12,546 research outputs found

    (Dis)assembly path planning for complex objects and applications to structural biology

    Get PDF
    Understanding and predicting structure-function relationships in proteins with fully in silico approaches remain today a great challenge. Despite recent developments of computational methods for studying molecular motions and interactions, dealing with macromolecular flexibility largely remains out of reach of the existing molecular modeling tools. The aim of this thesis is to develop a novel approach based on motion planning algorithms originating from robotics to better deal with macromolecular flexibility in protein interaction studies. We have extended a recent sampling-based algorithm, ML-RRT, for (dis)-assembly path planning of complex articulated objects. This algorithm is based on a partition of the configuration parameters into active and passive subsets, which are then treated in a decoupled manner. The presented extensions permit to consider different levels of mobility for the passive parts that can be pushed or pulled by the motion of active parts. This algorithmic tool is successfully applied to study protein conformational changes induced by the diffusion of a ligand inside it. Building on the extension of ML-RRT, we have developed a novel method for simultaneously (dis)assembly sequencing and path planning. The new method, called Iterative-ML-RRT, computes not only the paths for extracting all the parts from a complex assembled object, but also the preferred order that the disassembly process has to follow. We have applied this general approach for studying disassembly pathways of macromolecular complexes considering a scoring function based on the interaction energy. The results described in this thesis prove not only the efficacy but also the generality of the proposed algorithm

    A CSP model for simple non-reversible and parallel repair plans

    Get PDF
    Thiswork presents a constraint satisfaction problem (CSP) model for the planning and scheduling of disassembly and assembly tasks when repairing or substituting faulty parts. The problem involves not only the ordering of assembly and disassembly tasks, but also the selection of them from a set of alternatives. The goal of the plan is the minimization of the total repairing time, and the model considers, apart from the durations and resources used for the assembly and disassembly tasks, the necessary delays due to the change of configuration in the machines, and to the transportation of intermediate subassemblies between different machines. The problem considers that sub-assemblies that do not contain the faulty part are nor further disassembled, but allows non-reversible and parallel repair plans. The set of all feasible repair plans are represented by an extended And/Or graph. This extended representation embodies all of the constraints of the problem, such as temporal and resource constraints and those related to the selection of tasks for obtaining a correct plan.Ministerio de Educación y Ciencia DIP2006-15476-C02-0

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Survey on assembly sequencing: a combinatorial and geometrical perspective

    Get PDF
    A systematic overview on the subject of assembly sequencing is presented. Sequencing lies at the core of assembly planning, and variants include finding a feasible sequence—respecting the precedence constraints between the assembly operations—, or determining an optimal one according to one or several operational criteria. The different ways of representing the space of feasible assembly sequences are described, as well as the search and optimization algorithms that can be used. Geometry plays a fundamental role in devising the precedence constraints between assembly operations, and this is the subject of the second part of the survey, which treats also motion in contact in the context of the actual performance of assembly operations.Peer ReviewedPostprint (author’s final draft

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Automatic validation of learning object compositions

    Get PDF
    Course construction using reusable learning objects is becoming ever more popular due to its’ efficiency. The course creator who uses this methodology may face problems due to the fact that he or she is not as intimately involved in the creation of every element of the course. In this paper we discuss one such problem faced by course creator known as “the competency gap”. Here, we define the competency gap, explain how it can be identified and suggest ways of correcting the problem
    corecore