3,693 research outputs found

    A fuzzy virtual machine workload prediction method for cloud environments

    Full text link
    © 2017 IEEE. Due to the dynamic nature of cloud environments, the workload of virtual machines (VMs) fluctuates leading to imbalanced loads and utilization of virtual and physical cloud resources. It is, therefore, essential that cloud providers accurately forecast VM performance and resource utilization so they can appropriately manage their assets to deliver better quality cloud services on demand. Current workload and resource prediction methods forecast the workload or CPU utilization pattern of the given web-based applications based on their historical data. This gives cloud providers an indication of the required number of resources (VMs or CPUs) for these applications to optimize resource allocation for software as a service (SaaS) or platform as a service (PaaS), reducing their service costs. However, historical data cannot be used as the only data source for VM workload predictions as it may not be available in every situation. Nor can historical data provide information about sudden and unexpected peaks in user demand. To solve these issues, we have developed a fuzzy workload prediction method that monitors both historical and current VM CPU utilization and workload to predict VMs that are likely to be performing poorly. This model can also predict the utilization of physical machine (PM) resources for virtual resource discovery

    Multispecies Fruit Flower Detection Using a Refined Semantic Segmentation Network

    Get PDF
    In fruit production, critical crop management decisions are guided by bloom intensity, i.e., the number of flowers present in an orchard. Despite its importance, bloom intensity is still typically estimated by means of human visual inspection. Existing automated computer vision systems for flower identification are based on hand-engineered techniques that work only under specific conditions and with limited performance. This letter proposes an automated technique for flower identification that is robust to uncontrolled environments and applicable to different flower species. Our method relies on an end-to-end residual convolutional neural network (CNN) that represents the state-of-the-art in semantic segmentation. To enhance its sensitivity to flowers, we fine-tune this network using a single dataset of apple flower images. Since CNNs tend to produce coarse segmentations, we employ a refinement method to better distinguish between individual flower instances. Without any preprocessing or dataset-specific training, experimental results on images of apple, peach, and pear flowers, acquired under different conditions demonstrate the robustness and broad applicability of our method

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Real-time people tracking in a camera network

    Get PDF
    Visual tracking is a fundamental key to the recognition and analysis of human behaviour. In this thesis we present an approach to track several subjects using multiple cameras in real time. The tracking framework employs a numerical Bayesian estimator, also known as a particle lter, which has been developed for parallel implementation on a Graphics Processing Unit (GPU). In order to integrate multiple cameras into a single tracking unit we represent the human body by a parametric ellipsoid in a 3D world. The elliptical boundary can be projected rapidly, several hundred times per subject per frame, onto any image for comparison with the image data within a likelihood model. Adding variables to encode visibility and persistence into the state vector, we tackle the problems of distraction and short-period occlusion. However, subjects may also disappear for longer periods due to blind spots between cameras elds of view. To recognise a desired subject after such a long-period, we add coloured texture to the ellipsoid surface, which is learnt and retained during the tracking process. This texture signature improves the recall rate from 60% to 70-80% when compared to state only data association. Compared to a standard Central Processing Unit (CPU) implementation, there is a signi cant speed-up ratio

    A Multi-Objective Load Balancing System for Cloud Environments

    Full text link
    © 2017 The British Computer Society. All rights reserved. Virtual machine (VM) live migration has been applied to system load balancing in cloud environments for the purpose of minimizing VM downtime and maximizing resource utilization. However, the migration process is both time-and cost-consuming as it requires the transfer of large size files or memory pages and consumes a huge amount of power and memory for the origin and destination physical machine (PM), especially for storage VM migration. This process also leads to VM downtime or slowdown. To deal with these shortcomings, we develop a Multi-objective Load Balancing (MO-LB) system that avoids VM migration and achieves system load balancing by transferring extra workload from a set of VMs allocated on an overloaded PM to other compatible VMs in the cluster with greater capacity. To reduce the time factor even more and optimize load balancing over a cloud cluster, MO-LB contains a CPU Usage Prediction (CUP) sub-system. The CUP not only predicts the performance of the VMs but also determines a set of appropriate VMs with the potential to execute the extra workload imposed on the VMs of an overloaded PM. We also design a Multi-Objective Task Scheduling optimization model using Particle Swarm Optimization to migrate the extra workload to the compatible VMs. The proposed method is evaluated using a VMware-vSphere-based private cloud in contrast to the VM migration technique applied by vMotion. The evaluation results show that the MO-LB system dramatically increases VM performance while reducing service response time, memory usage, job makespan, power consumption and the time taken for the load balancing process
    • …
    corecore