
A CSP model for simple non-reversible and parallel repair plans

 Carmelo Del Valle · Antonio Márquez · Irene Barba

Abstract This work presents a constraint satisfaction prob-
lem (CSP) model for the planning and scheduling of disas-
sembly and assembly tasks when repairing or substituting
faulty parts. The problem involves not only the ordering of
assembly and disassembly tasks, but also the selection of
them from a set of alternatives. The goal of the plan is the min-
imization of the total repairing time, and the model considers,
apart from the durations and resources used for the assembly
and disassembly tasks, the necessary delays due to the change
of configuration in the machines, and to the transportation
of intermediate subassemblies between different machines.
The problem considers that sub-assemblies that do not con-
tain the faulty part are nor further disassembled, but allows
non-reversible and parallel repair plans. The set of all feasible
repair plans are represented by an extended And/Or graph.
This extended representation embodies all of the constraints
of the problem, such as temporal and resource constraints and
those related to the selection of tasks for obtaining a correct
plan.

Keywords Planning · Scheduling · Constraints ·
Assembly · Disassembly · Repair

C. Del Valle (B)
Depto. Lenguajes y Sistemas Informáticos,
Universidad de Sevilla, Sevilla, Spain
e-mail: carmelo@lsi.us.es

A. Márquez
Depto. Ingeniería Electrónica, Sistemas Informáticos y
Automática, Universidad de Huelva, Huelva, Spain
e-mail: amarquez@uhu.es

I. Barba
Depto. Lenguajes y Sistemas Informáticos,
Universidad de Sevilla, Sevilla, Spain
e-mail: irene@lsi.us.es

Introduction

Scheduling problems have been successfully addressed for
a wide scope of applications using constraint-based tech-
niques. Most of those problems, as the resource-constrained
project scheduling (RCPS) problem, can be modelled in a
natural way, so that, since the actions are set, variables are
chosen to correspond to the temporal unknowns (mainly start
and end times) or to the ordering of tasks, and constraints
gather precedence and resource constraints (Beck and Fox
1998). Some of the extensions to scheduling that have been
considered, such as alternative resources and process alterna-
tives, lead to models that are closer to planning, as problems
involving choice of actions are often regarded as planning
problems (Smith et al. 2000).

In the other hand, the AI planning community has done
several efforts to extend classical planning techniques to
treat resources and time constraints. Since real-world prob-
lems involve both planning and scheduling issues, there is an
increasing interest for integrating both types of techniques
(Boddy et al. 2004). Constraint programming (CP) has been
used in several recent AI planners (Nareyek et al. 2005),
so this paradigm is at the core for combining planning and
scheduling techniques.

Some of the applications involving such issues are main-
tenance and repair planning, where there may be a cascad-
ing set of choices for actions, facilities, tools or personnel,
which affect the duration of the plans (Smith et al. 2000).
This work presents a constraint satisfaction problem (CSP)
model for solving a planning problem corresponding to the
optimal (temporal) sequencing of disassembly and assembly
tasks for repairing or substituting faulty parts.

Assembly and disassembly planning are very important
in the manufacturing of products and its life cycles. They
involve the identification, selection and sequencing of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/299806520?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A B C D E

A B C D

T1 T2

T3

T4 T5

A C D

A C A D B E

T7

A B C

T6 T8

D E

Fig. 1 The assembly And/Or graph for the system ABCDE

to the complete assembly, and the leaf nodes correspond to
the individual parts. Each And node corresponds to the assem-
bly task joining the sub-assemblies of its two nodes below it
producing the sub-assembly corresponding to the node above
it. The And nodes immediately below an Or node correspond
to the alternative assembly tasks that might be selected in
order to obtain the subassembly corresponding to the Or
node. Furthermore, each And node corresponds to the disas-
sembly task, opposite to the assembly task, that decomposes
the sub-assembly above it in the representation of the And/Or
graph (see Fig. 1). An important advantage of this represen-
tation, used in this work, is that the And/Or graph shows the
assembly/disassembly tasks that can be executed in parallel.
Furthermore, both precedence constraints and those related
to the selection of tasks for obtaining a correct disassembly
or assembly plan, can be easily obtained from this represen-
tation.

Considering that an assembly/disassembly task is exe-
cuted in a machine with a particular configuration, other aux-
iliary operations are taken into account:

• set-up operations (changing the configuration of mach-
ines). �cht (M, C, C ′) will denote the time needed for
changing the configuration (i.e. change of tools) of the
machine M from C to C ′.

• transportation of subassemblies between different
machines. �mov(S A, M, M ′) will denote the time needed
for transporting the subassembly SA from machine M to
machine M ′.

As explained in the next section, an extension of this
representation will allow a direct mapping from the plan-

assembly/disassembly operations, which can be specified by
their effects on the parts. The identification of assembly/dis-
assembly operations is usually tackled by analyzing the prod-
uct structure and the feasibility of each possible task (Homem
de Mello and Sanderson 1991; Calton 1999), and usually
leads to the set of all feasible plans. Most approaches used
for choosing optimal assembly plans employ different kind
of rules in order to avoid difficult tasks or awkward inter-
mediate subassemblies (Homem de Mello and Lee 1991;
Goldwasser and Motwani 1999). In other context, disassem-
bly planning has been object of different studies, varying
from maintenance or repair purposes to recycle or recov-
ery of useful materials (Li and Zhang 1995; Lambert 1997,
1999). Different techniques have been used for solving those
problems, from mathematical programming to a variety of
methods related to artificial intelligence (Lambert 2003). As
for other scheduling and planning problems, a CSP approach
may be adequate for solving the problem proposed.

This work is focused on the selection of assembly and dis-
assembly tasks for repairing faulty parts, and their optimal
ordering. The objective is the minimization of the total rep-
aration time when executing the plan in a generic multiple
machine environment, considering different factors that can
have an influence on it: durations of tasks, shared resources,
including modes of operation (machine configurations), and
an estimation of the time needed for doing auxiliary opera-
tions, such as the transportation of intermediate subassem-
blies between different machines, and set-up operations such
as changes of configurations in machines. The general prob-
lem may contain different types of plans, and in this work we
are concentrated on parallel and reversible repair plans that
do not disassemble the subassemblies which do not include
the faulty parts.

The rest of the paper is organised as follows: next sec-
tion details the proposed repair planning model. Then, it is
introduced the CSP model for planning the substitution or
reparation of faulty parts. Later, some experimental results
from different methods that solve the related problem are
presented. Finally, some conclusions and future work to be
developed starting from the proposed model are shown.

The repair planning problem

A usual way of describing and representing the set of all
feasible assembly and disassembly plans is through And/Or
graphs (Homem de Mello and Sanderson 1990). In these
graphs, each assembly/disassembly plan is associated to an
assembly/disassembly tree, an And/Or path starting at the
root node and ending at the leaf nodes, and showing the
precedence constraints among the tasks contained in the
assembly/disassembly plan. In this representation, the Or
nodes correspond to sub-assemblies, the top node corresponds

ning problem to a constraint satisfaction problem (CSP), in
order to be solved using constraint programming (CP).

In order to repair or substitute a (previously detected)
faulty part, a sequence of disassembly tasks must be exe-
cuted before the faulty part can be extracted. After that, a
repair action would substitute or repair the part, and then
a set of assembly tasks must reassemble the system. In the
plan, the two types of sequence-dependent auxiliary opera-
tions pointed out before (set-up machines and transportation
of sub-assemblies) might have to be used.

From the AI planning perspective, the resulting planning
domain would have the following durative actions:

• assemble(sub1, sub2, result): assembles
the subassemblies sub1 and sub2 to obtain a bigger
subassembly result.

• disassemble(result, sub1, sub2): disas
sembles the subassembly result to obtain two subas-
semblies, sub1 and sub2.

• move-subassembly(sub, mach1, mach2):
moves the subassembly sub from machine mach1 to
machine mach2.

• change-configuration(mach, conf1, con-
f2): changes the configuration of the machine mach
from conf1 to conf2.

• repair-part(p): repairs or substitutes the part p.

The planner must obtain the optimal sequence of the disas-
sembly operations to extract the faulty part, the replacement
or repair task, and the reassembly tasks.

The general problem may involve the search in the whole
And/Or graph, allowing different types of plans. Usually,
some different properties are fulfilled, and considering them
can simplify solving the problem. Some of them are taken
into account in this work, as gathered in the following defi-
nitions.

Definition 1 A repair graph is a sub-graph of the And/Or
graph which only contains the assembly and disassembly
tasks (and the corresponding subassemblies) that could be
necessary to repair some parts, according to the simplified
model considered.

Definition 2 An assembly (disassembly) task T is revers-
ible if its corresponding disassembly (assembly) task T ′ is
feasible, i.e., if both tasks handle the same subassemblies,
but in an opposite way, maybe using different machines or
configurations. The two tasks are called reverse with respect
to the other.

Definition 3 A reversible plan is a tree of the repair graph
that only contains reversible tasks, so that for each disassem-
bly task, its reverse assembly task is included.

The planning model developed in the current work
supposes the conditions:

(C1) All tasks are reversible.
(C2) Subassemblies that do not include the faulty parts are

not disassembled.

Some observations must be done from the conditions con-
sidered:

• Condition (C1) does not imply that plans must be revers-
ible.

• If only one component must be repaired, condition (C1)
ensures that, when (C2) is imposed, there is at least one
solution, corresponding to a reversible plan where the
disassembly and assembly tasks are linearly sequenced.

• In the assembly process, other subassemblies different
from the ones generated in the disassembly process can
appear, depending on how they are joined. That is the
case when, for a disassembly task selected, its reverse
assembly task is not selected.

• Disassembly tasks only handle subassemblies that con-
tain the faulty part, whereas assembly tasks handle sub-
assemblies that may contain or not the faulty part.

• In general, plans are not a linear sequence of tasks, unlike
reversible plans. Although the disassembly process is
linear, the assembly process can contain tasks that may
execute in parallel with others. Moreover, it is possible
that the assembly process starts before the disassembly
process has finished, using those subassemblies or indi-
vidual parts that are generated as disassembly tasks are
executed. Additionally, although the disassembly and
assembly processes are linear, there may be a parallel
execution of the two types of tasks.

The CSP model

According to the problem stated in the previous section, the
time and resource constraints typical from scheduling would
be modified to conditional constraints taking into account
that tasks (and subassemblies) may not appear in the solu-
tion. This is a similar approach found in previous works for
planning and configuration applications, using DCSP mod-
els (Mittal and Falkenhainer 1990) and compiling them to
standard CSPs (Do and Kambhampati 2001).

Most of the ideas are taken from previous works (Márquez
et al. 2005), but the assumptions considered in this work will
result in modifying most constraints and in adding others.

In order to obtain a solution, taking into account the con-
ditions (C1) and (C2) from the previous section, the And/Or
graph can be simplified (see Figs. 1, 2), removing those And
nodes (disassembly) below the Or nodes corresponding to

A B C D E

A B C D

T1 T2

T3

T4 T5

A C D

A C A D B E

T7

A B C

T6 T8'

''

'

''

' '

D E

Fig. 2 The simplified disassembly And/Or graph for the system
ABCDE when substituting part D

subassemblies which do not contain the faulty part, but main-
taining the same And nodes for assembly which could be used
in the assembly process. This can be done through a depth-
first traversal of the assembly And/Or graph. Now, the leaf
nodes of the And/Or assembly graph are the individual parts
and the subassemblies which do not contain the faulty part.
All these nodes will have the same processing, except for the
faulty part. Figure 3 shows an example of this representation,
where both the disassembly and assembly processes are rep-
resented. For the sake of clarity, Or nodes corresponding to
the same subassemblies are repeated in both the disassembly
and assembly parts of the graph.

Table 1 shows the number of Or and And nodes in the
And/Or graphs corresponding to a set of hypothetical prod-
ucts of 30 and 40 parts. Supposing that each individual part
must be repaired, it includes the average number of Or, And
(assembly tasks), And ′ (disassembly tasks) nodes, and of dis-
assembly and repair plans in the simplified And/Or graphs,
respectively.

Variables of the CSP

Each node of the And/Or graph is associated to a set of vari-
ables in the CSP:

• For the assembly and disassembly tasks corresponding
to each And node, T and T ′, respectively: its durations
dur(T) anddur(T ′); the machines used M(T) and M(T ′),
and the necessary configuration on them, C(T) and C(T ′);
its starting times, ti (T) and ti (T ′); its ending times, t f (T)

and t f (T ′); and two boolean variables representing if

B E

A B C D E

A B C D

T1

T5

A D

T7

T2

T4

T11
T6

A C

T8

A C D

T3

B E

A B C D E

A B C D

T1

T5

A D

T7

A B C

T2

T4

A C

A C D

T3

'

''

'

'

''

D E

Fig. 3 The simplified repair And/Or graph for the system ABCDE
when substituting part D

the tasks are selected for the solution, s(T) and s(T ′),
respectively.

• For each subassembly SA (Or node): the machine used for
its assembly, m(SA); the machine where it is obtained after
the corresponding disassembly task, m′(SA); the times
when it is obtained after assembly, tO R(SA), and disas-
sembly, t ′O R(SA); and two boolean variables representing
if the subassembly SA appears in the assembly and disas-
sembly processes, s(SA) and s′(SA), respectively.

• Finally, a part P to be repaired is associated to a temporal
delay �subst (P), corresponding to the reparation or sub-
stitution of the faulty part. In this work, we will suppose
that �subst (P) does not depend on the machine where P
is extracted and/or repaired.

Regarding the types of actions (operators) from the AI plan-
ning perspective from section “The repair planning program”,
it must be noted that operators assembly and disas-
sembly are related to the And nodes. The repair-part

Table 1 Number of And and Or nodes and plans (average) for 8 hypothetical problems

Problem And/Or graph Simplified And/Or graph

#Or #And #Or #And #And′ #Disassembly plans #Repair plans

30a 348 630 223 327 240 623 1213

30b 404 828 303 520 365 3045 9200

30c 415 863 310 546 384 3634 12846

30d 408 837 294 506 365 3071 9414

40a 649 1518 433 833 575 9370 23005

40b 759 2086 604 1437 947 76171 405661

40c 770 2143 621 1489 984 70980 248408

40d 756 2060 598 1400 925 54449 197551

operator is associated to the Or node corresponding to the
part P to be repaired, and the delay �subst (P) that repre-
sents the duration of the repair task.

The extended And/Or graph

Although the And/Or graph representation shows both pre-
cedence constraints and those related to the selection of tasks
for obtaining a correct disassembly and assembly plan, we
extend it so that the new representation includes all the con-
straints involved in the problem, adding new types of links
between And nodes. The new links represent non-precedence
constraints:

• due to the use of shared resources by the tasks (constraints
from group 6 below),

• taking into account the delays due to the change of con-
figurations in the machines (constraints from group 4
below); �cht (M , C , C ′) will denote the time needed for
changing the configuration (for instance, change of tools)
of the machine M from C to C ′,

The transportation of intermediate subassemblies will result
in an additional delay that must be considered in the pre-
cedence constraints; �mov(SA, M , M ′) will denote the time
needed for transporting the subassembly SA from machine
M to machine M ′.

Regarding the operators from the AI planning perspective
from section “The repair planning program”, the operator
move-subassembly has not an explicit task in the CSP
model, and it is considered through the delays �mov(·). Sim-
ilarly, the operator change-configuration has not an
explicit task in the CSP model, and it is considered through
the delays �cht (·).

Figure 4 shows the extended and simplified repair And/Or
graph resulting for the product ABCDE when substituting
part D in the general case that disassembly and assembly
plans could be different. In order to understand more clearly

these kinds of constraints, Fig. 5 shows only one of the pos-
sible disassembly plans of the repair And/Or graph resulting

B E

M1
C2

M2
C4

A B C D E

A B C D

T1

T5

A D

T7
M1
C2

M2
C5

M2
C5

T2

T4

T11 M2
C4

M2
C4

T6

A C

T8

A C D

T3
M3

C6

B E

M1

C2

M2
C3

A B C D E

A B C D

T1

T5

A D

T7

A

M3
C6

B C

T2

T4

A C

A C D

M2
C3

M1
C1

T3
M1
C2

'

''

'

'

''

D E

Fig. 4 The extended and simplified repair And/Or graph for the sub-
stitution of part D in the product ABCDE when considering all possible
disassembly plans

B E

M2
C4

A B C D E

A B C D

T1

M2
C5

T2

T4

T11

A C

T8

A C D

T3
M3

C6

M2
C3

A B C D E

A B C D

T1

B

T4

A C

A C D

M2
C3

T3
M1
C2

'

'

'

'

M2
C4

M2
C5

D E

Fig. 5 The extended and simplified repair And/Or graph for the sub-

assemblies between machines when reverse tasks use differ-
ent machines, and the possible delays due to the change of
configurations when they use the same machine.

Groups of constraints

In this subsection, the different types of constraints of the
CSP for the model proposed are presented in different groups.
Each group of constraints corresponds to a link or component
of the extended And/Or graph (see Fig. 4). Some examples of
them are shown in Tables 2, 3, 4, 5, and 6. Figure 6 shows the
different types of graph links for each group of constraints.

Constraints from group (1) collect the relation between the
information from an Or node and the And nodes below it in
the original And/Or graph. On the one hand, they include the
relation between the selection of disassembly tasks T ′ and
assembly tasks T , and that of the sub-assembly, expressed
through the XOR operator, since one and only one alterna-
tive (disassembly and assembly) task can be selected to build
or disassemble a sub-assembly, if that sub-assembly is part

Table 2 Set of constraints from group (1) for the repair And/Or graph
of Fig. 4

Group Constraints

(1) s′(ABC DE) = s(ABC DE) = s′(D) = s(D)

= true ∧ t ′OR(ABC DE) = 0
[
s′(ABC DE) ⇔] (

s(T ′
1) X O R s(T ′

2)
)

[s(ABC DE) ⇔] (s(T1) X O R s(T2))

s(T ′
1) ⇒ ti (T ′

1) ≥ t ′OR(ABC DE)

+ �mov(m′(ABC DE), M(T ′
1))

s(T ′
2) ⇒ ti (T ′

2) ≥ t ′OR(ABC DE)

+ �mov(m′(ABC DE), M(T ′
2))

s(T1) ⇒ (
t f (T1) = tOR(ABC DE) ∧ m(ABC DE)

= M(T1) = M2)

s(T2) ⇒ (
t f (T2) = tOR(ABC DE) ∧ m(ABC DE)

= M(T2)=M2)

s′(ABC D) ⇔ s(T ′
3)

s(ABC D) ⇔ s(T3)

s(T ′
3) ⇒ ti (T ′

3) ≥ t ′OR(ABC D)

+ �mov

(
m′(ABC D), M(T ′

3)
)

s(T3) ⇒ ti (T3) = tOR(ABC D)

+ �mov (m(ABC D), M(T3))

s′(S A) ⇒ (
s(S A) ∧ m(S A) = m′(S A) ∧ tOR(S A)

= t ′OR(S A)
)
, S A ∈ {A, B, C, E, AC, B E}

s(T6) ⇒ (s(AC) ∧ m(AC) = M(T6)

= M2 ∧ tOR(AC) = t f (T6)
)

.

.

.
[
s′(D) ⇒] (

m(D) = m′(D) ∧ tOR(D)

= t ′OR(D) + �sust (D)
)

stitution of part D in the product ABCDE when considering only one
of the disassembly plans

for the product ABCDE when substituting the part D, and
the possible assembly plans that could complete the solu-
tion. The machines and configurations have been selected in
order to describe the different cases that could appear.

Figure 5 shows that for a particular disassembly plan (T1
′ −

T3
′ − T4

′ in the example) there may be different alternative
assembly plans (T4 − T3 − T1 and T4 − T8 − T2 in the exam-
ple). Although all the leaf nodes (AC, B, D, E) generated
in the disassembly process must be present in the assembly
part of the solution, the same is not true for the intermediate
subassemblies, which will appear or not depending on the
assembly tasks selected.

Moreover, reverse tasks may use different machines and/
or configurations, so that we must take into account the
possible delays due to the transportation of intermediate sub-

Table 3 Set of constraints from
groups (2) and (3) for the repair
And/Or graph of Fig. 4

Group Constraints

(2) s(T ′
i) ⇒ t f (T ′

i) = ti (T ′
i) + dur(T ′

i), T ′
i ∈ {T ′

1, T ′
2, T ′

3, T ′
4, T ′

5, T ′
7}

s(Ti) ⇒ t f (Ti) = ti (Ti) + dur(Ti), Ti ∈ {T1, T2, T3, T4, T5, T6, T7, T8}

(3) s(T ′
1) ⇒ (

s′(ABC D) ∧ s′(E)
)

s(T1) ⇒ (s(ABC D) ∧ s(E))

s(T ′
1) ⇒ (

t ′OR(ABC D) = t ′OR(E) = t f (T ′
1)

)

s(T ′
1) ⇒ (

m′(ABC D) = m′(E) = M(T ′
1)

)

s(T1) ⇒ ti (T1) ≥ tOR(ABC D) +�mov (ABC D, m(ABC D), M(T1))

s(T1) ⇒ ti (T1) ≥ tOR(E) + �mov (E, m(E), M(T1))

.

.

.

Table 4 Set of constraints from group (4) for the repair And/Or graph
of Fig. 4

Group Constraints

(4) s′(AC D) ⇔ (
s(T ′

3) X O R s(T ′
2)

)

s′(D) ⇔ (
s(T ′

4) X O R s(T ′
7)

)

s(A) ⇔ (s(T6) X O R s(T7))

s(B) ⇔ (s(T3) X O R s(T8))

s(C) ⇔ (s(T5) X O R s(T6))

s(D) ⇔ (s(T4) X O R s(T7))

s(E) ⇔ (s(T1) X O R s(T8))

s(AC D) ⇔ (s(T3) X O R s(T2))

Table 5 Set of the constraints from group (5) for the repair And/Or
graph of Fig. 4

Group Constraints

(5)
(
s(T ′

1) ∧ s(T1)
) ⇒ ti (T1) ≥ t f (T ′

1) + �cht (M2, C3, C4)
(
s(T ′

1) ∧ s(T6)
) ⇒ ti (T6) ≥ t f (T ′

1) + �cht (M2, C3, C4)
(
s(T ′

1) ∧ s(T8)
) ⇒ ti (T8) ≥ t f (T ′

1) + �cht (M2, C3, C4)
(
s(T ′

2) ∧ s(T ′
5)

) ⇒ ti (T ′
5) ≥ t f (T ′

6) + �cht (M1, C1, C2)
(
s(T ′

4) ∧ s(T4)
) ⇒ ti (T4) ≥ t f (T ′

4) + �cht (M2, C3, C5)

(s(T6) ∧ s(T4)) ⇒ ti (T4) ≥ t f (T6) + �cht (M2, C4, C5)

(s(T8) ∧ s(T2)) ⇒ ti (T2) ≥ t f (T8) + �cht (M2, C4, C5)

(s(T4) ∧ s(T1)) ⇒ ti (T1) ≥ t f (T4) + �cht (M2, C5, C4)

of the plan solution:

s′(S A) ⇔ X O RT ′
i ∈succ(S A)(s(T ′

i))

s(S A) ⇔ X O RTi ∈pred(S A)(s(Ti))

In these expressions, succ(SA) refers to the set of the alterna-
tive disassembly tasks which can be selected for the
disassembly of SA, and pred(SA) refers to the set of the alter-
native assembly tasks which can be selected for obtain SA
(see Fig. 6).

Table 6 Set of constraints from group (6) for the repair And/Or graph
from Fig. 4

Group Constraints

(6)
(
s(T ′

4) ∧ s(T8)
) ⇒

(ti (T ′
4) ≥ t f (T8) + �cht (M2, C4, C3) ∨ ti (T8)

≥ t f (T ′
4) + �cht (M2, C3, C4))

(s(T6) ∧ s(T8)) ⇒ (
ti (T6) ≥ t f (T8) ∨ ti (T8) ≥ t f (T6)

)

(s(T4) ∧ s(T8)) ⇒
(ti (T4) ≥ t f (T8) + �cht (M2, C4, C5) ∨ ti (T8)

≥ t f (T4) + �cht (M2, C5, C4))

(1)

(2)

(3)

(5)

(6)

(4)

Ti Tj

SA
...

T’i T’j

T

T’

SA1 SA2

...
T’i T’j

SA

Ti

Tj

SA

...Ti Tj

T

SA1 SA2

...

Ti Tj

SA

Fig. 6 Types of graph links for groups of constraints

On the other hand, these constraints allows to establish the
disassembly times t ′O R and assembly times tOR of Or nodes
related to the start times of the disassembly tasks or the end

times of the assembly tasks, respectively:

s(T ′
i) ⇒ ti (T ′

i) ≥ t ′OR(S A)

+�mov

(
S A, m′(S A), M(T ′

i)
)

s(Ti) ⇒ t f (Ti) = tOR(S A)

and the machine m where a sub-assembly is generated after
an assembly task:

s(Ti) ⇒ m(S A) = m(Ti)

A special case is for the complete product and for the faulty
part, which always will appear in the solution, so that the
corresponding boolean variables s are true. Moreover, for
the Or leaf nodes (individual parts and sub-assemblies that
do not include the faulty part) t ′OR and tOR are set equals,
except for the faulty part, where the delay corresponding to
the reparation is considered. The origin of times is set to
the t ′OR variable of the complete product, and the goal is the
minimization of the tOR variable of the complete product.
Table 2 shows some representative examples of the different
constraints from group (1) corresponding to the extended and
simplified repair And/Or graph of Fig. 4.

Constraints from group (2) consider the durations of
assembly and disassembly tasks and correspond to the rela-
tionships between the starting and ending times of the assem-
bly and disassembly tasks. So, for any assembly or disassem-
bly task T :

s(T) ⇒ t f (T) = ti (T) + dur(T)

Constraints from group (3) (see Fig. 6) collect the relation
between the information from an And node and the (two) Or
nodes below it in the original And/Or graph. Apart from the
obligatory selection of the two Or nodes if the And node is
selected, i.e.

s(T ′) ⇒ s′(S A1) ∧ s′(S A2)

s(T) ⇒ s(S A1) ∧ s(S A2)

they also include the equality constraint between the dis-
assembly times of the Or nodes, t ′OR, and the end time of a
disassembly task T ′ above them in the original And/Or graph,

s(T ′) ⇒ t f (T ′) = t ′OR(S A1) = t ′OR(S A2)

and the precedence between the assembly time of the Or
nodes tOR and the start times of assembly task T (And nodes),
and considering the possible delays due to the transporta-
tion of sub-assemblies if the two consecutive (disassembly
or assembly) tasks involving it use different machines:

s(T) ⇒ ti (T) ≥ tOR(S A1)

+�mov (S A, m(S A1), M(T))

s(T) ⇒ ti (T) ≥ tOR(S A2)

+�mov (S A, m(S A2), M(T))

Moreover, the machine m′ where a sub-assembly is generated
after a disassembly task is the machine used by the disassem-
bly task:

s(T ′) ⇒ m′(S A1) = M(T ′)
s(T ′) ⇒ m′(S A2) = M(T ′)

Table 3 shows some indicative examples of the different con-
straints from groups (2) and (3) corresponding to the extended
and simplified repair And/Or graph of Fig. 4.

Constraints from group (4) collect the relation between the
selection of an Or node and that of all the And nodes above
it (possibly only one) in the original And/Or graph. The tem-
poral constraints between those nodes are included in the
group of constraints (3) depicted before. Figure 6 shows that
the disassembly tasks T ′

i involved are the immediate prede-
cessors of the sub-assembly, SA, and that the assembly tasks
Ti involved are the immediate successors of SA. So, the gen-
eral form of the constraints is

s′(S A) ⇔ X O RT ′
i ∈pred(S A)

(
s(T ′

i)
)

s(S A) ⇔ X O RTi ∈succ(S A) (s(Ti))

Table 4 shows some indicative examples of the different con-
straints from group (4) corresponding to the extended and
simplified repair And/Or graph of Fig. 4.

All the previous types of constraints come from the rela-
tions between the nodes included in the original And/Or
graph. The next two groups of constraints come from the
use of (same or different) resources by the different assem-
bly and disassembly tasks, and they are related to new links
between tasks in the extended And/Or graph.

Constraints from group (5) are due to the delay needed
for a change of configuration in a machine between the exe-
cutions of assembly or disassembly tasks using the same
machine with precedence constraints among them. Those
constraints may include the relations between reverse dis-
assembly and assembly tasks. Notice that, for a particular
repair plan, it is only needed to relate each task to its clos-
est successor task, in any possible subsequence of tasks, that
uses the same machine. For a task Ti , and its closest suc-
cessor task Tj that uses the same machine m, taking into
account the possible change of configuration in the machine,
the constraint
(
s(Ti) ∧ s(Tj)

) ⇒ ti (Tj) ≥ t f (Ti)

+�cht
(
m, C(Ti), C(Tj)

)

must be satisfied. Notice that, when both tasks use the same
configuration, the resulting constraint is superfluous and can
be eliminated. Moreover, since the solution may contain non-
reverse tasks, each disassembly task must be related to each
closest (maybe not only one) successor assembly task that
uses the same machine. For the example of Fig. 5, the disas-
sembly task T ′

1 is related to T8 and, as T ′
1 and T4 use the same

configuration, the corresponding constraint is not necessary.
Also, the relation between T ′

1 and T1, present in the example
of Fig. 4 because of the possible plan T ′

1 − T ′
3 − T ′

5 − T ′
7 −

T7 − T5 − T3 − T1, is not necessary for the example of Fig. 5,
because if T1 is selected, it would be executed after T ′

4 and
T4, both of them executed after T ′

1.
Table 5 shows some indicative examples of the different

constraints from group (5) corresponding to the extended and
simplified repair And/Or graph of Fig. 4.

Finally, constraints from group (6) take into account that
some (assembly or disassembly) tasks may execute in paral-
lel depending on the use of shared resources. For each two
tasks Ti and Tj requiring the same machine m, with no prece-
dence constraint among them, and which may belong to the
same repair plan, these constraints express the two possible
orders of execution of the tasks:
(
s(Ti) ∧ s(Tj)

) ⇒ (
ti (Ti) ≥ t f (Tj)

+�cht
(
m, C(Tj), C(Ti)

) ∨ ti (Tj) ≥ t f (Ti)

+�cht
(
m, C(Ti), C(Tj)

))

For the example of Fig. 4, the assembly task T8 is related to
the disassembly task T ′

4 and to the assembly task T4 in the
repair plan T ′

1−T ′
3−T ′

4−T8−T4−T2, showing that assembly
task T8 may be executed before or after T ′

4 and T4. Table 6
shows some indicative examples of the different constraints
from group (6) corresponding to the extended and simplified
repair And/Or graph of Fig. 4.

A typical objective for such a problem would be the min-
imization of the elapsed time of the plan (makespan), that is,
the time when the system is reassembled after the reparation,
that is given by the variable tOR (ABCDE) for the example
used.

Notice that the combinatorial character of the problem
is due to the XOR constraints from groups (1) and (4) and
the disjunctive constraints from group (6). These types of
constraints correspond, respectively, to the selection of alter-
native (assembly and/or disassembly) tasks and to the use of
shared resources by the assembly and/or disassembly tasks
that are not related through precedence constraints.

Experimental results

In this section some experimental results related to different
algorithmic methods for obtaining repair plans are shown.
The CSP model described in this paper has been tested using
a basic backtracking-based algorithm implemented in ILOG
Solver (ILOG). We refer it as ALG-2 in the rest of the paper.
A temporal limit of 300 s was established for the search. In
order to guide the search, the order of selection of variables
to be instantiated is from up to down in the extended And/Or
graph (Fig. 4).

Table 7 Comparative results (quality of solutions)

Problem Best � (Best) # Opt

SGPlan ALG-1 ALG-2 SGPlan ALG-1 ALG-2

30a 0, 012 0, 037 1 0, 498 0, 083 0 58

30b 0, 050 0, 562 0, 425 0, 360 0, 058 0, 915 0

30c 0, 050 1 0 0, 418 0 2, 266 0

30d 0, 075 1 0 0, 382 0 1, 367 0

40a 0, 087 1 0 0, 368 0 1, 306 0

40b 0, 150 0, 450 0, 550 0, 449 0, 066 0, 913 44

40c 0, 012 0, 212 0, 850 0, 496 0, 082 0, 018 44

40d 0, 137 1 0 0, 350 0 0, 529 0

Table 8 Comparative results (computation time)

Problem Time Ave.

SGPlan ALG-1 ALG-2

30a 0,193 0,044 120, 9

30b 0,485 0,097 300

30c 0,604 0,091 300

30d 0,598 0,108 300

40a 1,395 0,157 300

40b 2,063 0,264 136, 1

40c 1,407 0,193 136, 2

40d 1,788 0,275 300

Tables 7 and 8 show a comparison of three different algo-
rithms used to solve the repair planning problem. Each row
refers to a set of 80 instances of an And/Or graph for a hypo-
thetical product of 30 or 40 parts, with different combinations
for the durations of tasks, machines and configurations used,
and faulty part selected to be repaired. The experiments were
carried out on a 2,13 GHz Intel Core 2 Duo with 2 GB RAM.

First of all, a generic planner, SGPlan (Chen et al. 2006),
winner of the 1st Prize Satisficing (sub-optimal) Planning in
the Deterministic Part of the International Planning Competi-
tion (IPC-5) in 2006 (Dimopoulos et al. 2006), has been used
to solve the corresponding problems related to an adapted
domain definition.

The second algorithm used was chosen from a previous
work (Márquez et al. 2005). We refer it as ALG-1 in the rest
of the paper. This algorithm, implemented in ILOG Solver
and Scheduler (ILOG), uses a dynamic CSP approach, and a
more restricted model that only allows to obtain linear plans.

According to the three algorithms previously mentioned,
Tables 7 and 8 give results on the quality of solutions and the
computation times, showing the following measures:

• Best: fraction of solutions for each method with the same
makespan than the best solution obtained by the three
algorithms.

• � Best: average deviation related to the best solution
found.

• # opt: number of proven optimal solutions found by
ALG-2 (from the 80 instances per row).

• Time Ave.: average time spent by the algorithm to obtain
the solution.

References

Beck, J. C., & Fox, M. S. (1998). A generic framework for constraint-
directed search and scheduling. AI Magazine, 19(4), 101–130.

Boddy, M. S., Cesta, A., & Smith, S. F., (Eds.). (2004). Workshop on
“Integrating planning into scheduling” (WIPIS-04). In 14th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS),
Whisler Canada, June, 2004. http://pst.istc.cnr.it/wipis-at-icaps-04/.

Calton, T. L. (1999). Advancing design-for-assembly. The next gener-
ation in assembly planning. In Proceedings of the 1999 IEEE Inter-
national Symposium on Assembly and Task Planning (pp. 57–62).
IEEE Catalog Number 99TH8470, ISBN 0-7803-5704-3, doi:10.
1109/ISATP.1999.782935.

Chen, Y., Hsu, C., & Wah, B. (2006). Temporal planning using subgoal
partitioning and resolution in SGPlan. Journal of Artificial Intelli-
gence Research, 26, 323–369.

Dimopoulos, Y., Gerevini, A., Haslum, P., & Saetti, A. (2006). The
fifth International Planning Competition, hosted at the International
Conference on Automated Planning and Scheduling (ICAPS-06),
Cumbria, UK, 2006. http://ipc5.ing.unibs.it/index.html.

Do, M. B., & Kambhampati, S. (2001). Planning as constraint satisfac-
tion: Solving the planning graph by compiling it into CSP. Artificial
Intelligence, 132, 151–182.

Goldwasser, M. H., & Motwani, R. (1999). Complexity measures for
assembly sequences. International Journal of Computational Geom-
etry and Applications, 9, 371–418.

Homem de Mello, L. S., & Lee, S. (Eds.). (1991). Computer-aided
mechanical assembly planning. Kluwer Academic Publishers.

Homem de Mello, L. S., & Sanderson, A. C. (1990). And/Or graph rep-
resentation of assembly plans. IEEE Transactions on Robotics and
Automation, 6(2), 188–199.

Homem de Mello, L. S., & Sanderson, A. C. (1991). A correct
and complete algorithm for the generation of mechanical assem-
bly sequences. IEEE Transactions Robotic & Automation, 7(2),
228–240.

ILOG, France, ILOG Solver and Scheduler, http://www.ilog.com/.
Lambert, A. J. D. (1997). Optimal disassembly of complex products.

International Journal of Production Research, 35, 2509–2523.
Lambert, A. J. D. (1999). Optimal disassembly sequence generation for

combined material recycling and part reuse. In Proceedings of the
1999 IEEE International Symposium on Assembly and Task Planning
(pp. 146–151). IEEE Catalog Number 99TH8470, ISBN 0-7803-
5704-3, doi:10.1109/ISATP.1999.782950.

Lambert, A. J. D. (2003). Disassembly sequencing: a survey. Interna-
tional Journal of Production Research, 41(16), 3721–3759.

Li, W., & Zhang, C. (1995). Design for disassembly analysis for envi-
ronmentally conscious design and manufacturing. In Proceedings of
the International Mechanical Engineering Congress and Exposition,
November 12–17, 1995, San Francisco, California (pp. 969–976).
ISBN 0791817385.

Márquez, A., Del Valle, C., Gasca, R. M., & Toro, M. (2005). A con-
straint-based algorithm for planning the substitution of faulty parts.
In Frontiers in Artificial Intelligence and Applications, 117, 79–88.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction
problems. In Proceedings of the Eighth National Conference on Arti-
ficial Intelligence (pp. 25–32). AAAI Press.

Nareyek, A., Freuder, E. C., Fourer, R., Giunchiglia, E., Goldman, R.P.,
Kautz, H.A., Rintanen, J., & Tate, A. (2005). Constraints and AI
planning. IEEE Intelligent Systems, 20(2), 62–72.

Smith, D., Frank, J., & Jónsson, A. (2000). Bridging the gap between
planning and scheduling. Knowledge Engineering Review, 15(1),
47–83.

The results from Table 7 show that the behaviour of
ALG-2 is highly dependent of the graph structure. In some
cases (30a and 40c) this algorithm obtains the best solutions,
but in other cases (30c, 30d, 40a and 40d) the other algorithms
are better. In other cases (30b and 40b) some of the problems
are solved in the best way and others in the worst one. Also,
the optimal solution is guarantied in some kinds of problems
(30a, 40b and 40c), but in others, the mean deviation from
the best solution was very high.

The results obtained by ALG-1 are the best in some cases
(30c, 30d, 40a and 40d) and obtained the second place in the
other cases. The mean deviation from the best for ALG-1
was the better in general, because it carries out a complete
search but for the optimal linear plan. On the other hand, the
results of SGPlan are the worst in most cases regarding the
number of best solutions found.

The computational times given in Table 8 show that the
fastest algorithm is ALG-1 and the slowest one is ALG-2, as
expected for such a basic algorithm.

Conclusions and future work

This work proposes a CSP model for the planning and optimal
sequencing of disassembly and assembly tasks when repair-
ing or substituting faulty parts. Two assumptions are made,
so that subassemblies that do not contain the faulty part are
nor further disassembled, but allowing non-reversible and
parallel repair plans.

The CSP can be solved directly using conventional meth-
ods for a generic CSP, since all the variables and constraints
of the problem are included, as has been shown in the pre-
vious section. Also, a DCSP approach can be used, so that
the selection of tasks and subassemblies would impose the
addition or deletion of the consequent part of the constraints.

As future work, apart from the use of different algorithms
for solving the problem, we propose the development of more
general models, considering the maintenance and repairing
of multiple parts, and that tasks may be not reversible, where
the solution might imply to decompose subassemblies which
do not include the faulty parts.

Acknowledgements This work has been partially supported by the
Spanish Ministerio de Educación y Ciencia through a coordinated
research project (Grant DIP2006-15476-C02-01) and Feder (ERDF).

http://pst.istc.cnr.it/wipis-at-icaps-04/
http://dx.doi.org/10.1109/ISATP.1999.782935
http://dx.doi.org/10.1109/ISATP.1999.782935
http://ipc5.ing.unibs.it/index.html
http://www.ilog.com/
http://dx.doi.org/10.1109/ISATP.1999.782950

	A CSP model for simple non-reversible and parallel repair plans
	Abstract
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

