support the process of large tweet datasets. As the frequency count of drug side effects opens a wide door for further analysis, we present a preliminary study on this issue, including the side effects of simultaneously using two drugs, and the potential danger of using less-common combination of drugs. We believe the pipeline design and the results present in this work would have great implication on studying drug side effects and on big data analysis in general

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201

    Analyzing Adverse Events from Publicly Available Web Sources

    Get PDF
    Data mining for drug-reaction associations is a major topic in the pharmaceutical industry. Historically the focus has been on using privately owned and maintained datasets consisting of information that has been transformed via the FDA Adverse Event Reporting System (FAERS) and privatized reporting systems that house the data from clinical trials. Our focus will be on building a pipeline that demonstrates an open source solution for building a drug’s safety profile from data collection through signal detection. In contrast this pipeline primarily uses the openFDA and social media data available through Reddit with all analysis being done in the R statistical programming language. The aim was to collect the information available in these public sources and apply popular data mining methodologies used to identify and predict the occurrence of adverse events. The results show the ability of the openFDA and social media sites to create real-time drug safety occurrence profiles by applying the same statistical methods applied in clinical trials. Social media will be shown to provide the best results when applied to prescribed daily use medications compared to common over-the-counter drugs or last line of defense medications. The information and results reported in this paper are not intended or implied to be a substitute for professional medical advice, diagnosis, or treatment. Do not delay seeking medical treatment or advice because of something you have read in this paper

    Biomedical Information Extraction Pipelines for Public Health in the Age of Deep Learning

    Get PDF
    abstract: Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations are extracted from biomedical scientific texts for metadata enrichment in the GenBank database containing 2.9 million virus nucleotide sequences. For pharmacovigilance, tools are developed to extract adverse drug reactions from social media posts to open avenues for post-market drug surveillance from non-traditional sources. Across these pipelines, high variance is observed in extraction performance among the entities of interest while using state-of-the-art neural network architectures. To explain the variation, linguistic measures are proposed to serve as indicators for entity extraction performance and to provide deeper insight into the domain complexity and the challenges associated with entity extraction. For both the phylogeography and pharmacovigilance pipelines presented in this work the annotated datasets and applications are open source and freely available to the public to foster further research in public health.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs

    Full text link
    Abstract Background Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs). Results We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs. Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia, thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network. Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43 benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive, skin, and immune systems. Conclusions Our study demonstrates that ontology-based literature mining and network analysis can efficiently identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism understanding of drug-induced peripheral neuropathy.https://deepblue.lib.umich.edu/bitstream/2027.42/144217/1/13326_2018_Article_185.pd

    Challenges and opportunities for mining adverse drug reactions: perspectives from pharma, regulatory agencies, healthcare providers and consumers

    Get PDF
    Monitoring drug safety is a central concern throughout the drug life cycle. Information about toxicity and adverse events is generated at every stage of this life cycle, and stakeholders have a strong interest in applying text mining and artificial intelligence (AI) methods to manage the ever-increasing volume of this information. Recognizing the importance of these applications and the role of challenge evaluations to drive progress in text mining, the organizers of BioCreative VII (Critical Assessment of Information Extraction in Biology) convened a panel of experts to explore ‘Challenges in Mining Drug Adverse Reactions’. This article is an outgrowth of the panel; each panelist has highlighted specific text mining application(s), based on their research and their experiences in organizing text mining challenge evaluations. While these highlighted applications only sample the complexity of this problem space, they reveal both opportunities and challenges for text mining to aid in the complex process of drug discovery, testing, marketing and post-market surveillance. Stakeholders are eager to embrace natural language processing and AI tools to help in this process, provided that these tools can be demonstrated to add value to stakeholder workflows. This creates an opportunity for the BioCreative community to work in partnership with regulatory agencies, pharma and the text mining community to identify next steps for future challenge evaluations.M.K.: This work was supported in part through the collaboration between the Spanish Plan for the Advancement of Language Technology (Plan TL) and the Barcelona Supercomputing Center; we also acknowledge the 2020 Proyectos de I+D+i - RTI Tipo A (PID2020-119266RA-I00) for support. Ö.U.: This study was supported in part by the National Library of Medicine under Award Number R15LM013209 and R13LM013127.Peer ReviewedPostprint (published version
    • …
    corecore