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Abstract: 
In fruit production, critical crop management decisions are guided by bloom intensity, i.e., the number of 
flowers present in an orchard. Despite its importance, bloom intensity is still typically estimated by means of 
human visual inspection. Existing automated computer vision systems for flower identification are based on 
hand-engineered techniques that work only under specific conditions and with limited performance. This letter 
proposes an automated technique for flower identification that is robust to uncontrolled environments and 
applicable to different flower species. Our method relies on an end-to-end residual convolutional neural 
network (CNN) that represents the state-of-the-art in semantic segmentation. To enhance its sensitivity to 
flowers, we fine-tune this network using a single dataset of apple flower images. Since CNNs tend to produce 

https://ieeexplore.ieee.org/document/8392727/authors#authors
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coarse segmentations, we employ a refinement method to better distinguish between individual flower 
instances. Without any preprocessing or dataset-specific training, experimental results on images of apple, 
peach, and pear flowers, acquired under different conditions demonstrate the robustness and broad 
applicability of our method. 

SECTION I. Introduction 
Bloom intensity corresponds to the number of flowers present in orchards during the early growing season. 
Climate and bloom intensity information are crucial to guide the processes of pruning and thinning, which 
directly impact fruit load, size, coloration, and taste [1], [2]. Accurate estimates of bloom intensity can also 
benefit packing houses, since early crop-load estimation greatly contributes to optimizing postharvest handling 
and storage processes. 

Visual inspection is still the dominant approach for bloom intensity estimation in orchards, a technique which is 
time-consuming, labor-intensive and prone to errors [3]. Since only a limited sample of trees is inspected, the 
extrapolation to the entire orchard relies heavily on the grower's experience. Moreover, it does not provide 
information about the spatial variability in the orchard, although the benefits of precision agriculture practices 
are well known [4]. 

These limitations added to the short-term nature of flower appearance until petal fall make an automated 
method highly desirable. Multiple automated computer vision systems have been proposed to solve this 
problem, but most of these methods rely on hand-engineered features [5], making their overall performance 
acceptable only under relatively controlled environments (e.g., at night with artificial illumination). Their 
applicability is in most cases species-specific and highly vulnerable to variations in lightning conditions, 
occlusions by leaves, stems or other flowers [6]. 

In the last decade, deep learning approaches based on convolutional neural networks (CNNs) led to substantial 
improvements in the state-of-the-art of many computer vision tasks [7]. Recent works have adapted CNN 
architectures to agricultural applications such as fruit quantification [8], classification of crops [9], and plant 
identification from leaf vein patterns [10]. To the best of our knowledge, our work in [11] was the first to employ 
CNNs for flower detection. In that work, we combined superpixel-based region proposals with a classification 
network to detect apple flowers. Limitations of that approach are intrinsic to the inaccuracies of superpixel 
segmentation and the network architecture. 

In the present work, we provide the following contributions for automated flower segmentation: 

• A novel technique for flower identification that is i) automated, ii) robust to clutter and changes in 
illumination; and, iii) generalizable to multiple species. Using as starting point a fully convolutional 
network (FCN) [12] pre-trained on a large multi-class dataset, we describe an effective fine-tuning 
procedure that adapts this model for fine pixel-wise flower segmentation. Our final method evaluates in 
less than 50 seconds high-resolution images covering each a full tree. Although the task comparison is 
not one-to-one, human workers may need on average up to 50 minutes to count the number of flowers 
per tree. 

• A feasible procedure for evaluating high-resolution images with deep FCNs on commercial GPUs. Fully 
convolutional computations require GPU memory space that exponentially increases according to image 
resolution. We employ an image partitioning mechanism with partially overlapping windows, which 
reduces artifacts introduced by artificial boundaries when evaluating disjoint image regions. 

• Release of an annotated dataset with pixel-accurate labels for flower segmentation on high resolution 
images [13]. We believe this can greatly benefit the community, since this is a very time consuming yet 
critical task for both training and evaluation of segmentation models. 



SECTION II. Related Work 
Previous attempts at automating bloom intensity estimation were mostly based on color thresholding, such as 
the works described in [14], [15] and [16]. Despite differences in terms of color-space used for analysis (e.g., HSL 
and RGB), all these methods fail when applied in uncontrolled environments. Apart from size filtering, no 
morphological feature is taken into account, such that thresholding parameters have to be adjusted in case of 
changes in illumination, camera position or flowering density. Even strategies using aerial multispectral images 
such as [17] also rely solely on color information for image processing. 

Our previous work in [11] introduced a novel approach for apple flower detection that relies on a fine-tuned 
Clarifai CNN [18] to classify individual superpixels composing an image. That method highly outperformed color-
based approaches, especially in terms of generalization to datasets composed of different flower species and 
acquired in uncontrolled environments. However, existing superpixel algorithms rely solely on local context 
information, representing the main source of imprecisions in scenarios where flowers and the surrounding 
background present similar colors. 

While early attempts for autonomous fruit detection also relied on hand-engineered features (e.g., color, 
texture, shape) [6], recent works have been exploring more advanced computer vision techniques. One example 
is the work of Hung et al. [19] , which combines sparse autoencoders [7] and support vector machines (SVM) for 
segmenting leaves, almonds, trunks, ground and sky. The approaches described by Bargoti and Underwood 
in [20] and Chen et al. in [8] for fruit detection share some similarities with our method for flower segmentation. 
In [20], the authors introduce a Faster R-CNN trained for the detection of mangoes, almonds and apple fruits on 
trees. The method introduced in [8] for counting apples and oranges employs a fully convolutional network 
(FCN) to perform fruit segmentation and a convolutional network to estimate fruit count. 

End-to-end fully convolutional networks [21] have been replacing traditional fully connected architectures for 
image segmentation tasks [22]. Conventional architectures such as the Alexnet [23] and VGG [24] networks are 
very effective for image classification but provide coarse outputs for image segmentation tasks. This is a 
consequence of the image downsampling introduced by the max-pooling and striding operations performed by 
these networks, which allow the extraction of learned hierarchical features at the cost of pixel-level 
precision [12]. 

Different strategies have been proposed to alleviate the effects of downsampling [22], including the use of 
deconvolution layers [21], [25], and encoder-decoder architectures with skip layer connections [26], [27]. The 
DeepLab model introduced in [12] is one of the most successful approaches for semantic image segmentation 
using deep learning. By combining the ResNet-101 [28] model with atrous convolutions and spatial pyramid 
pooling, it significantly reduces the downsampling rate and achieves state-of-the-art performance in challenging 
semantic segmentation datasets such as the PASCAL VOC [29] and COCO [30]. 

In addition to the changes in CNN architecture, the authors of DeepLab also employ the dense CRF model 
described in [31] to produce fine-grained segmentations. Although providing visually appealing segmentations, 
this refinement model relies on parameters that have to be optimized by means of supervised grid-search. 
In [32], we introduced a generic post-processing module that can be coupled to the output of any CNN to refine 
segmentations without the need for dataset-specific tuning. Called region growing refinement (RGR), this 
algorithm uses the score maps available from the CNN to divide the image into regions of high confidence 
background, high confidence object and uncertainty region. By means of appearance-based region growing, 
pixels within the uncertainty region are classified based on initial seeds randomly sampled from the high 
confidence regions. 



SECTION III. Our Approach 
In this section, we first describe the pre-training and fine-tuning procedures carried out to obtain a CNN highly 
sensitive to flowers. Subsequently, we describe the sequence of operations that our pipeline performs to 
segment flowers in an image. 

A. Network Training 
One of the largest datasets available for semantic segmentation, the COCO dataset [30] was recently augmented 
by Caesar et al. [33] into the COCO-Stuff dataset. This dataset includes pixel-level annotations of classes such 
as grass, leaves, tree and flowers, which are relevant for our application. In the same work, the authors also 
discuss the performance of modern semantic segmentation methods on COCO-Stuff, with a DeepLab-based 
model outperforming the standard FCN. Thus, we opted for the publicly available DeepLab-ResNet model pre-
trained on the COCO-Stuff dataset as the starting point for our pipeline. Rather than fine-tuning the dense CRF 
model used in the original DeepLab work, we opt for the generic RGR algorithm as a post-processing module to 
obtain fine-grained segmentations. 

The base model was originally designed for segmentation within the 172 COCO-Stuff classes. To adapt its 
architecture for our binary flower segmentation task, we perform procedures known as network 
surgery and fine-tuning [34]. The surgery procedure is analogous to the pruning of undesired branches in trees: 
out of the original 172 classification branches, we preserve only the weights and connections responsible for the 
segmentation of classes of interest. 

We considered first an architecture preserving only the flower classification branch, followed by a sigmoid 
classification unit. However, without the normalization induced by the model's original softmax layer, the scores 
generated by the transferred flower branch are unbounded and the final sigmoid easily saturates. To alleviate 
the learning difficulties caused by such a poor initialization, we opted for tuning a model with two-branches, 
under the hypothesis that a second branch would allow the network to learn a background representation that 
properly normalizes the predictions generated by the foreground (flower) branch. 

We have observed experimentally that nearby leaves represent one of the main sources of misclassification for 
flower segmentation. Moreover, predictions for the class leaf presented the highest activations when applying 
the pre-trained model to our training dataset. For these reasons, we opt for this branch together with the one 
associated with flowers to initialize our two-branch flower segmentation network. 

The adapted architecture was then fine-tuned using the training set described in Section IV, which contains 100 
images of apple trees. For our experiments, the procedure was carried out for 10,000 iterations using the Caffe 
framework [35], with an initial learning rate of 10−4 that polynomially decays according to 10−4 × (1 −
𝑖𝑖/10000)0.9, where i is the iteration number. Aiming at scale robustness, our fine-tuning procedure employs the 
same strategy used for model pre-training, where each training portrait is evaluated at (0.5, 0.75, 1.0, 1.25, 1.5) 
times its original resolution. 

While the validation set has pixel-accurate annotations obtained using the procedure described in Section IV, 
the training set was annotated using the less precise but quicker superpixel-based procedure described in our 
previous work [11]. Less than 5% of the total image areas in this dataset contain flowers. To compensate for this 
imbalance, we augmented portraits containing flowers by mirroring them with respect to vertical and horizontal 
axes. Following the original network parameterization, we split the 100 training images into portraits 
of 321 × 321 pixels, corresponding to a total of 52,644 training portraits after augmentation. 

Algorithm 1: Proposed approach for flower detection. 



Input:  Image 𝐼𝐼. 

Output:  Estimated flower segmentation map 𝑌𝑌
^

 of image 𝐼𝐼. 
  Sliding window: divide 𝐼𝐼 into a set of 𝑛𝑛 portraits 𝑃𝑃. 
  for each portrait 𝑝𝑝(𝑖𝑖) ∈ 𝑃𝑃 do 
  Compute scoremaps 𝑚𝑚𝐵𝐵

(𝑖𝑖) and 𝑚𝑚𝐹𝐹
(𝑖𝑖) using the fine-tuned CNN 

  end for 
  Obtain 𝑀𝑀𝐵𝐵 and 𝑀𝑀𝐹𝐹 by fusing 𝑚𝑚𝐵𝐵

(𝑖𝑖) and 𝑚𝑚𝐹𝐹
(𝑖𝑖) ( 𝑖𝑖 = 1, … ,𝑛𝑛), respectively according to Eq. 2 . 

  Normalize 𝑀𝑀𝐵𝐵 and 𝑀𝑀𝐹𝐹 into 𝑀𝑀
~
𝐵𝐵 and 𝑀𝑀

~
𝐹𝐹, respectively according to Eq. 3. 

  Generate 𝑌𝑌
^

 by applying RGR to 𝑀𝑀
~
𝐵𝐵 and 𝑀𝑀

~
𝐹𝐹. 

 

B. Segmentation Pipeline 
The method we propose for fruit flower segmentation consists of three main operations: 1) divide a high 
resolution image into smaller patches, in a sliding window manner; 2) evaluate each patch using our fine-tuned 
CNN; 3) apply the refinement algorithm on the obtained scoremaps to compute the final segmentation mask. 
These steps are described in detail below. In our description, we make reference to Algorithm 1 and Fig. 1. 

 
Fig. 1. Best viewed in color. Diagram illustrating the sequence of tasks performed by the proposed method for 
flower detection. Each task and its corresponding output (shown below the arrows) are described in 
Algorithm 1. In the heatmaps, blue is associated with lower scores, while higher scores are illustrated with red. 

1) Step 1 - Sliding window: As mentioned above, the adopted CNN architecture either crops or resizes input 
images to 321 × 321 portraits. Since our datasets are composed of images with resolution ranging 
from 2704 × 1520 to 5184 × 3456 pixels (see Section IV), we emulate a sliding window approach to avoid 
resampling artifacts. More specifically, we split each input image 𝐼𝐼 into a set 𝑃𝑃 of 𝑛𝑛 portraits 𝑝𝑝(𝑖𝑖) ∈ 𝑃𝑃. Each 
portrait is 321 × 321 pixels large, i.e., 𝑝𝑝(𝑖𝑖) ∈ ℝ𝑟𝑟×𝑟𝑟 with 𝑟𝑟 = 321. Cropping non-overlapping portraits from the 
original image introduces artificial boundaries that compromise the detection quality. For this reason, in our 
approach each portrait overlaps a percentage 𝑠𝑠 of the area of each immediate neighbor. For our experiments, 
we adopted 𝑠𝑠 = 10%. When the scoremaps are fused, the results corresponding to the overlapping pixels are 
discarded. Fig. 2 illustrates this process for a pair of subsequent portraits. The scores obtained for each portrait 
are depicted as a heatmap, where blue is associated with lower scores and higher scores are illustrated with red. 

https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro1-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro1-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro1-2849498-large.gif


 
Fig. 2. Best viewed in color. Illustration of the sliding window and subsequent fusion process that comprise our 
segmentation pipeline. Each portrait overlaps a certain area of its neighbors, which is discarded during fusion to 
avoid artifacts caused by artificial boundaries. 

2) Step 2 - CNN prediction: We evaluate in parallel each portrait 𝑝𝑝(𝑖𝑖) with our fine-tuned network for flower 
identification. The CNN is equivalent to a function 𝑓𝑓 

𝑓𝑓:𝑝𝑝(𝑖𝑖) → �𝑚𝑚𝐹𝐹
(𝑖𝑖),𝑚𝑚𝐵𝐵

(𝑖𝑖)� , (1) 

which maps each input 𝑝𝑝(𝑖𝑖) into two pixel-dense scoremaps: 𝑚𝑚𝐹𝐹
(𝑖𝑖) ∈ ℝ𝑟𝑟×𝑟𝑟 represents the pixel-wise likelihood 

that pixels in 𝑝𝑝(𝑖𝑖) belong to the foreground (i.e., flower), while 𝑚𝑚𝐵𝐵
(𝑖𝑖) ∈ ℝ𝑟𝑟×𝑟𝑟 corresponds to the pixel-wise 

background likelihood. The heatmaps in Figures 3(a) and (b) are examples of scoremaps computed for a given 
portrait. 

 
Fig. 3. Best viewed in color. Example of segmentation refinement for a given pair of scoremaps. (a) Background 
scoremap 𝑚𝑚𝐵𝐵

(𝑖𝑖). (b) Foreground scoremap 𝑚𝑚𝐹𝐹
(𝑖𝑖). (c) Coarse segmentation by direct thresholding of the scoremaps. 

(d) Refined segmentation using RGR. 

3) Step 3 - Fusion and refinement: After evaluating each portrait, we generate two global 
scoremaps 𝑀𝑀𝐵𝐵 and 𝑀𝑀𝐹𝐹 by combining the predictions obtained for all p(i)∈P. Let c(i) represent the pixel-
coordinates of 𝑝𝑝(𝑖𝑖) in 𝐼𝐼 after discarding the padding pixels. The fusion procedure is defined as 

∀𝑝𝑝(𝑖𝑖) ∈ 𝑃𝑃,𝑀𝑀𝐹𝐹,𝐵𝐵(𝑐𝑐(𝑖𝑖)) = 𝑚𝑚𝐹𝐹,𝐵𝐵
(𝑖𝑖) , (2) 

such that both scoremaps 𝑀𝑀𝐵𝐵 and 𝑀𝑀𝐹𝐹 have the same resolution as 𝐼𝐼. As illustrated in Fig. 2, the padded areas 
of 𝑚𝑚𝐹𝐹,𝐵𝐵

(𝑖𝑖)  (outside the red box) are discarded during fusion. For every pixel in the image, a single prediction score 
is obtained from exactly one portrait, such that artifacts introduced by artificial boundaries are avoided. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro2-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro2-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro3-2849498-large.gif
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After fusion, the scoremaps 𝑀𝑀𝐵𝐵 and 𝑀𝑀𝐹𝐹 are normalized into scoremaps 𝑀𝑀
~
𝐵𝐵 and 𝑀𝑀

~
𝐹𝐹 using a softmax function 

𝑀𝑀
~
𝐹𝐹,𝐵𝐵(𝑞𝑞𝑗𝑗) = exp (𝑀𝑀𝐹𝐹,𝐵𝐵(𝑞𝑞𝑗𝑗))

exp (𝑀𝑀𝐵𝐵(𝑞𝑞𝑗𝑗))+exp (𝑀𝑀𝐹𝐹(𝑞𝑞𝑗𝑗)) (3) 

where 𝑞𝑞𝑗𝑗 is the 𝑗𝑗-th pixel in the input image 𝐼𝐼. With this formulation, for each pixel 𝑞𝑞𝑗𝑗 the 

scores 𝑀𝑀
~
𝐵𝐵(𝑞𝑞𝑗𝑗) and 𝑀𝑀

~
𝐹𝐹(𝑞𝑞𝑗𝑗) add to one, i.e., they correspond to the probability that 𝑞𝑞𝑗𝑗 belongs to the 

corresponding class. 

As Fig. 3(c) shows, the predictions obtained directly from the CNN are coarse in terms of adherence to actual 

flower boundaries. Therefore, rather than directly thresholding 𝑀𝑀
~
𝐹𝐹, this scoremap and the image 𝐼𝐼 are fed to 

the RGR refinement module described in [32]. For our application, the refinement algorithm relies on two high-
confidence classification regions 𝑅𝑅𝐹𝐹 and 𝑅𝑅𝐵𝐵 defined according to 

𝑅𝑅𝐹𝐹,𝐵𝐵 = �𝑞𝑞𝑗𝑗|𝑀𝑀
~
𝐹𝐹,𝐵𝐵(𝑞𝑞𝑗𝑗) > 𝜏𝜏𝐹𝐹,𝐵𝐵� (4) 

where 𝜏𝜏𝐵𝐵 and 𝜏𝜏𝐹𝐹 are the high-confidence background and foreground thresholds. Using the high-confidence 
regions as starting points, the RGR algorithm performs multiple Monte Carlo region growing steps that groups 
similar pixels into clusters. Afterwards, it performs majority voting to classify each cluster according to the 

presence of flowers. Each pixel 𝑞𝑞𝑗𝑗 within a cluster contributes with a positive vote if its score 𝑀𝑀
~
𝐹𝐹(𝑞𝑞𝑗𝑗) is larger 

than a threshold 𝜏𝜏0. As detailed in Section V, this parameter can be empirically tuned according to the dataset 
under consideration. Based on a grid-search optimization on our training dataset, we selected 𝜏𝜏0 = 0.3 for all 
our experiments and fixed 𝜏𝜏𝐵𝐵 = 0.1 and 𝜏𝜏𝐹𝐹 = 1.25 × 𝜏𝜏0. 

SECTION IV. Datasets 
We evaluate our method on four datasets that we created and made publicly 
available: AppleA, AppleB, Peach, Pear [13]. As summarized in Table I, images from different fruit flower species 
were collected in diverse uncontrolled environments and under different angles of capture. 

TABLE I Datasets specifications 

Dataset No. images Weather Background Panel Camera Model Resolution support 
AppleA 100 (train) + 30 (val) Sunny No Canon EOS 60D 5184 X 3456 Hand-held 
AppleB 18 Sunny Yes GoPro HERO5 2704 X 1520 Utility vehicle 
Peac h 24 Overcast No GoPro HERO5 2704 X 1520 Hand-held 
Pear 18 Overcast No GoPro HERO5 2704 X 1520 Hand-held 

 

Both datasets AppleA and AppleB are composed of images of apple trees, which were collected in a USDA 
orchard on a sunny day. In both datasets, the trees are supported with trellises and planted in rows. AppleA is a 
collection of 147 images acquired using a hand-held camera. From this total, we randomly selected 100 images 
to build the training set used to train the CNN. Out of the remaining 47 images, 30 were randomly selected to 
compose the testing set for which we report results in Section V . 

This dataset contains flowers that greatly vary in terms of size, cluttering, occlusion by leaves and branches. 
Flowers composing its images have an average area of 10,730 pixels, but with a standard deviation of 17,150 
pixels. On average, flowers compose only 2.5% of the total image area within this dataset, which is otherwise 
vastly occupied by leaves. 



Differently from AppleA, for the AppleB dataset, a utility vehicle equipped with a background unit was used for 
imaging, such that trees in other rows are not visible in the images. Fig. 4 illustrates the utility vehicle used for 
image acquisition, and Figures 6 and 7 illustrate the differences between datasets AppleA and AppleB. 

 
Fig. 4. Best viewed in color. Utility vehicle used for imaging. For the AppleB dataset, this vehicle was used in 
conjunction with a background panel. 

The Peach and Pear datasets differ both in terms of species and acquisition conditions, therefore representing 
adequate scenarios for evaluating the generalization capabilities of the proposed method. Both datasets contain 
images acquired on an overcast day and without a background unit. Compared to the AppleA dataset, images 
composing these datasets present significantly lower saturation and value means. Tables II and III summarize the 
differences among datasets in terms of the statistics of the HSV color components, where 𝜇𝜇 stands for mean 
values and 𝐼𝐼𝐼𝐼𝑅𝑅 for interquartile ranges. 

TABLE II HSV Statistics of Images Composing Each Dataset 

 𝐻𝐻 [0 − 360 °]  𝑆𝑆 [%]  𝑉𝑉 [%]  
Dataset µ𝐻𝐻 𝐼𝐼𝐼𝐼𝑅𝑅𝐻𝐻 µ𝑠𝑠 𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠 µ𝑣𝑣 𝐼𝐼𝐼𝐼𝑅𝑅𝑣𝑣 
AppleA 74.6 49.3 32.9 24.3 53.7 30.2 
AppleB 219.6 21.1 88 6 44 3 47.1 16 9 
Peach 223.8 199.9 11 8 20.7 42.3 46.6 
Pear 85.9 178.8 16.4 23.4 42.4 20.8 

 

TABLE III HSV Statistics of Flowers Composing Each Dataset 

 𝐻𝐻 [0 − 360 °]  𝑆𝑆 [%]  𝑉𝑉 [%]  
Dataset µ𝐻𝐻 𝐼𝐼𝐼𝐼𝑅𝑅𝐻𝐻 µ𝑠𝑠 𝐼𝐼𝐼𝐼𝑅𝑅𝑠𝑠 µ𝑣𝑣 𝐼𝐼𝐼𝐼𝑅𝑅𝑣𝑣 
AppleA 136.6 205.5 6.3 9.8 77.3 24.3 
AppleB 56.3 80.2 7.5 9.8 86.7 23.1 
Peach 325.2 26.7 21.2 13.3 50.2 13.7 
Pear 215.4 173.2 5.9 5.9 84.7 22.4 

 

Regarding the flower characteristics, apple blossoms are typically white, with hue components spread in the 
whole spectrum (high 𝐼𝐼𝐼𝐼𝑅𝑅𝐻𝐻) and low saturation mean. Flowers composing the AppleB dataset present higher 
brightness (𝜇𝜇𝑉𝑉), while peach flowers show a pink hue centered on 𝜇𝜇𝐻𝐻 = 325∘, with higher saturation and lower 
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value means. Moreover, pear flowers are slightly different in terms of color (greener) and morphology, as 
illustrated in Fig. 9. 

A. Labeling 
Image annotation for segmentation tasks is a laborious and time-consuming activity. Labels must be accurate at 
pixel-level, otherwise both supervised training and the evaluation of segmentation techniques are 
compromised. Most existing annotation tools rely on approximating segmentations as polygons, which provide 
ground truth images that frequently lack accurate adherence to real object boundaries [32]. 

We opted for a labeling procedure that combines freehand annotations and RGR refinement [32]. Using a tablet, 
the user draws traces on regions of the image that contain flowers, indicating as well hard negative examples 
when necessary. These traces indicate high-confidence segmentation points, which are used as reference by 
RGR to segment the remaining parts of the image. Fig. 5 shows an example of a ground truth segmentation 
obtained using this procedure.1 

 
Fig. 5. Best viewed in color. Example of ground truth obtained from freehand annotations. Left: positive 
examples are annotated in blue, while hard negatives are indicated in red. Right: segmentation obtained after 
RGR refinement. 

SECTION V. Experiments and Results 
We aim at a method capable of accurate multi-species flower detection, regardless of image acquisition 
conditions and without the need for dataset-specific training or pre-processing. To verify that our method 
satisfies all these requirements, we performed experiments on the four different datasets described in Section 
IV while only using the AppleA dataset for training. 

We adopt as the main baseline our previous model described in [11], which highly outperformed existing 
methods by employing the Clarifai CNN architecture to classify individual superpixels. We therefore refer to that 
model as Sppx+Clarifai and to our new method as DeepLab+RGR. We also compare our results against a HSV-
based method [15] that segments images based only on HSV color information and size filtering according to 
threshold values optimized using grid-search. 

All three methods were tuned using the AppleA training dataset, with differences in the pipeline for transfer 
learning. For the three unseen datasets, the Sppx+Clarifai relies on a pre-processing step that enhances contrast 
and removes the different backgrounds present in the images. Our new method DeepLab+RGR does not require 
any pre-processing. Instead, it employs the same pipeline regardless of the dataset, requiring only adjustments 
in portrait size. As summarized in Table I, images composing the AppleA dataset have resolution 4.3× larger than 
images in the other three datasets. Thus, we split images in these datasets into portraits of 155 × 155 pixels, 
rather than the 321 × 321 pixels portraits used for AppleA. 

The quantitative analysis of segmentation accuracy relies on precision, recall, 𝐹𝐹1 and intersection-over-union 
(IoU) metrics [29] computed at pixel-level, instead of the superpixel-wise metrics used in our previous 
work. Table IV summarizes the results obtained by each method on the different datasets. 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro5-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro5-2849498-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7083369/8386768/8392727/ambro5-2849498-large.gif


TABLE IV Summary of Results Obtained for Each Method 

  IoU 𝐹𝐹1 Recall Precision 
AppleA HSV- BASED 28.0 % 43.7% 56.5% 35.7% 
 SPPX+CLARIFAI 51.3% 67.8% 73.2% 63.1% 
 DEEPLAB+RGR 71.4% 83 .3% 8 7.7 % 79.4 % 
AppleB HSV-BASED 49.3% 66.0% 58.9% 75.1% 
 SPPX+CLARIFAI 50.6% 67.2% 68.4% 66.1% 
 DEEPLAB+RGR 63.0% 77 .3% 91. 2% 67.1 % 
Peach HSV-BASED 0.1% 1.4 % 1.4 % 1.6% 
 SPPX+CLARIFAI 49.1% 67.2% 71.3% 61.2% 
 DEEPLAB+RGR 59.0% 74 .2% 64.8 % 86.8 % 
Pear HVV-BASED 39.7% 56.8% 65.6% 50.1% 
 SPPX +CLARIFAI 40.5% 57.6% 49.6% 68.7% 
 DEEP LAB+ RGR 75.4 % 86.0 % 79.2 % 94.1 % 

 

Our new model outperforms the baseline methods for all datasets evaluated, especially in terms of 
generalization to unseen datasets. By combining a deeper CNN architecture and the RGR refinement module, 
DeepLab+RGR improves both prediction and recall rates in the validation AppleA set by more 
than 15%. Fig. 6 provides a qualitative example of flower detection accuracy in this dataset. 

 
Fig. 6. Best viewed in color. Examples of flower detection in one image composing the AppleA dataset. 

As Fig. 7 illustrates, images composing the AppleB dataset present a higher number of flower buds and 
illumination changes, especially in terms of sunlight reflection by leaves. Despite the larger variance in 
comparison to the previous dataset, the performance obtained by DeepLab+RGR surpasses 77% in terms of 𝐹𝐹1. 

 
Fig. 7. Best viewed in color. Examples of flower detection in one image composing the AppleB dataset. 
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Results obtained for the Peach dataset demonstrate the limitation of color-based methods and two important 
generalization characteristics of our model. The HSV-based method is incapable of detecting peach flowers, 
since their pink color is very different from the white apple blossoms used for training. On the other hand, our 
method presents 𝐹𝐹1 near 75%, indicating that it can properly detect even flowers that differ to a great extent 
from apple flowers in terms of color. Moreover, images composing this dataset are characterized by a cloudy sky 
and hence poorer illumination. Most cases of false negatives correspond to flower buds, due to the lack of such 
examples in the training dataset. As illustrated in Fig. 8, poor superpixel segmentation leads the Sppx+Clarifai 
approach to incorrectly classify parts of the sky as flowers. This problem is overcome by our new model, which 
greatly increases precision rates to above 80%. 

 
Fig. 8. Best viewed in color. Examples of flower detection in one image composing 
the Peach dataset. Left: detections provided by the Sppx+Clarifai method. Right: detections obtained with our 
new DeepLab+RGR method. 

Furthermore, the high recall rate provided by DeepLab+RGR in the Pear dataset demonstrates its robustness to 
slight variations in both flower morphology and color. As shown in Fig. 9, similar to the Peach dataset, these 
images also present a cloudy background. In addition to that, their background is characterized by a high level of 
clutter caused by the presence of a large number of branches. These high texture components compromise the 
background removal model used by Sppx+Clarifai . Still, the DeepLab+RGR method provides a very accurate 
detection of flowers, with precision above 90%. 

 
Fig. 9. Best viewed in color. Examples of flower detection in one image composing the Pear dataset. 

The results obtained by our method for AppleB, Peach and Pear datasets can be further improved by adjusting 
the parameter 𝜏𝜏0 used for final classification and refinement. As summarized in Fig. 10, increasing 𝜏𝜏0 from 0.3 to 
0.5 increases in 3% the 𝐹𝐹1 performance on AppleB, reaching both recall and precision levels around 80%. For 
the Peach dataset, decreasing 𝜏𝜏0 to 0.2 increases the recall rate to above 70%. Such adjustment can be carried 
out quickly through a simple interactive procedure, where τ0 is chosen according to its visual impact on the 
segmentation of a single image. 
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Fig. 10. Segmentation performance in terms of 𝐹𝐹1 measure on each dataset according to the parameter τ0. 

In terms of inference time, the current implementation of our algorithm on an Intel Xeon CPU E5-2620 v3 @ 
2.40 GHz (62GB) with a Quadro P6000 GPU requires on average 50 seconds to evaluate each high-resolution 
image composing our datasets. Around 5 seconds are required to save portraits as individual files and load their 
corresponding prediction scores, a process that can be simplified by generating portraits directly within the 
neural network framework. 

SECTION VI. Conclusion 
We have presented a novel automated approach for flower detection, which exploits state-of-the-art deep 
learning techniques for semantic image segmentation. The applicability of our method was demonstrated by its 
high flower segmentation accuracy across datasets that vary in terms of illumination conditions, background 
composition, image resolution, flower density and flower species. Without any supervised fine-tuning or image 
pre-processing, our model trained using only images of apple flowers succeeded in generalizing for peach and 
pear flowers, which are noticeably different in terms of color and morphology. 

In the future, we intend to further improve the generalization capabilities of our model by training and 
evaluating it on multi-species flower datasets. We ultimately aim at a completely autonomous system capable of 
online bloom intensity estimation. The current implementation of our model can evaluate high-resolution 
images of complete trees an order of magnitude faster than human workers. While in this work we are not 
creating maps of flowers at the block level, this method will scale well for precision agricultural applications such 
as predicting thinning spray treatments and timing. 
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